Book Review
Type Theory and Functional Programming, Simon Thompson (Addison-Wesley, 1991)

Constructive Foundations for Functional Languages, Raymond Turner (McGraw-Hill,
1991)

Constructive mathematics is founded in a critique of classical methods, in particular
the conception of infinite sets. In the constructive view, infinite sets cannot be treated
as completed wholes, but as collections whose elements can be constructed as necessary.
Similarly we do not have a set of all truths, but may prove individual propositions and
thereby recognize them as true.

The consequences are well-known. The constructivist does not say “¢ is true” but
rather, “p is a witness of ¢.” A witness of ¢ V 1) contains a witness of ¢ or a witness
of 1, with an indication of which. A witness of (Jx € A)¢p(x) is a pair (a,p), where
a € A and p is a witness of ¢(a). Unless we know which of ¢ and —¢ is true, ¢ V —¢
need not hold. Unless we know which a € A makes ¢(a) false, =(Vx € A)¢p(x) need not
imply (3z € A)—¢(x).

Bishop’s work on analysis has elaborated the constructive approach. Equality
becomes a typed relation: the meaning of a = b is not absolute, but depends upon the
type of a and b. Each claimed property must be justified by a witness. The subset
{z € A| ¢(z)} is regarded as consisting of pairs (a, p), where a € A and p is a witness
of ¢(a). The logarithm function requires two arguments, a real number = and a witness
of z > 0.

Martin-Lof’s Constructive Type Theory is an attempt to formalize Bishop’s princi-
ples. By identifying propositions with the types of their witnesses, it can express much
with a few primitives. From the second paragraph above, if ¢ and ¢ are types, then ¢pV1)
behaves like their disjoint sum type. Furthermore, (3x € A)¢(x) and {x € A | ¢(x)}
are essentially the same: they consist of pairs, where the type of the second component
may depend upon the value of the first. This is the general sum type (Xz € A)¢(z).
As a special case it includes the binary product A x B, which represents conjunctions.
The general product type (Ilz € A)¢(x) represents (Va € A)p(z); as a special case it
includes the function type A — B, which represents implications.

Thus we have all the logical connectives and a rich suite of data structures. The
theory also contains the elements of a functional programming language. Because its
types can express propositions, they can express complete specifications; they include,
for instance, the type of sorting functions. Proving a theorem can synthesize a func-
tional program satisfying a specification.

It is hardly surprising that Martin-Lof’s Type Theory has attracted so much at-
tention. And yet, progress has been slow. The rules are difficult to use, and there are
many of them. Many research groups have suggested modifying the theory, sometimes
at variance to its spirit. Even Martin-Lof has found problems in his theories and has
modified them.

Type Theory and Functional Programming, by Simon Thompson, is an excellent
introduction to this work. It covers background material, then explores the theory’s
properties, applications, variations and foundations. Precise and formal, the book is
yet readable, covering just the right topics. I have found it a pleasure.

Chapter 1 introduces formal logic, with a particularly nice description of quanti-
fiers. Chapter 2 introduces the A-calculus, with a clear presentation of Tait’s strong

1



normalization proof. Chapter 3 briefly discusses constructive mathematics. Chapter 4
is a methodical introduction to Martin-Lof’s Type Theory. Chapter 5 comments and
enlarges on the previous chapter, generalizing some rules and justifying others. Chap-
ter 6 presents examples, including quicksort, vectors, program development, and pro-
gram transformation. It contains a good discussion of abstract types and type classes.
Chapter 7 discusses extensions such as quotient types, inductive types and well-founded
recursion. Looking a bit hurried, Chapter 8 discusses foundations in model theory and
proof theory, while Chapter 9 covers related work. Next comes a complete listing of
the rules. The Index is minimal; it lists no authors.

Ignoring quibbles about notation and terminology, and some trivial errors, I have
only a few complaints. Like many authors, Thompson takes a heterodox view of the
theory. The orthodox view may be found in Programming in Martin-Lof’s Type Theory
by Nordstrom et al., written in close collaboration with Martin-Lof. Thompson’s inde-
pendence makes his book all the more informative, but perhaps he strays too far. Here
are two instances. He replaces the typed equality judgement a = b € A by a <* b, an
extralogical, untyped notion of convertibility. He uses the internal notion of function
for the purpose of variable binding, which should be external to the theory.

The book’s virtues outweigh its drawbacks. It is self-contained; it has lots of
examples; it includes an excellent literature survey. I most enjoyed its comprehensive
demolition of the case for subset types: they are at odds with the theory’s spirit; they
do not work well; they are not needed anyway. If you are only getting one book on
Martin-Lof’s Type Theory, let it be Thompson. For serious work, get Nordstrom et al.
too; it is shorter and rather dry, but it meticulously presents the theory’s main variants.

Although Martin-Lof’s work is the most widely known, there exist other construc-
tive type theories. Constructive Foundations for Functional Languages, by Raymond
Turner, presents a theory based largely on the work of Feferman. It is generally well
organized and well written, but technically heavy. Most of the proofs are unreadable,
consisting of a monolithic paragraph covering the better part of a page, unrelieved
even by formula displays. Thompson is immensely clearer and presents better exam-
ples, while Turner presents fascinating, important and hitherto inaccessible material.

The first part of the book covers background topics. Chapter 1 is a thoughtful
introduction to functional languages and constructive theories. Chapter 2 introduces
intuitionistic logic. Chapter 3 is a brief overview of the A-calculus. Chapter 4 goes into
more depth: the lazy A-calculus, applicative bisimulation and free logics. Chapter 5
presents a simple functional language.

The next part develops the Feferman-style constructive type theory. Chapter 6
defines sum, product and function types. Chapter 7 covers comprehension and general
sum and product types. Chapters 8 and 9 cover inductively defined types. Chapter 10
introduces polymorphism and abstract types.

The last part of the book is concerned with program extraction. Chapters 11 and 12
present several forms of realizability, for extracting programs from proofs. Chapter 13
demonstrates program extraction by deriving three sorting algorithms from a single
specification of sorting. Chapter 14 demonstrates a novel approach to program trans-
formation, putting it on a sound footing. Finally, Chapter 15 offers brief conclusions.

Through tremendous efforts, Raymond Turner derives a theory that looks remark-
ably similar to Martin-Lof’s. He never attempts a comparison, but his theory does

2



seem to have some advantages. It does not identify propositions with types, but takes
intuitionistic logic as primitive. It supports a notion of absolute comprehension, yield-
ing Martin-Lof’s types and many others. Particularly impressive is its treatment of
inductive definitions.

Both theories can be used to extract functional program from proofs of specifica-
tions, given in the form

Vo [p(x) — yp(z,y)].

The extraction works by identifying propositions with types, or by realizability. Unfor-
tunately, the resulting function may require two arguments: = and a witness for ¢(z). It
may deliver a pair of results: y and a witness for ¢(x, y). Many authors have wanted to
get rid of the witnesses. Turner’s approach is complex: negative realizability. Thomp-
son’s approach is simply to change the specification to

Af vz [¢(z) — ¥ (z, f(2))].

A witness for this proof consists of a pair whose first component is the function f
and whose second component is a witnessing function relating ¢ and v, which may be
thrown away.

I am sceptical about extracting programs from constructive proofs. As the exam-
ples make clear, finding the proof requires detailed knowledge of the desired program.
And if we discard the witnesses, we might as well work in classical logic!

Both Thompson and Turner ought to discuss the constructive philosophy in greater
depth. Formal rules are impossible to understand without motivation. I find Turner
particularly hard to follow. His constructions hinge on principles that are never stated
explicitly. He seems to identify types with collections of terms, and regards a term is
meaningful if it reduces to a normal form. This form of constructive mathematics has
more the flavour of Curry (extreme formalism) than intuitionism.

Constructive mathematics has much to offer in formal methods. Serious students
and professionals will find both books rewarding. However, the field is treacherous and
turbulent. Readers will encounter more questions than answers.

Lawrence C. Paulson
Computer Laboratory
University of Cambridge



