
A Semantics-Directed Compiler Generator

Lawrence Paulson
Department of Computer Science

Stanford University

Current address:

Computer Laboratory, University of Cambridge, CambridgeCB23QG, U. K,

Work supported in pat by Advanced ReseazchProjects Agency Corstr@ MDA 903-76-C-02306and Joint ServicesElectronics Progrsru Cmrtmt DAAG 29-
79-C4047.

1. Introduction
Language designers must compromise between their goals

and resources, and reconcile conflicting features into a
harmonious whole. They cannot try out their ideas on real
programs, because of the cost and time required to write
compilers. This paper describes research [8] that makes it easier
to design, document, and implement programming languages.

There is no widely accepted notation for describing
programming languages, so the designets generally use a mixture
of Backus-Naur Form (BNF) and English. The resulting
document is often confusing, ambiguous, and tedious.

A bad document compounds the burden on the compiler
writers. Before they can begin to implement the language, they
must ur,derstand the document and resolve its ambiguities. No
wonder compilers are so often incompatible with one another,
and that programs written in high-level languages are not
transportable.

This paper introduces a formal notition, the semanfic
grammar, for defining programming languages. Semantic
grammars combine denotational semantics and attribute
grammars. They describe syntax and wmantics together, without
separate tists of formulas or rules that need to be put into
correspondence. They handle both static and dynamic semantics,
both compile- and run-time actions. ‘Ihey describe languages at a
high level of abstraction.

I have implemented a compiler generator that converts
semantic grammars into compilers. It has generated compilers for
Pascal, Fortran, and other languages. Using the Pascal grammar,
it has executed an intricate seven-page program: an LR(0) parser
constructor.

The compiler generator consists of a grammar analyzer,
universal translator, and srack machine. The gmmmar analyzer
converts a semantic grammar into a Ianguagc description file.
The universal translator reads the tile and compiles programs into
stack machine instructions, reporting semantic errors. The stack
machine reads the program’s inptz~ execukx the instructions, and
prints the output-

Ttte compiler generator is the starting point for many systems
that translate programs into another formalism. For program
vcritication, it can translate programs into vcriftcation conditions.

Permission to copy without fee all or part
of this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the Acfli copyright
notice and the title of the publication and
its date appear, and notice is given that
copying is by permission of the Association
for Computing hiachinery. To copy otherwise,
or to republish, requiras a fee andlor
specific permission.

@ 1982 ACM0-89791-065-6/82/001 /02M $00.75

For efficient compilation, it can translate programs into
intermediate code, which a separate program could usc to
generate optimized code. l’hecompile rgeneratorcan provide
compatible compilers on different machines — it is transportable,
since it is written in standard l%scaL

2. Compiler Generators
A compiler generator is a program that converts a formaf

description of a programming Ianguagc into a compiler for that
language. The description may take many forms, but usually
contains a large amount of program code. Several recent
compiler generators accept descriptions in terms of attribute
grammars or denotational semantics,

NEATS isa compiler writing system that acccpts extended
attribute grammars [12]. It provides domains to represent
environments, parameters, types, and other language concepts.
During compilation, it translates the source program into an
output stream, calling a user procedure every time an output
symbol is generated. ‘fhe NEATS attribute evaluator, which I
have adopted, is fast and general.

Raiha’s [9] Helsinki Language Processor (IILP) has genenrted
compilers, assemblers, and preprocessors fora dozen languages.
Itconstructs a parse tree andevaluates attributes in alternating
passes. Attributes are Algol procedures. Raiha is studying
optimi”zations, bccausc 111.1>compiles Pascal programs at thirteen
tokens pcr second, and consumes 90,000 words when compiling a
one-page Euclid program.

S1S, by Peter Mosses, is the first compiler generator that does
notneed user-coded semantic routines [7], Instead itusesforrnal
descriptions of the syntax and denotational semantics of the
language to be compiled. It constructs the parse tzee of a
progratn, applies semantic fiurctions to it, and interprets the
result. Asix-lineprogratn requires several mintrtes ofcompttter
time for both compilation and execution. Despite ttds
inefficiency, S1S proves that compilers can be generated
automatically from high-level language descriptions.

Ravi Sethi[ll] is experimenting with semantics-directed
compilation. IIis simplifier applies functions to arguments and
Iooksup identifiers in environments. Itcanresolvc references to
labels in goto-prograrns, eliminating the environment It
produces acircular expression that matches the control flow of
the program. It has processed many of Mosses’s example
languages, but does not execute programs.

Martin Raskovsky’s eompiler generator [lO] has produceda
compiler forasirnpl elanguage. Inaseries ofsteps, ittranslatcsa
standard dcnotational definition into an low-level definition, then
into the programming language BCPL. The compiler generates
instructiotts for the PDP-10 computer.

My compiler generator is unique in that it accepts a semantic

224

grammar, a readable notation for denotational semantics.
Although its semantic notation is entirely nonprocedural, it is
efficient enough to produce compilers for real Languages such as
Pascal, Iteancxecute programs wveralpages long, inseconds.

3. Semantic Grammars
A semantic grammar is an attribute grammar that uses the

domains and formulas of denotational semantics.

An attribute grammar [5] is a context-free grammar
augmented with attributes and attribute equations, which
propagate semantic information along the edges of the parse tree.
Inherited attributes, prefixed by .$, move information from a node
down to its children. Synthesized attributes, prefixed by t, move
information from the children up to the parent.

Consider the assignment command (statement), with the
syntax

command = variable”:=” expression.

An attribute grammar can describe its syntax and static semantics
determining the types of the variable and expression, and
checking that they are compatible. The type of a variabIe
depends on the current environment of declarations: a compiler’s
symbol table. Below, the nonterminal variable inherits an
environment and synthesizes a type. The rule includes a
constraint that the types of the variable and expression are equal;
if the constraint does not hold, then the program has a semantic
error.

command< $env > =

vanablti $env ttypel >
.!._,!“—

expression< $env Nype2 >

constraint typel = type2

There are different styles of writing attribute grammars. Watt
and Madsen’s ex[ended attribute grammars [12] express the
constraint typel = type2 implicitly by using the same attribute
type with bolh the variable and the expression. Such conventions
shorten rules

command< $.env > =

variable< $env ttype >
$,.—,,“—

expression< $env ttype >

Denotational semantics [3] uses a powerful theory of
recursively defined data structures, lambda-expressions, and
fixedpoints of tlmctions. A dcnotational definition expresses the
semantics of a construct in tcrrns of the semantics of its syntactic
constituents. A traditional presentation includes a context-free
grammar, and introduces a semantic function for every
nonterminal symbol in the grammar, defined by caseson the rules
rewriting that nonterminal. In contrast, a semantic grammar
embeds the semantic functions in the context-free grammar.

TO illustrate how to embed dynamic semantics in a semantic
grammar rule, I will use a simple dcnotational description of
assignment. It uscs a function var representing variables and a
function exp representing expressions, The assignment command
evaluates the expression in the current states and passesthe result
to var, which stores it in the state K

As. var(exp S)S

A traditional denotational definition separates the semantics
from the syntax, re-establishing the context by explicitly
providing var and exp with a syntactic construct ancl environment
to operate on. 1Ierc com is the semantic function for commands:

var[variabIe]env (cxp[expression]env s)s

Fmbedding this function in the attribute grammar rule yields
the semantic grammar rule for the assignment command, The
variable and expression synthesize their semantic functions var
and exp; the rule combines these to produce the semantics of the
command.

command< $env t As. var(exp S)S>=

variablti $env ttype tvar>
!,.-,,.—

expression< $env ttype texp>

A semantic grammar consists of domain definitions,
expression definitions, attribute declarations, semantic rules, and
a resolution part. The domains and expressions are those of
denotational semantics. The symbol end terminates the grammar.
Comments may appear anywhere; they begin with a number sign
(#) and continue to the end of the line.

3.1. Domain Definitions

Domains represent semantic data types, such as mappings,
tuples, and tree structures. The domains INT, BOOL, and
NAME (representing identifiers in source programs) arc built-in.
The user can define product, Junction, and union domains. A
special case of union domain resembles an enumerated type of
Pascal. If D , D are domains, and di denotes any value of
Di, then the /oIlowingnare afso domains

Domain Values

DIX,,. XD n-tuples (du. . ., dn)
D1-+D n

f

functions from Dl to D2

[rramel Dl] + ... + narneJDn]] narnei[di~ ~ yt~ ~ n

[namel + . . . + narnen] name.,
1

The domain definitions fist all the domains used to describe
the semantics; there are no syntactic domains. Definitions may
be recursive, such as LIST, VAL, and TYPE below.

domain

LIST = [nil + cons[INT X LISTl]; #lists of integers

VAL = [intVIINTl +

array VIINT ~ VAL]]; #data values

ENV = NAME ~ TYPE #environments

TYPE = [intTy + arrayTy~YPE]]; #types

S = NAME - VAIJ #states

EXP=S*VA~ #expressions

COM=S-+S: #commands

VAR = VAL ~ COM; #variables

The domain LIST deserves special mention, for it illustrates
how to define list domains in terms of union domains. (The
compiler generator does not provide lists as a primilivc.) A list is
eilhcr nil, or has the form consfirrt,lisl]; a list of n intcgem is

cons[intl, ..., cons~ntn,nil], ..]

Domain names are written in UPPER CASE. The variables
of a domain have the same name in lower case, possibly followed
by digits. For example, the variables list, listO, and 1ist435 belong
to the domain LIST.

com[variable: =expression]envs =

225

3.2. Expression Definitions

Expressions may contain integer and boolean constants, the
bottom element 1, and variables. If d, e, f, e , ., e are
expressions, and V, v,, Vmare variables, then th~ followin’ are
also expressions: ‘

1

0,1,2,,..
false,true
“ “ “’x98”,. . .a,
d+e, d-e,...

dande, dore,..

deqe, dnee,...

if d then e else f fi

(e

I
,.. ., en)

lete

Av.e

A(v ,.. ., vn).e

ifix v.e

fe

Ietv=dine
[dae]f

..

the bottom element of any domain

integer constants

boolean constants

name constants

integer operators

boolean operators

relational operators

conditional expression

n-tuple

extract left element of a tuple

lambda-abstraction of e over v

abstraction over a tuple of variables

fixedpoint of the fiurction Av.e

application of function f to arg e

local definition of v to be d

function f updated at d

If namel, name are the “tags” of a union domain, then
the following are expressions:

namei[e~ injection creating a union vahte

e I namei projection of e onto domain” D.
1

e is namei test that the tag of e is narnei

Every expression belongs to a unique domain, and the
grammar analyzer checks that operators are only applied to
operands of the proper domain, detecting many user errors.

The expression definitions list the expressions used to
describe the semantics; most grammars define functions to check
types or cmmbine declarations. Definitions maybe recursive. If a
name is referenced before its definition, it must appear in the
forward declarations, along with its domain. The function append
is an example of list manipulation and the case expression.

forward

append: (LIST X LIST) ~ LIST:

define

append = A(listl,list2).

case listl of

nil. list2,

Consfint,list]. cons[int, append(list,list2)]

esac;

abort = As.J-;

3.3. Attribute Declarations

The attribute declarations list every nonterminal symbol in
the grammar, afong with the domains of its attributes. A dot
separates inherited from synthesized attributes. In the following
example, the symbol idenrfjler has an inherited attribute of
domain ENV, and synthesized attributes of domains NAME and
TYPE:

attribute

identifier< ENV.NAME,TYPE>;

expression< ENV.TYPE,EXP>;

vanable<ENV.TYPE,VAR>;

command< ENV.COM>;

Four symbols are built in, for use only on the right side of
rules

number<.INT> representa an integer number, a string of digits

name< .NAME> represents an identifier, an alphanumeric
string beginning with a letter

wherKBOOL.> represents the empty string; adds a constraint
that the boolean condition is true

uniqueName<.NAME>
represents the empty string: each instance in
the parse tree generates a distinct name; useful
for generating arbitrary labels

3.4. Rules

TIM rules describe the syntax and semantics of a
programming language. The tule part begins by naming the start
symbol of the syntax:

rule start-symbol

Terminal symbols, either alphanumeric reserved words or
combinations of special characters, are enclosed in quotes:

“begin” “+” “:=”

Many of the example rules in this paper use arrows t and $ to
indicate whether an attribute is synthesized or inherited, but the
compiler generator expects rules in which commas separate the
attributes, (The attribute declarations specify the types of
attributes.) The assignment rule becomes:

command<env, As. var(exp S)S>=

variabl~env, type, var>
,..-J,.-

expression<env, type, exp>;

Any inherited attribute on the left side of a rule “sees” a value
from above in the parse tree. Likewise, any synthesized attribute
on the right side sees a value from below. These are dejined
attributes. If the defined attribute is an expression, then the value
it sees must have the same form, or the program contains an error
[12]. This pattern-matching is implemented as a list of
constraints on the rule.

Any synthesized attribute on the left side of a rule sends a
value up into the parse tree. Likewise, any inherited attribute on
the right side sends a value down. These are applied attributes.
An applied attribute may contain any expression, as long as all of
its free variables are defined elsewhere in the same rule.

A rule may contain clauses of the form with x= y. This
defines x to denote y in the rule. Strictly speaking, x is a defined
attribute that sees the value y. an applied altribute. Using a with
clause to extract the embedded expression in the rule for the
assignment command yields an equivalent rule:

command<env, corn> =

variable<env, type, var>
,,._!!.-

expression<env, type, cxp>

with com = As. var(exp S)S

There is no way to specify the lexical conventions of a
language; the implementation assumes the following:

. the braces { and } enclose comments in programs

226

● spaces, newlines, and comments separate numbers and
identifiers

● keywords are reserved

● there are no string constants

3.5. Resolution Part

The resolution part assigns binding powers and associativities
to terminal symbols, for eliminating syntactic ambiguities [1]. It
can resolve the dangling-else problem and specify operator
precedence. Operators can be left-, right-, or non-associative;
each left, right, or nonassoc declaration defines a group of
operators with the same binding power.

4. Example Grammar
Here is a semantic grammar for a tiny language lacking both

side-effects and jump commands. Integer expressions may
contain arithmetic operators. The condition of an if or while
command may contain boolean connective and integer relational
operators. There are integer variables and unbounded integer
arrays. Input and output arc each a single integer, transmitted via
the pre-declared variables inpu[and OULLW. The compiler
generator has executed a prime number program using this
grammar.

Although this grammar is trivial compared to Pascal’s, it
illustrates many of the same concepts. The grammar defines
srafic semantics: the compiler functions of type-checking and
symbol table management. It defines a domain TYPE to hold the
two types, integer and array, and a domain ENV to hold the types
of variables in the program. In the Pascal grammar, TYPE is a
recursive tree stmcture, and ENV hoIds the meanings of
constants, types, and procedures, as well as variables. Watt [13]
illustrates the basic techniques,

The grammar also defines dynamic semantics: the compiler
function of code generation. Dcnotational semantics provides
two frameworks for control flow: a direct semantics can describe
“structured” commands; a continuation semantics can describe
any flowchart. This grammar uses direct semantics — an
expression only computes a value, and a command only changes
the values of variables. The PaseaI grammar also uses direct
semantics, but the Fortran grammar requires continuations
because of I:ortran’s GO TO statements.

Gordon [3] explains how to represent procedures, parameter
passing, expressions, and other dynamic concepts. A grammar
can also define axiomatic or operational semantics, as Madsen [6]
discusses. If the grammar detines axiomatic semantics, then the
compiler generator translates a program into a fist of ver2ficaIion
conditions — assertions that, if proven, certifi that the program is
correct

domain

VAL = fintVIINT] +

array V[lNT -+ INTl]: #values: integers and arrays

ENV = NAME ~ TYPE; #environmentlypes of variables

TYPE = fintTy + arrayTy]; #types

S = NAME - VAL; #states: values of variables

EXP=S~INT; #integer expressions

COND = S ~ BOO~ #boolean conditions

COM=S~S: #commands (statements)

INTFILE = INT - INT; #integer mappings for IiO

DATA = IN(FILE X INT; #1/O interface for stack machine

define

#Input/output interface functions

beginProg = A(intFile,int). ~’input” ~ intV[intFile(l)]] -L;

endProg = As. ([1 ~ s(’”output”) IintVl 1, 1);

attribute

identifieKENV.NAME,TYPFD;

expression< ENV.EXP>;

condition< ENV.COND>;

command< ENV.COM>;

declaration< .ENV~

program< .DATA~ DATA>;

rule program

#Look up the name in the environment; return the type

identifier<cnv, name,env(name)> = name&rneX

##Expressions

expression<env,exp> = “(” exprcssion<env,exp> “)”;

#Integer constants

expression<env, As.inO = number<inO;

#Integer variables

expression<env, As.s(name)lintV> = identifier<env, narne,intTyX

#Subscripted variables

expression<env, As.s(name)larrayV (exp s)> =

identitier<env, narne,arrayTy> “[” expression<env, exp> “]’”;

#Arithmetic operators

expression<cnv, As.expl(s) + cxp2(s)> =

expression< env,expl> “+” expression<env,exp2>;

expression<env, As.cxpl(s) – exp2(s)> =

expression<env, expl> “–” expression< env,exp2>;

expression<env, As.expl(s) * exp2(s)> =

exprcssion<env,expl> “’*’” cxpression<env, exp2>;

expression<env, As.cxpl(s) div exp2(s)> =

expression< env,expl> “/” expression< env,exp2>;

#Conditions for if and while commands

condition<env,conLU = “(” condltion<env,con~ “)”;

#Comparisons of integers

condition<env, As.expl(s) It exp2(s)> =

expression< env,expl> “’<” exprcssion<env,exp2>;

condition<env, As.expl(s) gt exp2(s)> =

expression< env,expl> “>” expression<env, exp~;

condition<env, As.cxpl(s) cqexp2(s)> =

expression< env,expl> “=” expression<env,exp2>;

#Boolean connective

condition<env, M. not cxmd(s)> =

“not” condition<cnv,con~;

condition<env, As.condl(s) and cond2(s)> =

condition<cnv,condl> “and’” condition<env,cond2>;

227

condition<env, As.condl(s) or cond2(s)> =

Condition<env,condl> “or” condition<env,cond2>;

Cbmmands

#Assignment to integer variable

command<env, As.[name~intV[exp(s)]]s> =

identifier<env, name,intTy> “:=” expression<env,exp>;

#Assignment to array element

command<env,

As.[name~arrayV[[expl(s) -+exp2(s)]s namelarrayV]]s> =

identifier<env, name,arrayTy> “[” expression<env, expl> “]”

““–” expression< env,exp2>;.—

#Compound commands

command<env,As. com2 (coml s)> =

command<env,cornl> “;” command<env,com2>;

#If commands

command<env,M.if cond(s) then corn(s) elses fi> =

“i~ condition<env,cond> “then” commaird<env,coti” fi’”;

#While commands

command<env,

tixkom.As.if cond(s) then com(comls) elses fi> =

“while” condition<env,concD “do” command<env,coml> nod”:

Declarations

#Empty declaration

declaration< [’’input” ~intTy] ~’output” ~int’ry] 1> = ;

#Integer variable declarations

declaration< [name~ intTy]env> =

“int” name< name> “;” declaration<env>;

#Array variable declarations

declaration< [name~arrayTy]env> =

“array” name< name> “;”’ declaration<env>;

program< Adata.endProg (corn (beginProg data))> =

“begin” declaration<env> command<env,coti “end”;

resolution

nonassoc “not”; #most binding

left “*” “/” “and”;

left “’+” “’–” “or”;

nonassoc “<” “>” “ =“:

left “’;”’; #least binding

end

5. Grammar Analyzer
The grammar analyzer reads a semantic grammar and

converts it into a language description file. The analyzer is
organized like a recursive descent compiler, and performs the
following tasks:

. Read a semantic grammar, parsing the domain definitions,
expression definitions, and rules.

● Check that the information is consistent.

. Compute LALR(l) parse tables for the syntax part of the
grammar [1].

● output tie languagedescription file, which contains the
semantics of each rule and the parse tables.

The language description file contains all the information
needed by the universal translator. For each semantic rule, it
gives the applied attribute expressions and attribute constraints.
It also contains the pseudo attributes, which are generated by with
clauses and uniqueName. All expressions are represented in
postfix.

The description file contains information that the translator
needs to print out formulas and error messages. This includes the
names of the domains and union tags, but not the definitions of
the domains. Every attribute expression is followed by its
location in the rule, for pinpointing semantic errors.

When parsing a rule, the analyzer records all the free variables
of applied attributes. These are the affribure variables that must
be given values by appearing as defined attributes. In a recursive
scan of the defining attribute expressions, the analyzer
accumulates constraints and defines the attribute variables. The
attribute grammar should not be circular, but there are no other
restrictions on how attributes can depend upon each other. ‘fhe
grammar analyzer does not check for circularity.

The analyzer contains an LALR(l) parser generator that
processes the syntactic part of the grammar, It checks that the
grammar contains no unreachable or useless symbols, computes
its I,R(O) set of states, and adds LALR(l) lookahead. It resolves
shift-reduce conflicts according to the user’s resolution part It
generates parse tables, compressed by merging rows whenever
possible.

6. Universal Translator
‘Ihe universal translator can compile a program written in any

language, given the proper language description file. It perfolms
several steps:

. Read a language description file, reconstructing the tables
and expressions.

. Read a source program.

● Print a listing of the program’s semantic errors.

● Print the semantic functirm describing the program.

● Generate stack machine instructions for the program.

6.1. Parsing

The translator’s shitt-reduce parser builds a directed acyclic
graph (DAG) of attribute dependencies during parsing. (A DAG
is a tree in which several parent nodes may share the same child
node.) Inherited attributes complicate the process. If there were
only synthesized attributes, it would be possible to evaluate all of
them bottom-up, like constructing a parse tree. This is because
the synthesized attributes on the right-hand side of a rule are all
dctined when the parser reduces by that rule. Inherited
attributes, which represent the context of the reduction, may not
yet be available. So the parser substitutes dummy nodes for
them, and patches the correct value in as soon as it appears.

228

The following description is adapted from Madsen [6].

A shift-reduce parser uscs a stack to record the grammar
symbols parsed at a given point. To handle semantics, the stack is
augmented with the synthesized and inherited attributes of every
symbol. It represents each synthesized attribute as a pointer to a
DAG, A symbol’s synthesized attributes may depend upon its
inherited attributes, which the DAG represents by dummy nodes.
The stack represents an inherited attribute as a fixup-list locating
its dummy nodes.

The parser redtrees by a rule

‘_’yly2’”yn

by popping the right-side symbols and attributes, Yl. . . Yn, and
pushing the left-side, X.

The fixup-lists representing left-side inherited attributes are
initially empty. They accumulate the locations of dummy nodes
during evaluation of the rule’s applied attributes: left-side
synthesized and right-side inhelited. After evahrating an
inherited attribute, its fixup-list is scanned to replace its dummy
nodes with the correct vahre.

Each applied attribute is a function

K$! ~. .. Im, Sr Sn)

of the rule’s defined attributes: Icft-side inherited and right-side
synthesized. Evaluation creates a DAG node labelled f, with
pointers to the DAGs representing the synthesized attributes, and
pointers to dummy nodes representing the inherited attributes. If
the applied attribute is simply a copy of a defined attribute, there
is usually no need to create a new node.

The rule’s constraints, produced by the grammar analyzer, are
evahrated like applied attributes and accumulated, producing a
list of all the constraints in the program.

Rules may contain pseudo attributes, which are created by
with clauses and tbc uniqueName symbol. Pseudo attributes are
defined and applied in the same role. Since other applied
attributes may depend on pSWdO attributes, the pseudos are
evaluated first. Every use of a pseudo attribute refers to the same
DAG. This assures that with clauses arc only evaluated once, and
that every use of a uniqueName attribute gets the same generated
name.

The DAG consumes a Iot of storage, afthough no parse tree is
constructed. The largest program compiled is a twenty-one page
LALR(I) parser generator. Its DAG contains over 15,000 nodes,
and swells to over 26,000 during simplification.

6.2. Simplification

At first, each DAG node is labelled with a pointer to an
attribute function, and its sons are arguments. The simplifier
traverses the DAG depth-first, expanding function definitions
and applying them to arguments. The expanded timctiorr is
linked back into the DAG so that shared nodes arc only expanded
once. Expanded parts of the DAG represent semantic formulas
— each node is labclled with an operator, and its sons are the
operands.

The DAG contains both semantics and attribute constraints.
During expansion, the simplifier checks that the constraints hold
and executes all of the compile-time actions in the DAG. The
simplified DAG is ready for translation into machine instructions.
Example simplifications:

Before After

3–5 –2

left (a,b) a

tag[a] I tag a

if true then a else b fi a

([a~b]f)a b

An essential but difficult simplification is bekr-reductiorz:
applying a Iambda-expression to its arguments by substituting the
arguments for the bound variables. Substitution is slow, because
it requires copying list structures, The simplifier avoids one copy
operation by simplifying during substitution, rather than after
substitution in a separate traversal. Whenever possible, the
simplifier substitutes for several variables at once to avoid
repeated copying. When simplifying if x then y else z fi, the
simplifier first simplifies x, to see whether it reduces to a constant
(ttie or false). If so, it need simplify only one of y or z. The case
expression uses a similar technique.

Taken together, these improvements cause simplification to
resemble symbolic execution of the expression, rather than a
sequence of costly macro-expansions.

6.3. Representation of Bound Variables

If bound variables arc represented by identifiers, then
substituting an argument for a variable may compute an incorrect
result: a free variable of the argument may become bound
because of a name conflict. The translator does not use variable
names: it numbers bound variables by their depth in the nest of
lambda-expressions [2]. For instance, the expression

Ax.f x (Ay.g X y)

has depth numbers

Ax.f x. (Ay.g xl J’d

When inserting or removing lambdas in front of an expression,
the translator must adjust the numbers of the expression’s free
variables.

Every expression node contains a free vartable index
indicating ils deepest variable reference. Indexes arc put in
incrementally as an expression is buil~ the index of a node
depends only on the indexes of its children. In most cases it is the
maximum of the indexes of the children; however, the index of a
lambda node is one less than that of its body, because lambda
binds the top level free variable.

A closed expression is one with no free variables, The
translator can easily identify closed expressions, for they have a
free variable index of zero. Many procedures that traverse
expressions, such as substitution, perform operations only on the
free variables. When they encounter a closed expression, they
return immediately. This saves the simplifier a tremendous
amount of work.

If a bound variable occurs more than once, then beta-
rcduction replicates its argument. The simplifier performs no
beta-reductions that would replicate expressions requiring
evaluation at run-time, which would make the object program less
efficient. The simplifier only replicates “simple” arguments. The
key queslion: what is simple?

The safest answer is that only atomic expressions are simple
— variables, numbers, etc. But this does not handle structured
bound variables:

(A(intl,int2). intl + int2) (3,8)

The bound variable, (intl,int2), is referenced twice; the argumen~
(3,8), is not atomic. Beta-reduction is prohibited even though no
component of the bound variable is used more than once. One
solution is making the simplifier transform the above expression
into:

((Aintl int2. intl + int2) 3) 8

This allows beta-reductions, but the complete process copies the

229

firnction several times. Instead of relying on an expensive
transformation, I generalize “simple” to include any closed
expression; these can bc detected using the free variable index.
Experience shows that this version of simple aflows efficient
simplification without exponential blow-up, afthough it is not
obvious why.

6.4. Error Reporting

The translator only recovers from semantic errors. If it
encounters a syntax error, it prints a list of expected symbols and
halts. Automatic syntax error recovery is a separate research
problem.

The simplifier evaluates the DAG depth-first and records all
the semantic errors: attributes that equal 1 and constraints that
are not true. The error handler sorts the errors by line number in
the source program, reads the program again, and prints the
erroneous lines. It names the relevant nontcrminal and attribute
domain, and composes a message appropriate for the failed
constraint. To prevent one error from triggering many others, it
patches the DAG with a dummy value. Sample listing from the
translator

VAR V,V: integer; {v is declared twice]
?

Semantic error:
Should be UNDEFINED

x: array[l. . n] of integer; {nisnotdeclared}
f

Semantic error: IDENTIFIER
Undefined attribute MODE

i[8] := O;

S~mantic error: COMPONENT
Should be ARRAYTY

{i is not an array}

6.5. Code Generation

Since the stack machine is oriented towards execution of
lambda-calculus formulas, code generation is straightforward,
using a depth-first traversal of the simplified DAG. first the
DAG is split into a forest of trees, to prevent a shared tree from
being compiled more than oncc. Ashared tree iscompiled intoa
parameter-less subroutine that each of its parents calls.

Burge [2] presents two methods for computing fixedpoints, in
aclassic trade-off between generality and efficiency. ‘fhegencral
method performs a tortuous simulation of the fixedpoint
eombinaton

fix =Af.(Ag.f@g))(Ag. f7t3t3))

The efticicnt method only works for functions, compiling them
Iikeordinary recursive functions. Flxcdpoints arcmainly used to
represent the semantics of while and goto statements; these ordy
define functions. ‘fherefor eluscth eefticien tmethod,andhave
not felt limited by its lack of generality.

The fixedpoint’s body must be a firnction or tuple of
functions. The code generator creates an entry point for each
function, and compiles each use of the fixedpoint’s bound
variable into a call of the corresponding function.

The code generator performs a few optimizations, besidea
those lhrrgerccommcnds. Forinstancc, itcmits codctodclctca
bound variable after its last use, located during the DAG
traversal. Given the expression

(Ax.A B)y

where A does not use x, it generates code for

A((Ax.B)Y)

It also optimizes cases that cannot be illustrated by expression
transformations. Deleting dead variables eliminates obsolete
references to arrays and permits more efficient array compacting,
as described below.

The DAG may contain nanies from several sources:
identifiers inthe source program, name constants in the semantic
grammmar, and the name-generating nonterminal uniqueName.
The code generator replaces every distinct name with a distinct
integer, so that no names appear in the object code. If the
grammar defines the state to be indexed by names,
STAfX=NAMl?~ VALUE, itwillbe as efficicntasifthe state
were indexed by integer locations.

6.6. Garbage Collection

Thesimplifier crcatcs alotofgarbagc. ‘fhetranslator colleets
afl of it using reference counting: it keeps track of how many
pointers reference each node and periodically scans the list of
aflocated nodes, deleting those no longer referenced. While
compiling the parser generator mentioned above, the garbage
collector reclaims 133,000 nodes.

References from local, temporary variables are not counted,
This frees most of thecodc of the translator from any garbage
collection instructions, and reduces the overhead needed to
maintain reference counts. A drawback is that the garbage
collector can only be called between simplifier calls. Garbage
collection consumes about twenty percent of simplification time.

7, Stack Machine
The stack machine executes the object code produced by the

universal translator. Ithasthe SECDarchitecture [2]: asmckof
pending operands, an environment of bound variables, a control
of instructions, and a dump of return addresses and environments.

Control instructions:

halt stop program; print top of stack

return return from function: restore state

jump pc jump to location pc

falseJump pc jump to PCif stack top is false

Instructions that push some value onto the stack

loatlConst value the given value

loadPos int the value of the variable at depth int

loadC1osure pc the tirnction compiled at pc

Instructions that pop several values f, x, y, . . . from the stack
and push some result computed from them:

plus

alter

apply

pair

left

inject tag

project tag

is tag

thcsumx+y

the updated function [x~y]f

the result of the call ~x)

the pair (x,y)

the component left x

the injection tag[x]

the projection xltag

the inspection x is tag

230

7.1. Input/Output

Input and output are lists of integers. The machine reads a
list kl,..., kn from the user’s input, and pushes

([l-+kl] . . . [n~k~ ~, n)

onto the stack, The machine expects to find a similar data
structure on the stack after executing the object program, and
prints the list it denotes.

7.2. Run Time Errors

The value L (“bottom”) represents run-time errors. For
instance, a subscript out of bounds may set the state to J-, which
will propagate to the end of the program, producing a final state
1. The machine should halt immediately upon seeing -L, for
prompt error detection, but not every L indicates an erro~ 1 is
sfso used for initialization.

If -k is the operand of an instruction, the machine usually
halts, but some instructions return J- as the result, or treat 1 as
an ordinary value, The machine prints its current state upon
halting. To aid debugging of user programs, every value of 1 is
flagged with the program location where it was generated.

7.3. Closures

The lomlcfosure instruction binds an entry point to the
current environment, creating a functional value that may be
stored like any other vahze. The function may be invoked later
using the apply instruction. These values, called function closures,
are an important difference between the S13CD machine and
ordinary computers. Closures free environments from the stack
discipline (where they would be like static links) and allow them
to persist indefinitely. Reference counting deletes environments
that are no longer used.

Any fambda-abstraction in the final DAG can be represented
by a closure at nrntime. Optimization eliminates many closures
that would be invoked immediately after creation.

7.4. Array Compacting

A denotational definition considers arrays to be functions
mapping subscripts to elements. The subscripkd assignment
A[i]: = v is represented by the tirnction update fi+v]A, a mapping
which takes i to v but otherwise is the same as A. After the loop

fori:=l to5do A[O]:=i*i

the value of A is represented

[0-+25] [0-+-16] [0-+9] [0-+4] [0s1] -L

These association lists, or history sequences, waste storage and
runtime. States, which are also mappings, suffer the same
problcm. Efficient execution is impossible UUICSSthe machine
compacts association lists into arrays.

All data in the machine are referenced by pointers and may
be shared. An association list may be referenced by many
pointers, some of them no longer needed but still persisting in the
environment or dump. The machine must compact lists into
arrays without disturbing the value seen by any of the pointers
In effect, the pointers divide a list into segments that must be
compacted separately. l%e machine converts a list of segments
into a list of indexable arrays.

The machine tries to eliminate unnecessary references into
lists, in order to allow the most compacting. ‘1’hc main source of
obsolete references is tail-recursion, where a function calls
another function and then returns. When a iimction’s last action

is another fiznction call, the machine does not save the current
environment on the dump; it will never be needed. lle function
call is treated tike a jump. This optimization is essential because
any loop or goto command causes tail-recursion.

The most common type of tail recursion is the code sequence
apply;rcturn, which is easily recognized. Other forms of tail
recursion are

apply :jump x; ...; x:rcturn

apply; useless-instruction; return

The compiler generator uses peephole optimization and careful
code generation to convert these to apply ;return,

During execution of a program, the machine compacts the
same list many times. The machine updates an existing array,
instead of allocating a new one, as long as the new list elements fit
within its bounds. When it allocates a new array, it allows room
for expansion above and below. The machine merges two
segments into one if the reference separating them disappears.

The array compacting algorithm is complex and slow, but
satisfactory. The stack machine has executed prime number and
Eight Queens programs that use arrays extensively.

7.5. Union Tags

The machine has instructions inject, project, and is for
manipulating objects of union domains: inserting, removing, and
inspecting tags of union domains. In languages like Pascal, where
types are known at compile time, tags provide no useful
information at run time. The universal translator has an option to
suppress inject and project instructions, resulting in smaller, faster
code. This is allowed only if the code contains no is instructions,
which require tags at run time.

8. Conclusions
I treat well-known fanguages, as faithtlrlly a.. possible, to

prove that my work applies to real problems. Pascal embodies the
major language concepts and has several formal definitions. My
Pascal grammar covers afl static and dynamic semantics except
goto statements, real numbers, strings, aliasing, function side
effects, procedures passed as parameters, etc. Most of the
deficiencies stem from my attempt to make the semantica as high-
Ievel as possible; it avoids both continuations and machine
locations,

The grammar includes afl types and statements, recursive
procedures, and block structure. I have checked most of it, by
running test programs on the compiler generator. It is only
nineteen pages long (1400 lines), including comments: one page
of domains. five of functions, and thirteen of rules.

Fortran, with its low-level state and control structure, and
non-recursive subroutines, contrasts WC1l with Pascal — its
grammar uses continuations and locations. Fortran’s grammar is
less complete than Pascatk, but still covers Iabclled COMMON
blocks, EQUIVALENCE statements, DO sLllcmcnts with
extended range. assigned and computed GO TO, unformatted
input/output with implied DO, subroutines, and functions.

8.1. Errors and Debugging

Writing a grammar, like writing a program, requires revising
and debugging. The compiler generator recovers WCI1 from
errors, even those defined by a grammar for a source language, It
prints the erroneous tine, points to the error, prints a descriptive
message, and usually continues processing. On the rare occasions
that it aborts, the usual cause is subscript error: defining too

231

many domains, terminal symbols, rules.

Debugging user programs on the stack machine is dit%cult. A
user program aborts by producing the value -L; the only
information reported is the current program counter and machine
state, which is often incomprehensible. To locale the error in the
source program, you must study the program’s machine code and
semantic formula.

8.2. Efficiency

The compiler generator is efficient enough to run
experimental programs, but it is impractical for production runs.
Consider the following approximate statistics:

The grammar analyzer is 4400 lines of Pascal. It processes the
Pascal grammar in twenty-three seconds, producing a language
description file of 14,000 thirty-six-bit words. Half of this is parse
tables, the rest attributes and definitions.

The universal translator is 3900 lines of Pascal. Using the
Pascal grammar, it compiles programs at eight seconds per page,
which is twenty-five times slower than the regular Pascal
compiler. Storage limitations prevent it from compiling programs
longer than twenty pages.

The stack machine is 1300 lines of Pascal. Its speed varies
considerably, depending on the grammar and user program,
averaging 4000 instructions per second. It runs Pascal programs a
thousand times slower than the regular Pascal system.

I have run dozens of programs in several languages. The
longest is an I.R(O) parser generator, a seven-page program that
uses nearly every feature of Pascal. I have also run prime number
generators, Eight Queens solvers, and binary search tree sorters.
The compiler generator is simple and compact, considering its
capabilities. Together with the Pascal grammar, it is an
implementation of Pascal that is smaller than the standard Pascal
compiler at Stanford.

My dissertation [8] suggests several ideas to improve the
efficiency.

. Separate the semantic language into independent notations
for static and dynamic semantics. Replace the simplifier
with two specialized, more efficient routines: an evaluator
for static semantics, and an optimizer for dynamic
semantics.

● Compile programs one procedure at a time, so that
programs of any size can be compiled. Allow a grammar to
designate certain nonterminal symbols, such as procedure, to
be compilation units.

. Eliminate the stack machine. A real machine, with a run-
time support package, can pcrforrn afl of its functions much
more efficiently.

8.3. Implications for Language Design

A programming language should be formally defined even
while it is being dcvclopcd, bccausc a formal definition highlights
the Ianguagc’s inconsistcncics, Un forttrnatcly, most language
designers find definitions too diftlcult to write. The compiler
generator allows anyone to debug a formal definition, written as a
semantic grammar. As an extra incentive, it offers a free compiler
for every definition. Compiling and executing test progrruns on
the compiler generator provides further insights into a language.

bookkeeping.

A Fortran program can specify a variable’s type, dimensions,
COMMON block. and stora~e ecruivalence in anv order. or not at
al These opti(sns cause ‘me&iness through&rt the Fortran
grammar, even though it imposes an order on declarations. Other
Fortran constructs are so troublesome that the grammar does not
handle them at all. A DATA statement affects the initial state,
but may appear anywhere in a program. A statement function
creates a local environment, but may implicitly declare global
variables. A subscripted array variable is syntactically identical to
a function call.

I would not condemn a language construct simply because it
was difficult to define. The fault might lie in the formalism: for
instance, denotational semantics can not represent tasking. Still,
semantic grammars, afong with the compiler generator, cart
contribute to the design of consistent, clean, and simple
programming languages.

Acknowledgment. I would fike to thank my advisor, John
Hennessy, for supervising and supporting this research.

Pascal’s grammar reveals some trouble spots. Set expressions
require special handling because they do not completely
determine the set type; likewise, the constant nil can have any
pointer type, Enumcraled types declare constant identifiers as a
side-effect, complicating every rule that refers to types. Using a
funclion’s name to designate its return variable requires extra

232

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Alfred V. Aho, Jeffrey D. Unman.

Principles of Compi[er Design

Addison-Wesley, 1978.

W. H. Mrrge.

Recursive Programming Techniques

Addison-Wesley, 1976.

Michael Gordon.

The Denotational Description oJProgramming Languages: An Introductiofi

Springer-Verlag, 1979.

Neil D. Jones (editor).

Semantic*Directed Compiler Generation.

Spnnger-Verlag, 1980.

D. E. Knuth.

Semantics of Context-Free Languages.

Mathematical Systems Theoty 2:127 – 145, February, 1968.

Ole L, Madsen.

On DeJbring Semantics by Means of Extended Attribute Grammars.

Technical Report DAIMI PB-109, Computer Science Departmen~ Aarhus University, Denmark, January, 1980,

Pages 259 – 299 of Jones [4].

Peter D. Mosses.

MathematicalSemantics and Compiler Generation.

PhD thesis, Oxford University, 1975.

Lawrence Paulson.

A Compiler Generator for Semantic Grammars.

PhD thesis, Stanford University, 1982.

Forthcoming.

Kari-Jouko Raiha.

Experiences with the Compiler Writing System HLP.

Pages 350– 362 of Jones [4].

Martin Raskovsky.

Step by Step Generation of a Compiler for Flow Diagram Lunguage with Jumps.

Technical Report CSM-42, Department of Computer Science, University of Fxsex, June, 1981.

Ravi Sethi.

Circular Expressions: Elimination of Static Environments,

In S. Even, O. Kariv (editors), Eighth International Colloquium on Automat@ Lunguages and Programming, pages 378-392 Springer-

Verlag, 1981.

David A. Watt, O1e L, Madsen.

Extended Attribute Grammars.

“~cchnical Rcporl DAIM1 PB-105, Computer Science Department, Aarhus University, Denmark, November, 1979.

David A. Watt.

An Extended Attribute Grammar for Pascal.

SIG1’LAN Notices 14:60– 74, February, 1979.

233

