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Abstract
The impossibility of tiling the mutilated chess board has been formalized and verified using Isabelle. The formal-
ization is concise because it is expressed using inductive definitions. The proofs are straightforward except for some
lemmas concerning finite cardinalities. This exercise is an object lesson in choosing a good formalization: one at the
right level of abstraction.
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1 Introduction
A chess board can be tiled by 32 dominoes, each covering two squares. If
two diagonally opposite squares are removed, can the remaining 62 squares
be tiled by dominoes? No. Each domino covers a white square and a black
square, so a tiled area must have equal numbers of both colours. The mutilated
board cannot be tiled because the two removed squares have the same colour
(Fig.1).

The mutilated chess board problem has stood as a challenge to the auto-
mated reasoning community since McCarthy [8] posed it in 1964. Robin-
son [15] outlines the history of the problem, citing Max Black as its origina-
tor.

Anybody can grasp the argument instantly, but even formalizing the prob-
lem seems hard, let alone proving it. McCarthy has recently renewed his
challenge, publishing a formalization that he claims is suitable for any ‘heavy
duty set theory’ prover [9].

Formalizations like this destroy the simplicity of the original problem. They
typically define complicated predicates to recognize objects. To recognize
dominoes, a predicate checks whether its argument contains two adjacent
squares. Subramanian definesadjacentby comparing co-ordinates [17, 18]:
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FIG. 1. The Mutilated Chess Board

(defn adjp (s1 s2)
(or (and (equal (car s1) (car s2))

(equal (plus 1 (cdr s1)) (cdr s2)))
(and (equal (cdr s1) (cdr s2))

(equal (plus 1 (car s1)) (car s2)))
))

Subramanian makes other definitions whose combined effect is to recognize
a list of non-overlapping dominoes and to compute the region covered. Mc-
Carthy’s formalization has a similar flavour, though posed in the language of
sets. It is concise but formidable.

An alternative is to express the notion of tiling by an inductive definition. It
is concise and nearly as clear as the informal problem statement. It provides
an induction principle that is well-suited to proving the desired theorem.

2 Mathematical development
First we must make the intuitive argument rigorous. Atile is a set, regarded as
a set of positions. Atiling (using a given setA of tiles) is defined inductively
to be either the empty set or the union of a tiling with a tilea ∈ A disjoint
from it. Thus, a tiling is a finite union of disjoint tiles drawn fromA.

This view is abstract and general. None of the sets have to be finite; we need
not specify what positions are allowed. Now let us focus on chess boards.

A squareis a pair(i, j ) of natural numbers: aneven(or white) square if
i + j is even and otherwise anodd (or black) square.

Let lessThan(n) = {i | i < n}. (In set theoryn = {i | i < n}
by definition, but some people find that confusing.) The Cartesian product
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lessThan(8)×lessThan(8) expresses a 64-square chess board; it is the union
of 8 disjoint rows of the form{i } × lessThan(8) for i = 0, . . ., 7.

A domino is a tile of the form{(i, j ), (i, j + 1)} or {(i, j ), (i + 1, j )}.
Since tilings are finite, we can use induction to prove that every tiling using
dominoes has equally many even squares as odd squares.

Every row of the form{i } × lessThan(2n) can be tiled using dominoes.
As the union of two disjoint tilings is itself a tiling, every matrix of the form
lessThan(2m)× lessThan(2n) can be tiled using dominoes. So every 2m×
2n matrix has as many even squares as odd squares. (Informal treatments
never bother to prove that a chess board has equal numbers of black and white
squares.) The diagonally opposite squares(0,0) and(2m− 1,2n − 1) are
both even; removing them results in a set that has fewer even squares than
odd squares. No such set, including the mutilated chess board, can be tiled
using dominoes.

3 The formal definitions
Isabelle [12] is a generic proof assistant, supporting many logics including
ZF set theory and higher-order logic. I have done this exercise using both
Isabelle/ZF and Isabelle/HOL. The definitions and proofs are similar in both
systems. My formalization should be easy to mechanize in theorem provers
that support inductive definitions, such as Coq [4] and HOL [5]. Higher-order
logic simplifies the presentation slightly; type checking eliminates premises
such asi ∈ nat.

Figure 2 presents the theory file for the Isabelle/HOL version. It makes
all the definitions needed for the chess board problem: tilings, dominoes and
square colourings. Note thatSuc is the successor function (mappingn to
n + 1) and that#2 denotes the number two. Keywords of the theory file
syntax are underlined for clarity.

An inductive definition specifies the desired introduction rules. An Isabelle
package defines the appropriate least fixedpoint and proves the introduction
and induction rules [11]. The set of tilings using a setA of tiles is defined
inductively. The Isabelle syntax appearing in Fig2 expresses these two rules:

∅ ∈ tiling(A)
a ∈ A t ∈ tiling(A) a ∩ t = ∅

a ∪ t ∈ tiling(A)

Why doestiling have type(’a set)set ⇒ (’a set)set ? The
symbol’a is a type variable. Isabelle/HOL is polymorphic: the type-checker
automatically replaces each type variable by the type required by the context.
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Mutil = Main +

consts tiling :: "(’a set) set ⇒ (’a set) set"
inductive "tiling A"

intrs
empty "{} ∈ tiling A"
Un " [[a ∈ A; t ∈ tiling A; a ∩ t = {} ]]

H⇒ a ∪ t ∈ tiling A"

consts domino :: "(nat*nat)set set"
inductive "domino"

intrs
horiz "{(i, j), (i, Suc j)} ∈ domino"
vertl "{(i, j), (Suc i, j)} ∈ domino"

constdefs
coloured :: "nat ⇒ (nat*nat)set"

"coloured b == {(i,j). (i+j) mod #2 = b}"

end

FIG. 2. Isabelle/HOL Definitions of Dominoes and Tilings

In effect,’a is the type of squares. Each tile is a set of squares, so it has type
’a set . The setA of tiles therefore has type(’a set)set , as does the
set of tilings generated byA.

The set of dominoes is inductively defined too. The Isabelle syntax ex-
presses two introduction rules:

{(i, j ), (i, j + 1)} ∈ domino {(i, j ), (i + 1, j )} ∈ domino

The ‘induction’ here is trivial, but no matter, this definition is easy to use. It
is declarative. Contrast it with the version appearing in Sect.1, which is a
piece of Lisp code. The constantdomino has type(nat*nat)set set
because it is a set of sets of pairs of natural numbers.

Figure2 definescoloured b as set of squares having colourb. Formally,
it is the set of even squares ifb = 0 and the odd squares ifb = 1. The set
lessThan(n) is predefined in Isabelle/HOL to be{i | i < n}.

4 A primer on rule induction
You are probably familiar with ‘mathematical induction’ and with structural
induction over lists and similar datatypes. An inductive definition gives rise
to a principle sometimes known asrule induction. Given the definition of
tiling, Isabelle generates the corresponding induction rule, shown here using
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mathematical notation:

z ∈ tiling(A) P(∅)

[a ∈ A t ∈ tiling(A) P(t) a ∩ t = ∅]....
P(a ∪ t)

P(z)

In English,a property that is closed under the introduction rules fortiling(A)
holds for all elements oftiling(A). Induction is sound becausetiling(A) is the
leastset closed under those rules. (This is why it is called rule induction.) In
the inductive step, we are given an arbitrary tilea ∈ A and tilingt ∈ tiling(A)
that are disjoint (a ∩ t = ∅) and satisfy the induction hypothesisP(t).

A trivial rule induction proves that if eacha ∈ A is a finite set then so
is tiling(A). Here P(z) is the propertyfinite(z). By induction, it suffices to
show

• finite(∅), which is trivial,

• and thata ∈ A andfinite(t) imply finite(a ∪ t). This holds because we
have assumedfinite(a) for all a ∈ A.

The induction rule for dominoes has no induction hypothesis. A property
holds for all dominoes provided it holds for the two possibilities given in the
inductive definition. In the last two premises,i and j are arbitrary natural
numbers.

z ∈ domino P({(i, j ), (i, j + 1)}) P({(i, j ), (i + 1, j )})
P(z)

It is time for a harder example of induction. Let us prove that the union of
two disjoint tilings is itself a tiling:

t ∈ tiling(A) u ∈ tiling(A) t ∩ u = ∅
t ∪ u ∈ tiling(A)

This induction must be set up with care. HereP(z) is the formula

u ∈ tiling(A)→ (t ∩ u = ∅ → t ∪ u ∈ tiling(A)) (4.1)

The induction formula must be an implication because the induction vari-
able,t , also occurs int ∩ u = ∅.

By induction ont there are two cases.
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Goal "t ∈ tiling A H⇒

u ∈ tiling A → t ∩ u = {} → t ∪ u ∈ tiling A";
by (etac tiling.induct 1);
by (simp_tac (simpset() addsimps [Un_assoc]) 2);
by Auto_tac;

FIG. 3. Isabelle/HOL Proof: the Union of Disjoint Tilings is a Tiling

• Base case. Puttingt = ∅ in the formula (4.1), we must show

u ∈ tiling(A)→ (∅ ∩ u = ∅ → ∅ ∪ u ∈ tiling(A))

This is trivial because∅ ∪ u = u ∈ tiling(A).
• Inductive step. We assume disjoint setsa ∈ A andt ∈ tiling(A), as usual.

The induction hypothesis is simply (4.1). We must show

u ∈ tiling(A)→ ((a ∪ t) ∩ u = ∅ → (a ∪ t) ∪ u ∈ tiling(A))

To prove this implication, we assumeu ∈ tiling(A) and(a ∪ t) ∩ u = ∅,
which yieldsa∩u = ∅ andt∩u = ∅. From the induction hypothesis (4.1)
we havet ∪ u ∈ tiling(A). Sincea is disjoint from botht andu, we may
add it to the tilingt ∪ u to obtaina ∪ (t ∪ u) ∈ tiling(A).

5 The mechanical proofs
The Isabelle proofs offer few surprises. Finite cardinalities are tricky to reason
about, as I have noted in previous work [14]. I needed a couple of hours to
find a machine proof that a domino consists of one even square and one odd
square. Another trouble spot was to prove that removing elements from a
finite set reduces its cardinality:|A−{x}| < |A| if A is finite andx ∈ A. One
outcome of this exercise is a collection of general theorems about remainders
and cardinality, which I have installed in Isabelle/HOL.

Apart from these trouble spots, the mechanized proof was straightforward.
Developing the originalZF version took under 24 working hours. Excluding
facts added to libraries, the (HOL) definitions and proof script occupy about
4400 bytes. They execute in 8.5 seconds on a 600MHz Pentium. Both figures
are tiny, as suits this toy problem.

Figure 3 presents part of the script: the inductive proof outlined in the
previous section. The script may be difficult to understand, but we see that
proving this theorem requires little detail from the user. TheGoal command
supplies the theorem to be proved. The next line applies rule induction. Then
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the simplifier (simp tac ) is called with an associativity theorem in order to
replace(a∪ t)∪u by a∪(t∪u). The rest of the proof is done by the automatic
proof tactic,Auto tac .

The full proof script, comprising 13 theorems, is Appendix A. Isabelle can
display formulas using the fonts of X-symbol package [19], making formulas
much more readable on-screen than they are in rawASCII; I have edited the
script to use similar symbols. Let us review the proofs informally.

5.1 On tiling chess boards

The first theorem has already been discussed in Sect.4 and Fig.3. We now
develop a geometry of chess boards. The next two theorems (each proved by
Auto tac ) relatelessThan(Suc n) and Cartesian products.

lessThan(Suc n) × B = ({n} × B) ∪ ((lessThan n) × B)
A × lessThan(Suc n) = (A × {n}) ∪ (A × (lessThan n))

Next comes a lemma, proved byAuto tac , concerning singleton sets and
Cartesian products. It makes a useful rewrite rule.

({i} × {n}) ∪ ({i} × {m}) = {(i,m), (i,n)}

The next two results state thata row or matrix with an even number of columns
can be tiled with dominoes.

{i} × lessThan(#2*n) ∈ tiling domino
(lessThan m) × lessThan(#2*n) ∈ tiling domino

These theorems apply to a standard 8× 8 chess board, but not to a 9× 9 one.
The first theorem has a four-step proof, by induction onn. The simplifier
massageslessThan(#2 * Suc n) into the union of a domino with the
tiling given in the induction hypothesis. Then a tiling rule is applied explicitly.
Finally, the automatic tactic (given the lemma proved above) finishes off. The
second theorem has a trivial proof: induction overmfollowed byAuto tac .

5.2 On colours and dominoes

Here is a simple fact about the squares in a tiling of a specified colour.
coloured b ∩ (insert (i,j) t) =

(if (i+j) mod # 2 = b then insert (i,j) (coloured b ∩ t)
else coloured b ∩ t)

Hereinsert x A denotes{x} ∪ A. Theb-coloured squares of{(i, j )} ∪ t com-
prise theb-coloured squares oft along with(i, j ), if this square is colouredb.
Although obvious, this fact is useful for rewriting. The proof is a one-liner:
Auto tac .
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This fact is used to prove that a domino covers one square of each colour:
d ∈ domino H⇒

( ∃i j. coloured 0 ∩ d = {(i,j)}) ∧
( ∃m n. coloured 1 ∩ d = {(m,n)})

The proof is again simple. The first step is induction (really case analysis) on
the domino. The automatic tactic finishes the proof, given a rewrite rule that
reduces(m+ 1) modn to m modn.

5.3 On the cardinalities of some finite sets

For us, a domino is a two-element set of squares. Clearly all dominoes are
finite, and a region tiled by dominoes is finite. Both proofs use induction
followed byAuto tac .

d ∈ domino H⇒ finite d
t ∈ tiling domino H⇒ finite t

Most of the papers describing the chess board proof omit to mention that the
board has finitely many squares. However, finiteness is crucial to the counting
argument. (Infinite tiling problems are very different from finite ones. An
infinite chess board can be tiled with dominoes even after one black square
has been removed.)

Every set tiled by dominoes (such as an 8×8 chess board) contains equally
many black squares as white ones. Herecard is the cardinality function.

t ∈ tiling domino H⇒ card(coloured 0 ∩ t) = card(coloured 1 ∩ t)

This fact is also usually omitted from informal accounts, presumably because
it is obvious. But its proof, six steps long, is not trivial. After applying induc-
tion, we use a fact proved above, namely that a domino covers one square of
each colour. We are left having to show

card(insert sq0 (coloured 0 ∩ t)) = card(insert sq1 (coloured 1 ∩ t))

wheresq0 andsq1 are the newly covered squares. The induction hypothesis
is

card(coloured 0 ∩ t) = card(coloured 1 ∩ t).

Two proof steps show that the uses ofinsert add a square that was not
already in the set. The result follows because both cardinalities increase by
one.

5.4 Towards the main result

The main result presents some difficulties. Take the general case of removing
any two white (even) squares, not necessarily in the corners.
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[[ t ∈ tiling domino;
(i+j) mod #2 = 0; (m+n) mod #2 = 0;
{(i,j),(m,n)} ⊆ t ]]

H⇒ (t - {(i,j)} - {(m,n)}) 6∈ tiling domino

In English, removing two white squares from a region tiled with dominoes
leaves a region that cannot be tiled. The proof consists of five steps. The
first simply assumes that the region can be tiled, for contradiction. Next we
claim that there are fewer white squares than black, from which (step 3) we
immediately obtain a contradiction. The last two steps prove the claim. It is
surprisingly hard to prove that removing two elements from the set of white
squares reduces its cardinality.

The main result is proved for any board with positive even dimensions. The
mutilated board (less the two corners) cannot be tiled with dominoes.

t = lessThan(#2 * Suc m) × lessThan(#2 * Suc n)
H⇒ t - {(0,0)} - {(Suc(#2*m), Suc(#2*n))} 6∈ tiling domino

The proof applies the general theorem just discussed and discharges the first
subgoal using a tiling lemma proved in Sect.5.1. The rest falls toAuto tac .

6 Related work and conclusions
In this note there is no space for a full literature review. Several efforts [2,
16, 18] are in the same spirit as the present work: the chess board is formal-
ized and impossibility of tiling proved following the intuitive argument about
colours. Other work has used exhaustive search or radical reformulations of
the problem.

The Isabelle formalization compares favourably with the others. The def-
initions (Fig.2) are concise, and in my view, easy to understand. The script
is short: under 120 lines compared with over 500 for Subramanian [17]. (In
terms of characters, which is more accurate, the ratio drops to 1:3.) According
to McCarthy [9], Bancerek’s mechanization [2] in Mizar requires 400 lines.
Rudnicki’s version [16] (also in Mizar) requires 300 lines. Andrews [1] re-
ports a complex proof; it is not clear how much effort is needed to generate
it.

When are inductive definitions appropriate? The choice is partly a mat-
ter of taste; published formalizations of the mutilated chess board show great
diversity. Inductive definitions are ideal for finite constructions that allow
non-determinism; the laying down of tiles fits that description precisely. The
inductive definition plays the same role as Subramanian’s finite state ma-
chine [18]. The initial state is the empty board; next states are obtained by
adding disjoint tiles; properties that hold of all reachable states are proved by
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induction. Giving an illegal input to the state machine sends it to an error state
— a concept usually avoided with inductive definitions, since they describe
only the legal constructions.

The finite state machine approach that Subramanian describes has been
applied to substantial system verifications [10]. The inductive approach de-
scribed above is an effective means of verifying cryptographic protocols [13].
Inductive definitions scale up to serious problems.

Acknowledgements.I learned of the expressiveness of inductive definitions
through participation in the ESPRIT project 6453 TYPES, and especially
through the work of Ǵerard Huet [6, 7]. John Harrison and anonymous refer-
ees commented on this paper.
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A Full proof script
(*
The Mutilated Chess Board Problem, formalized inductively
*)

Addsimps (tiling.intrs @ domino.intrs);
AddIs tiling.intrs;

Material discussed in Sect.5.1
(** The union of two disjoint tilings is a tiling **)

Goal "t ∈ tiling A H⇒ u∈ tiling A → t ∩ u = {} → t ∪ u ∈ tiling A";
by (etac tiling.induct 1);
by (simp_tac (simpset() addsimps [Un_assoc]) 2);
by Auto_tac;
qed_spec_mp "tiling_UnI";

AddIs [tiling_UnI];

(*** Chess boards ***)

Goalw [lessThan_def]
"lessThan(Suc n) × B = ({n} × B) ∪ ((lessThan n) × B)";

by Auto_tac;
qed "Sigma_Suc1";

Goalw [lessThan_def]
"A × lessThan(Suc n) = (A × {n}) ∪ (A × (lessThan n))";

by Auto_tac;
qed "Sigma_Suc2";

Addsimps [Sigma_Suc1, Sigma_Suc2];

Goal "({i} × {n}) ∪ ({i} × {m}) = {(i,m), (i,n)}";
by Auto_tac;
qed "sing_Times_lemma";

Goal "{i} × lessThan(#2*n) ∈ tiling domino";
by (induct_tac "n" 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Un_assoc RS sym])));
by (rtac tiling.Un 1);
by (auto_tac (claset(), simpset() addsimps [sing_Times_lemma]));
qed "dominoes_tile_row";

AddSIs [dominoes_tile_row];

Goal "(lessThan m) × lessThan(#2*n) ∈ tiling domino";
by (induct_tac "m" 1);
by Auto_tac;
qed "dominoes_tile_matrix";

http://x-symbol.sourceforge.net/
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Material discussed in Sect.5.2
(*** "coloured" and Dominoes ***)

Goalw [coloured_def]
"coloured b ∩ (insert (i,j) t) =

(if (i+j) mod # 2 = b then insert (i,j) (coloured b ∩ t)
else coloured b ∩ t)";

by Auto_tac;
qed "coloured_insert";
Addsimps [coloured_insert];

Goal "d ∈ domino H⇒ ( ∃i j. coloured 0 ∩ d = {(i,j)}) &
( ∃m n. coloured 1 ∩ d = {(m,n)})";

by (etac domino.elim 1);
by (auto_tac (claset(), simpset() addsimps [mod_Suc]));
qed "domino_singletons";

Material discussed in Sect.5.3
Goal "d ∈ domino H⇒ finite d";
by (etac domino.elim 1);
by Auto_tac;
qed "domino_finite";
Addsimps [domino_finite];

(*** Tilings of dominoes ***)

Goal "t ∈ tiling domino H⇒ finite t";
by (etac tiling.induct 1);
by Auto_tac;
qed "tiling_domino_finite";

Addsimps [tiling_domino_finite, Int_Un_distrib, Diff_Int_distrib];

Goal "t ∈ tiling domino H⇒ card(coloured 0 ∩ t) = card(coloured 1 ∩ t)";
by (etac tiling.induct 1);
by (dtac domino_singletons 2);
by Auto_tac;
(*this lemma tells us that both "inserts" are non-trivial*)
by (subgoal_tac " ∀p C. C ∩ a = {p} → p 6∈ t" 1);
by (Asm_simp_tac 1);
by (Blast_tac 1);
qed "tiling_domino_0_1";

Material discussed in Sect.5.4
(*Final argument is surprisingly complex*)
Goal " [[ t ∈ tiling domino;

(i+j) mod #2 = 0; (m+n) mod #2 = 0;
{(i,j),(m,n)} ⊆ t ]]

H⇒ (t - {(i,j)} - {(m,n)}) 6∈ tiling domino";
by (rtac notI 1);
by (subgoal_tac "card (coloured 0 ∩ (t - {(i,j)} - {(m,n)})) <

card (coloured 1 ∩ (t - {(i,j)} - {(m,n)}))" 1);
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by (force_tac (claset(), HOL_ss addsimps [tiling_domino_0_1]) 1);
by (asm_simp_tac (simpset() addsimps [tiling_domino_0_1 RS sym]) 1);
by (asm_full_simp_tac

(simpset() addsimps [coloured_def, card_Diff2_less]) 1);
qed "gen_mutil_not_tiling";

(*Apply the general theorem to the well-known case*)
Goal "t = lessThan(#2 * Suc m) × lessThan(#2 * Suc n)

H⇒ t - {(0,0)} - {(Suc(#2*m), Suc(#2*n))} 6∈ tiling domino";
by (rtac gen_mutil_not_tiling 1);
by (blast_tac (claset() addSIs [dominoes_tile_matrix]) 1);
by Auto_tac;
qed "mutil_not_tiling";
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