Proof Pearl: Defining Functions Over Finite Sets

Tobias Nipkow! and Lawrence C. Paulson?

Institut flir Informatik, Technische Universitdt Miinchen, Germany
Computer Laboratory, University of Cambridge, England

Abstract. Structural recursion over sets is meaningful only if the result
is independent of the order in which the set’s elements are enumerated.
This paper outlines a theory of function definition for finite sets, based
on the fold functionals often used with lists. The fold functional is in-
troduced as a relation, which is then shown to denote a function under
certain conditions. Applications include summation and maximum. The
theory has been formalized using Isabelle/HOL.

1 Introduction

Finite sets have many applications in interactive proof. Lists are more com-
monly used, but are a poor substitute for sets: if the order of the list elements
really doesn’t matter, then the use of lists will introduce meaningless distinctions
and pointless complications. In general, of course, sets do not have to be finite.
Theorem provers based on higher order logic can easily reason about infinite
sets. Finite sets are appropriate for modelling computational phenomena such
as message buffering, where the order and possible repetition of messages must
be ignored. Finite sets support operations—such as summation, maximum and
minimum, cardinality—that are meaningful for infinite sets only in the context
of the calculus or other advanced methods.

Fold functionals are a convenient means of defining such operations. For lists,
fold functionals are well known [8], but for finite sets, they are problematical.
The problem is obvious: fold functionals seem to presuppose an ordering of the
elements, when by definition a set is unordered. The solution is to define a fold
functional that allows the definition of operations where the order of elements is
irrelevant.

— Summations are unaffected by the order in which elements are added.

— The maximum and minimum do not depend on the order in which elements
appear.

— Cardinality is unaffected by the order in which elements are counted.

This paper has several objectives. We describe how to the formalize fold
functionals for finite sets. While presenting our approach, which we believe pro-
vides maximum flexibility for minimal effort, we identify alternatives and outline
their merits. No mathematical novelties appear here, just a carefully tuned series
of definitions. We use Isabelle/HOL [9], but the approach should be applicable

to other theorem provers based on higher-order logic or set theory. We also il-
lustrate the technique of proving a function to be well-defined by showing the
corresponding relation to be single valued.

We pay particular attention to the algebraic properties required for iterating
a function over a set. It turns out that there are two distinct cases: commutative
monoids with a unit (useful for defining summation) and ordered structures
(useful for defining minimum). Both require distinct fold functionals and their
own theory. In the development of these theories we demonstrate locales, a lesser-
known Isabelle feature.

As we go along, we compare our approach with the one in HOL4 [7] and
PVS [13], both of which provide their own libraries of functions over finite sets.
Our basic fold function resembles one formalized for HOL88 by Chou [3].

2 Finite Sets and the Fold Function

We assume there already is a formalization of sets, with standard operations such
as comprehension, union and intersection. In higher-order logic, this is trivial by
the obvious representation of sets by predicates.

We use standard mathematical notation with a few extensions. Type variables
are written ‘a, b, etc., and function types are written using =, as in ‘a = 'a.
Logical equivalence is denoted by =, equality between booleans. The type of sets
over a type ‘a is 'a set. The image of a function over a set, namely {f z | z €
A}, is written f ¢ A. Injectivity is written inj-on f A, which means the function
f is injective when restricted to the set A.

We use two description operators, SOME and THE. Both denote a value
that is specified by a formula. SOMFE is Hilbert’s e-operator; it does not require
the formula to specify the value uniquely, instead choosing one using the axiom
of choice. THE is a definite description: the specified value must be unique.

Most uses of SOMFE that we have seen can be replaced by THE. Sometimes,
SOME is essential or at least leads to shorter definitions. However, introducing a
needless dependence on the axiom of choice is inelegant. Certain formal systems
are incompatible with choice [5, Remark 4.6].

2.1 Finite Sets

Finiteness we express by an inductive definition. The empty set is finite, and
adding one element to a finite set yields a finite set. The inductive definition
defines a predicate finite characterizing the finite sets:

finite A
finite ({a} U A)
In Isabelle, we define the function insert and abbreviate the conclusion of the

second rule as finite (insert a A). This function brings out the analogy between
finite sets built by () and insert with lists built by [] and Cons. We do not

finite 0

introduce a separate type of finite sets, which might be desirable in systems that
offer predicate subtyping.

Isabelle’s inductive definition package also generates an induction rule sim-
ilar to structural induction for lists. Familiar properties are easily proved by
induction. For example, the union of finitely many finite sets is itself finite.

Traditionally, a set is finite if it can be put into one-to-one correspondence
with the set of natural numbers less than some n. Another traditional definition
says A is finite if every injection from A to A is also a surjection. Compared
with the inductive definition of finiteness, which allows the standard results to
be proved easily, such definitions are inconvenient. Their only advantage is that
they do not presuppose the concept of inductive definition.

If we did not start from an existing type of sets which includes the infi-
nite ones, we could define the type of finite sets as a quotient type of a free
algebra [11]. There are two standard approaches.

— empty set, singleton set and union, modulo associativity, commutativity and
idempotency of union
— empty set and insert, modulo left-commutativity and left-idempotency:

insert a (insert b A) = insert b (insert a A)
insert a (insert a A) = insert a A

Below we will refer to them as the (0,{—},U)-algebra and the (0,insert)-algebra.

2.2 Which Fold Function?

Our main interest is defining functions over finite sets by recursion. For lists, this
is trivial, but for sets, we must ensure that the order of the elements is irrelevant.
The cardinality of a set is a key function that might be defined recursively, though
it turns out to be essential in the development of recursion in the first place.

We seek a function fold of type (‘a = 'a = 'a) = ('b = 'a) = 'a = 'b set
= 'a. It should satisfy the equation

fold fgz{zi, .yzn} =Ff (gz1) (... (f (g 2n) 2)...)

if f is associative and commutative (AC). The function g is applied to each of
{1, ..., T, }, then z is thrown in, and the resulting values —which do not have
to be distinct—are combined using f. This fold function is also well known from
functional data base query languages, for example Machiavelli [10].

If e is a unit element for f, i.e. f x e = z, then fold satisfies the recursion
equations

foldfge® =ce
foldfge{a} =ga
fold fge (AU B) =f (fold fgeA) (fold fg e B)

if A and B are finite disjoint sets. Hence fold corresponds to the (,{—},U)-
algebra view of finite sets.

Can the argument g be eliminated? The application of g to the set elements
cannot be replaced by a separate use of the image operator because the resulting
collection of values must not be regarded as a set. We could combine f and g
into one function, namely Az y. f (g) y. That approach, followed in HOL4,
resembles the treatment of fold for lists, i.e. it takes the (@,insert)-algebra view of
finite sets. It can be shown that the two fold functions are interdefinable [2]. Our
treatment has the advantage that it only involves standard algebraic properties
like associativity and commutativity.

What happens if there is no unit e for f7 As an example, consider a naive
definition of the minimum of a set of natural numbers: Min = fold min id 0
where min is the binary minimum (which is AC, but has no unit). The sad
consequence of this definition is that Min always returns zero. As a matter of
fact, fold will not allow us to define the minimum of a set over any type that
lacks a greatest element: a unit for min. Similarly, the maximum of a set can be
defined using fold only if the type has a least element; for the natural numbers,
it is correct to define Max = fold maz id 0. We treat the case of a missing unit
element separately in §4.

2.3 Defining the Fold Function

We do not define fold directly. Instead, we inductively define its graph: its in-
put/output relation. After proving that this relation is deterministic, we use it
to define fold. The relation is a constant foldSet of type

(la="a="a)= ('b="a) = 'a = ('bset x 'a) set.

Its inductive definition has two introduction rules. The first, intuitively, states
that when applied to the empty set, fold f g z should return z.

(@, z) € foldSet f g »

The second rule says that if the “fold” of A can yield y, then the “fold” of {z}
U A can yield f (g z) y, for any = ¢ A.

z ¢ A (4, y) € foldSet f g 2
({z} U A, f (gz) y) € foldSet f g =

Proving that the “fold” of A can yield only one value is complicated because
the elements of A might be inserted in any order. Our proof (see below) is by
induction on the cardinality of A. Once we have proved that foldSet corresponds
to a function, we can define the “fold” of A to be the unique z determined by
foldSet f g z:

fold fgz A= THE z. (A, z) € foldSet f g z

This step requires the unique description operator, but not the axiom of choice.

3 A Fold Function for Finite Sets

All treatments of fold that we are aware of require some notion of finite cardi-
nality. Various definitions are possible.

1. The traditional approach refers to a bijection to an initial segment of the
natural numbers: card A = LEAST n. 3f. A=f“{m | m < n}

2. HOLA4 defines cardinality as a relation of pairs (A, n). This graph is proved
to be deterministic and turned into a function using a description.

3. The approach we adopt below refers implicitly to the traditional definition
of finiteness, via the theorem finite A = (In f. A=f{i|i < n}).

Alternative 2 above resembles the inductive definition of fold. Whichever alter-
native is chosen, we should only prove enough results about cardinality to allow
the definition of fold: many lemmas about cardinality are instances of more gen-
eral lemmas about set summation and can be obtained easily once that concept
is defined with the help of fold. We come back to this point in §3.5.

As stated in the previous section, the relation foldSet is defined inductively.
In order to turn foldSet into a function, we must show determinacy: for each A
there is at most one y such that (4, y) € foldSet f g z. However, this is not true
for arbitrary f: the function must be AC.

3.1 Commutative Monoids

An Isabelle locale is essentially a detached proof context, comprising variables
and assumptions that are temporarily treated like constants and axioms [1].
When proving theorems within a locale, there is no need to repeat the assump-
tions nor to discharge them when appealing to other theorems of that locale.
Here, a locale conveniently packages the function f with its associative and
commutative laws. Locale ACf even gives f an infix syntax - to improve clarity:

locale ACf =
fixes f it ‘/a = ‘a = 'a (infixl - 70)
assumes commute: T -y =y - T
and assoc: (z - y)-z=2xz - (y - 2)

Some of our proofs require a unit element for f. Locale ACe extends ACf
with such an element, called e:

locale ACe = ACf +
fixes e :: 'a
assumes ident: T - e = x

For clarity, we write - and e only in the context of the corresponding locale.
Outside the locale, where the values are unconstrained, we write f and z. In the
locale, references to f as a function appear as (-), a notation that emphasizes the
connection with the infix syntax = - y. An example of this notation in context
is foldSet (-) g .

3.2 From Relation foldSet to Function fold

The determinacy of foldSet is easily stated:

If (4, z) € foldSet (-) g z and (A, y) € foldSet (-) g z then y = =.

For induction, we insert two conditions, expressing that A has cardinality n:

If A=h{i]i<n} and injonh {i|i < n} and (A4, z) € foldSet (-) g = and
(4, y) € foldSet () g z then y = z.

The proof is conducted within locale ACf, making available the assumption that
- is associative and commutative. We use complete induction on n, obtaining as
induction hypothesis that the theorem statement holds for all m less than n.

We next analyse the assumption (4, y) € foldSet (-) g z by cases on the
definition of foldSet. If A = () then both z and y are equal to z. Otherwise 4 is
non-empty. We must consider two potential evaluations of fold:

1. A={b}UBandz =gb-uand (B, u) € foldSet () g z, where b ¢ B
2. A={cJUCandy=gc-vand (C, v) € foldSet (-) g z, where ¢ ¢ C

If b = ¢ then also B = C, whence u = v by the induction hypothesis. We
thus find that z and y equal g b - w.

The only remaining case is if b # c. Here, we define the set D = B — {c}.
Trivially B = {¢} U D, but we can also show C' = {b} U D by subtracting c
from both sides of the set equation {b} U B = {c¢} U C. Because the set D is of
smaller cardinality, the induction hypothesis tells us that (D, w) € foldSet f g z
for a unique w. Returning to the two potential evaluations of fold, we find

1. A={b,c}UDandz=gb-(gc-w)
2. A={c,b}UDandy=gc-(gb-w).
)

Associativity and commutativity of (-) imply = y, which completes the proof. [

If a theory of finite cardinality is already available, we can replace the for-
mulas A = h “ {i | i < n} and inj-on h {i | i < n} above by finite A. The
proof would then require a complete induction on the cardinality of A. The only
properies of cardinality needed are the obvious ones: card § = 0 and

card ({a} U A) = (ifa € A then card A else card A + 1).

Our experience is that defining cardinality separately requires much work and
yields only a small simplification in the formalization of the proof above. Fold
will give us cardinality for free.

Now that we have shown that foldSet is the graph of a function, we can easily
derive the recursion rule for fold where A must be finite and z ¢ A:

fold (-) gz ({z} U A) =g - fold (1) gz A (1)

The base case fold f g z) = z follows directly from the definitions. Once we
have these two equations, we can forget about the original definition of fold.

3.3 An Alternative: Defining Fold by Choice and Recursion

An alternative definition of fold is by well-founded recursion over the cardinality
of the set, where pick A = SOME a. a € A and rest A = A — pick A:

fold f gz A = (if A =0 then z else fold f g (pick A) (rest A))

This version, used in PVS and HOL4, is appealingly concise. In PVS the type of
fold is restricted to finite sets, whereas in HOL the recursion equation is subject
to the condition finite A. A comparison of the Isabelle and HOL4 proof scripts
leading to equation (1) suggests that the use of the axiom of choice yields no
reduction in the proof effort. Our approach, which introduces no dependence on
the axiom of choice, provides more flexibility at no additional cost.

3.4 Further Properties of Fold

Here is a selection of equations that we have formally proved about the function
fold. They are all subject to the condition that the sets are finite. Most of the
proofs are trivial inductions over the finite set A.

fa (foldfgzA)=foldfg (fzz)A
fold fg (fold fgzB) A= foldfg (foldfgz (AN B)) (AU B)
foldfgz (h“A)=foldf (goh)zA

The following theorems is proved in locale ACe:
fold () ge A - fold () ge B=fold (-) ge (AU B) - fold (- ge (AN B) (2)

These samples from the fold library should suffice.

3.5 Applications

Our experience is that users seldom invoke fold directly. The great majority of
references to fold are via functions defined using it. Summation, which is the most
important of these, sums a given function over an index set. Also useful is an
analogous operator for products. Cardinality is defined in terms of summation.

So far we have implicitly worked in the context of a fixed but arbitrary com-
mutative semigroups or monoid, i.e. the locales ACf or ACe. Now we replace - by
addition or multiplication and e by 0 or 1. This is fine as those are commutative
monoids. In Isabelle it means instantiating the locales ACf or ACe and proving
their assumptions; the details are discussed elsewhere [1].

Sums Over a Set. We work in a flexible formalization of arithmetic, defined

using axiomatic type classes [12]. A general theory of commutative monoids

specifies that + is an AC operator with unit element 0. The resulting concept of

summation is applicable to integers, rationals, reals, matrices and even multisets.
The sum of the function f over the set A is defined in terms of fold.

setsum f A = if finite A then fold (+) f 0 A else 0

The sum is defined to be zero if A is infinite; by case analysis on finite A,

many theorems about setsum can be proved without finiteness assumptions.

(The analogous if-then definition of fold would simplify only a few theorems.)

This summation operator inherits the theorems about fold shown above.
Products over a set are defined analogously.

Syntactic Sugar. We have attached more conventional concrete syntax to
various forms of setsum. For a start setsum (Az. e¢) A can be written (and is
always printed) as Y z€A. e. Instead of Y ze{x. P}. e we have the shorter
>>xz | P. e. The special form > z€A. z abbreviates to) A.

Cardinality of a Finite Set. As remarked above, the summation operator and
the theorems proved about it are applicable to all types that belong to the class
of commutative monoids. Among these is nat, the type of the natural numbers.
The cardinality of a finite set can be expressed as a summation:

card A =Y z€A. 1

Note that the cardinality of an infinite set is zero with this definition. The usual
properties of cardinality are instances of those for summations.

4 A Fold Function for Non-Empty Sets

Some functions on finite sets, such as Maz, require their argument to be non-
empty. The algebraic reason is that the result type does not have a unit element e.
This phenomenon is well-known from functional programming with lists, where
typically two fold functions are available. We do the same here and define a
second fold function fold1 of type (‘a = 'a = 'a) = 'a set = ’a such that

fold1 () {z1, ., Tn} =21 - ...« Tn

if () is associative and commutative.

Unlike fold, the function fold! does not apply some g to all z;. In all our
examples, the operator (-) is idempotent, when g can be mapped over the set first.
For fold, it is easy to show that if () is idempotent then g becomes redundant:

finite A = fold (-) g z A = fold () id z (g * A)

The Isabelle definition of fold1 again avoids the axiom of choice and proceeds
as for fold: a relation fold1Set is defined inductively. We avoid recursion and
reduce fold1Set to foldSet.

(A, z) € foldSet fid a ag¢ A
({a} U A, z) € fold1Set f

Again, our plan is to convert this relation into a function:

foldl f A= THE x. (A, z) € fold1Set f

A surprise: this does not require proving determinacy of fold1Set! The equation
for the base case is easy to show: foldl f {a} = a. Harder to derive is the
recursion rule, where A must be finite and non-empty and a ¢ A:

fold1l (1) {a} U A) = a - fold1 (1) A (3)

Our proof requires two lemmas to allow us to change foldSet’s third argument.
Both lemmas are proved by induction on the derivation of their first premise.
(A, y) € foldSet (-) id b b¢g A
{b} U A, z - y) € foldSet (-) id z
(4, z) € foldSet (-) id b a€ A b¢ A
{b} U (A — {a}), x) € foldSet (-) id a

From these two lemmas, we can prove an equation relating fold1 to fold
fold1 () ({a} U A) = fold (-) id a A

where again A must be finite and a ¢ A. The recursion rule (3) follows easily. If
(+) is idempotent, then a ¢ A can be dropped. The same holds for fold, but it is
less useful there, because few applications of fold involve idempotent operators.

4.1 Properties

In the sequel, all sets are implicitly assumed to be finite and non-empty.

There are fewer general properties of fold! than of fold because fold! has
fewer parameters. Of the fold lemmas in §3.4, only a single one still makes sense
here: provided A N B = (, fold! distributes over union.

foldl (-) (AU B) = fold1 (-) A - foldl (-) B

For fold, this distributive law is the corollary of the more general lemma (2),
which does not hold for fold1.

If () is idempotent as well, the premise A N B = @ in the distributive law
can be dropped. In fact, idempotence of (-) makes fold! come into its own.

We will now examine properties of fold! in various ordered structures (for
details see the literature [4]). These structures are again formalized by locales in
Isabelle, but our presentation will stay on an abstract mathematical level.

4.2 Semilattices

In this subsection, we assume (-) is not just AC but also idempotent: z - x =
z. This means we are in a semilattice. To obtain the order-theoretic view, we
define the symbol C by

(@Cy)=(y=2)

The semi-lattice law (z C y - 2) = (z C y A 2 £ z) has a nice generalization
in terms of fold1:

(z C foldl () A) = (Va€A. z C a)

The dual property (z - y C z) = (z C 2z V y C 2z) holds iff the ordering C is
linear. Then, it can be generalized to

(fold? (1) AC z) = (FacA. a C x).

Note that only the left-to-right direction of this equivalence requires linearity.
The other direction is valid in arbitrary semilattices:

a € A= foldl (-) AC g, (4)

4.3 Lattices

Frequently, the semilattice is in fact a lattice: there is not just an infimum ((-)
above) but also a supremum, which we write M and L. With the help of foldl1,
we can define the standard extension of M and LI to finite sets:

MA=foldl (M A |JA = foldl (L) A

We inherit the semilattice laws and can derive new ones from them. For
example, we obtain [] A C | | A from the instances of (4) for the two semilattices
M and L.

In case of a distributive lattice, distributivity propagates from the binary to
the n-ary operations. Here are two examples:

zU[TA=[]{zUa]|ac A} [MAulIB=[]{auUblac ANDbe B}

4.4 Applications

The most direct applications of fold! are minimum and maximum because (as
noted in §2.2) many types lack a least or greatest element, which means fold is
inappropriate. In Isabelle, we can define Min and Maz as follows:

Min = foldl min Max = fold1 max

Here, min and max are overloaded functions available on any type of class ord,
which means the type must define an ordering <. Hence, Min and Maz have
type ‘a set = 'a, where 'a is of class ord.

We can now inherit all of the fold1 properties described above because Min
and Maz form a distributive lattice. After instantiating the corresponding locales
we obain, for example, the distributive law

maz (Min A) (Min B) = Min {maz ab|a € AANDbE B}

Functions Min and Max and their properties are now available, for example, on
all numeric types (except the complex numbers) as they are linearly ordered.

In a similar manner, we can define the greatest common divisor and the least
common multiple of a set of natural numbers: Ged = fold! ged and Lem = foldl
lem, where ged and lem are the binary versions. Functions ged and lem also
form a distributive lattice, where the ordering is divisibility. They even form a
complete lattice.

Finally, we consider the longest common prefix (lcp) of two lists:

10

lep] as =]
lepas | = |
lep (z # xs) (y # ys) = (ifz = y then z # lep s ys else [])

where # is the list Cons. Of course, the corresponding ordering is the prefix
ordering. This only yields a lower semilattice: there is no greatest element and
no supremum. Thus we only define Lep = fold1 lcp.

4.5 Alternative Definitions

Asin §3.3, we can use the axiom of choice to define fold! by the obvious recursion
on the cardinality. Again, it is simpler to define fold! in terms of fold:

fold1l f A = fold fid (pick A) (rest A)

The main advantage of this definition is that the recursion rule (3) can now
be proved by a few case distinctions, a few properties of pick, and equational
reasoning alone, assuming we already know

a€ A= fold (") gzA=ga-fold (-) gz (A — {a})
z - fold (1) gz A= fold (") g (x - 2) A

both of which are natural lemmas for fold. This proof of (3) has the advantage
over the one via fold1Set that it does not require any special purpose lemmas.

Neither PVS nor HOL4 provide an analogue of fold1. Both systems define
the minimum and maximum of a set directly. Other functions like the above Ged
and Lcp would need to be defined separately.

HOL4 defines Min and Maz only for sets of natural numbers. An advantage
of the HOL4 approach is that Min also works for infinite sets. Folding does not
make sense for infinite sets unless we introduce some notion of limit.

Let us compare the different approaches and assume we are interested in
finite sets only. Then fold! has the advantage of generality over special purpose
Min and Maz definitions. The shortest definitions and proofs are obtained by
defining fold! with the help of fold and choice. The inductive definition is a
bit lengthier but not significantly so, and avoids choice. But even if one is just
interested in Min and Maz, their definition by description is not ideal. It is
simpler by far to derive the characteristic properties of Min and Maz from the
recursion equations than the other way around. This can be seen by comparing
the Isabelle and HOL4 proofs.

5 Conclusions

Recursive function definitions over finite sets are not difficult to justify. The
mathematics is simple. We have taken pains to ensure that the machine formal-
ization is simple too, while avoiding any dependence on the axiom of choice.
The applications we have discussed are cardinality, sum and product over sets.

11

For the case of non-empty sets, we have discussed the maximum and minimum
operators.

One question we have not discussed at all is definability. It is easily seen that
not every function on finite sets is definable by means of fold: if F' A = card A
< 1 were definable as F = fold (-) g e for suitable (), g and e, then it would
follow that e = F) = True, gz - e = F {z} = True and hence False = F{z,y}
=gx-gy-e=gzx-e = True. On the other hand fold can trivially define
any homomorphism from the finite sets viewed as a (0,{—},U)-algebra into a
(e,g,-)-algebra: F' = fold (-) g e. But being a homomorphism this implies that -
must satisfy all union laws, in particular idempotence: F A = F(AU A) = F A
- F A. Hence set sum and product are not homomorphisms but still defineable.
This shows that the definability question is outside the scope of this paper and
requires a separate study analogous to the work of Gibbons et al. [6] for lists.

References

1. C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. Berardi,
M. Coppo, and F. Damiani, editors, International Workshop TYPES 2003, LNCS
3085, pages 34-50. Springer, 2004.

2. V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of
programming with sets/bags/lists. In J. L. Albert, B. Monien, and M. Rodriguez-
Artalejo, editors, Automata, Languages and Programming (ICALP91), volume 510
of LNCS, pages 60-75. Springer, 1991.

3. C.-T. Chou. Generalizing an associative and commutative operation with identity
to finite sets. ftp://ftp.cl.cam.ac.uk/hvg/hol88/contrib/aci/, 1992. HOL88 formal
development.

4. B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

5. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341-363, 2001.

6. J. Gibbons, G. Hutton, and T. Altenkirch. When is a Function a Fold or an Unfold?
In Proc. 4th International Workshop on Coalgebraic Methods in Computer Science,
volume 44.1 of Electronic Notes in Theoretical Computer Science, 2001.

7. The HOL4 Theorem Prover. http://hol.sf.net.

8. G. Hutton. A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming, 9(4):355-372, July 1999.

9. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

10. A. Ohori, P. Buneman, and V. Tannen. Database programming in machiavelli - a
polymorphic language with static type inference. In J. Clifford, B. Lindsay, and
D. Maier, editors, Proc. 1989 ACM SIGMOD Intl. Conf. Management of Data,
pages 46-57. ACM Press, 1989.

11. L. C. Paulson. Defining functions on equivalence classes. ACM Transactions on
Computational Logic. in press.

12. L. C. Paulson. Organizing numerical theories using axiomatic type classes. Journal
of Automated Reasoning, 2005. in press.

13. PVS Specification and Verification System. http://pvs.csl.sri.com/.

12

http://hol.sf.net
http://pvs.csl.sri.com/

	Proof Pearl: Defining Functions Over Finite Sets

