[sabelle-91*

Tobias Nipkow! and Lawrence C. Paulson?

Isabelle is a generic theorem prover. Object-logics are formalized within higher-order
logic, which is Isabelle’s meta-logic. Proofs are performed by a generalization of resolution,
using higher-order unification. The latest incarnation of Isabelle, Isabelle-91, features a
type system based on order-sorted unification; this supports polymorphism and overload-
ing in logic definitions.

1 Defining logics

Isabelle’s meta-logic is intuitionistic higher-order logic with implication (=), universal
quantifiers (A), and equality (=) [5, 6]. The presentation of an object-logic consists of a
signature introducing the types and constants of the logic, i.e. its abstract syntax, and
axioms describing the inference rules. As a tiny example, consider the following definition
of minimal logic.

Min = types form
consts _— _: form — (form — form)
I] : form — prop
rules ([P] = [Q]) = [P — (]
[P — Q] = [P] = [Q]

Min introduces the type form (of object-formulae) and the infix constant — (for object-
implication). The constant [] maps form to the predefined type prop of meta-logic
propositions. The proposition [P] should be read as “the formula P is true”; we usu-
ally distinguish object-level formulae (form) from meta-level formulae (prop). In practice
the brackets can be dropped; parser and pretty-printer take care of such matters.

The two rules for minimal logic are typical natural deduction rules for implication
introduction and elimination, which are usually written as follows:

[P
' P—Q P
P—Q Q

*Appeared in D. Kapur (editor), 11th International Conf. on Automated Deduction, (Springer LNAI
607, 1992), 673-676. Research supported by ESPRIT BRA 3245, Logical Frameworks.

T Author’s address: Institut fiir Informatik, TU Miinchen, Postfach 20 24 20, 8000 Miinchen 2, Germany.
E-mail: Tobias.Nipkow@Informatik.TU-Muenchen.De.

tAuthor’s address: University of Cambridge, Computer Laboratory, Pembroke Street, Cam-
bridge CB2 3QG, England. E-mail: Larry.Paulson@cl.cam.ac.uk.



Logics can be combined (taking their union) and can be extended with new types,
constants and rules. A minimal predicate logic can be defined as an extension of Min by
adding a type of terms and a quantifier:

Pred = Min + types term
consts V : (term — form) — form
rules (Az.[P(z)]) = [V(P)]
[V(P)] = [P®)]

Because Isabelle is based on higher-order logic, its expressions are simply typed A-terms.
The A-calculus notions of free and bound variables handle quantifiers. The formula
Va.P(x), where P is of type term — form, is internally represented as V(Ax.P(x)). The
parser and pretty-printer translate between the concrete syntax and the internal form.
The two inference rules formalize the usual rules of quantifier introduction and elimi-

nation:
P Plt/x]
Vz.P Vo.P

The introduction rule is subject to the proviso that x is not free in the assumptions. In
Isabelle, this proviso is automatically enforced because the premise [P(x)] is in the scope
of a local Az [5]. Similar techniques handle existential quantifiers and expressions such

as X7 ok; (summations), Il,e 4 B(x) (dependent types) and U, Ho (large unions).

2 Order-sorted polymorphism

Pred formalizes a single sorted predicate logic. To support many-sorted and polymorphic
logics, Isabelle-91 introduces order-sorted polymorphism [3]. This is ML-polymorphism
where the algebra of types is order-sorted — there is a new level of partially ordered sorts
classifying the types. Type variables are qualified by sorts, thus restricting the set of types
they range over. This is a generalization of Standard ML’s equality types [2] and is closely
related to Haskell’s type classes [4]. As an example consider the following definition of a
polymorphic first-order logic:

FOL = sortsi< T
types form : T
consts _— _: form — form — form
V: (a; — form) — form

The first line introduces a sort ¢ (“individuals”) which is a subsort of the predefined sort T
of all types. The type of formulae is classified as being of sort T. Implication is as before,
whereas V has acquired a polymorphic type: the type variable «; ranges over all types of
sort i. In particular «; does not range over form and function types, because neither are
of sort 7. This rules out quantification over predicates and functions, thus ensuring that
FOL is indeed a first-order logic and not a higher-order one in disguise.

The sort i is initially empty but further extensions may change this:

Nat = FOL + types nat : i
consts 0: nat
succ : nat — nat



The formula Vz.P(z) — P(succ(x)) is legal, with = having the inferred type nat which
is of sort 1.

A polymorphic equality operator would have type o; — (a; — form). For higher-
order logic, form would be declared to have sort 7, to permit quantification over formulae

[3].

2.1 Overloading

Order-sorted polymorphism can also be used to specify ad-hoc polymorphism or overload-
ing. Suppose we would like to use the symbol + at more than one type, for example
both natural numbers and strings (where + might denote concatenation). Isabelle’s type
system does not allow the simultaneous declaration

consts _+_: nat — nat — nat
+_: string — string — string

However, + can be declared once and for all as a polymorphic operator:

FOLy = FOL + sortsa <1t

consts _+_: a4 — a4 — Qg

The sort a is meant to represent those types which provide addition (4). More precisely,
any type 7 of sort a automatically gives rise to a constant + : 7 — 7 — 7. So far there is
only the generic operation but there are no instances. The latter are created by asserting
that some type is of sort a:

Naty = FOLy + Nat + types nat: a
rules 0 +n=mn
succ(m) +n = succ(m +n)

3 Theorem proving in Isabelle

Object-logic proofs can be performed by applying one rule at a time, or in large tactic
steps.

3.1 Resolution

The central notion in Isabelle is that of a theorem. All axioms in a logic definition are
available as theorems; new theorems can only be derived by combining existing ones.
Ignoring A and =, the general form of a theorem is ¢ = ... = ¢, = ¢ which we
abbreviate as [¢1,. .., ¢m| = ¢. Theorems are combined by resolution. Given theorems

[¢1>"'7¢m]:>¢ and [wlaa¢n]:>w

and a substitution s such that s(¢) = s(¢), we can infer the new theorem

S([wly' . 7¢k—17¢17 e '7¢n7¢k‘+11 .- awn] - ¢)

Isabelle computes the substitution s by higher-order unification [1].
If theorems are viewed as derived rules, resolution corresponds to forward proof. Back-
ward proof is obtained by a change of perspective: theorem [¢)1, ..., ,] = ¥ can be read

3



as an intermediate state in a backward proof where v is the overall goal and the ; are
the subgoals yet to be proved. In this case, resolution with rule [¢1, ..., ¢p] = ¢ cor-
responds to Prolog-style backward chaining. The initial state of a backwards proof is the
trivially valid implication ¢» = 1. Identifying proof states with theorems means that
intermediate proof states are also valid theorems, albeit hypothetical ones.

Due to the presence of universal quantifiers and the possibility of natural deduction
style proofs, resolution may also have to “lift” one rule over the quantifiers and local
assumptions of the other one [5].

3.2 Tactics

Tactics are the functional programmer’s answer to the tedium of single-step theorem prov-
ing. They combine arbitrary algorithmic sequences of proof steps (and searches) into a
single function. Since Isabelle identifies proof states with theorems, tactics are simply
functions over theorems. To allow for backtracking, tactics are in fact functions from
theorems to streams of theorems. Backtracking can occur over the choice of rule, like in
Prolog, and also over the choice of unifier (because of higher-order unification).

Tactics can be written from scratch or can be assembled from existing tactics with
tacticals like THEN, ORELSE, REPEAT, DEPTH_FIRST, BEST_FIRST, etc. The tactic
writer is supplied with a rich language of control structures, including search strategies.

Isabelle comes with several generic packages for writing tactics. There are two pack-
ages to support rewriting with user-defined object-level equalities; more generally, they
can rewrite with equivalence relations and reduction systems. Another package supports
classical predicate calculus reasoning, and can prove many of the problems in Pelletier [8];
this same package supports automated reasoning in set theory.

4 General information

Isabelle is written in Standard ML and should run on any Standard ML system. Inter-
action with Isabelle is through ML. Logics, theorems and tactics are ML values; they
are manipulated by calling ML functions for extending a logic, resolving two theorems,
applying a tactic, or whatever.

Isabelle comes with 8 different logics, including LCF and some modal logics. The most
substantially developed logics are first-order logic, set theory, and higher-order logic. Many
non-trivial theorems have been proved in them, including the Schréder-Bernstein theorem,
the well-founded recursion theorem, and soundness and completeness of propositional logic.

Isabelle can be obtained by anonymous ftp from ftp.cl.cam.ac.uk. Using binary
mode, get the file isabelle.tar.Z from directory ml. The IATpX-sources for the manual
[7] are included.

References

[1] G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer Science, 1:27-57,
1975.

[2] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[3] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet, G. Plotkin, and C. Jones,
editors, Proc. 2nd Workshop on Logical Frameworks, pages 307-321, 1991.



[4] T. Nipkow and G. Snelting. Type classes and overloading resolution via order-sorted unification.
In Proc. 5th ACM Conf. Functional Programming Languages and Computer Architecture, pages
1-14. LNCS 523, 1991.

[5] L. C. Paulson. The foundation of a generic theorem prover. J. Automated Reasoning, 5:363-397,
1989.

[6] L. C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic and
Computer Science, pages 361-385. Academic Press, 1990.

[7] L. C. Paulson and T. Nipkow. Isabelle tutorial and user’s manual. Technical Report 189,
University of Cambridge, Computer Laboratory, 1990.

[8] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. J. Automated
Reasoning, 2:191-216, 1986. Errata, JAR 4 (1988), 236-236.



