Strategic Principles in the Design of Isabelle

Lawrence C. Paulson
lcp@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, Cambridge CB2 3QG, England

Abstract. Interactive proof assistants can support proof strategies, if
the right primitives have been included. These include higher-order syn-
tax, logical variables and a choice of search primitives. Such a system
allows experimentation with different automatic proof methods, even
for constructive logics, new variable-binding operators, etc. The built-in
unification and search make proof procedures easy to implement, typi-
cally using tableau methods. Against subgoals that arise in practice, even
straightforward heuristics turn out to be powerful.

1 Introduction

This paper describes the role of strategic principles in proof assistants, tak-
ing Isabelle as an example. I use ‘strategic’ in two senses: first, in the sense of
proof strategies, and second, in the sense of decisions that have long-term conse-
quences. Building a proof assistant is a major investment, and we cannot foresee
at the outset precisely how it will be used. So we must identify those features
that seem likely to be of potential benefit, and (if we are in the academic world)
of scientific interest.

Key objectives are automation and flexibility. Why automation? Because
Isabelle is interactive, and formal proofs are long; obvious formulas, at least,
should be proved automatically. Why flexibility? Because users will have different
problems and goals from those we have foreseen. They need not just a flexible
syntax but control over deep properties of their formalism: it might be first-
order or higher-order, constructive or classical, etc. A flexible system gives users
a choice of tools to use for automating their chosen formalism.

Soundness is obviously necessary: a proof assistant should deliver correct
results and should behave in a way that inspires trust. It should also be efficient in
space and time, capable of supporting realistic proofs in a range of applications.

The desire for automation and flexibility in Isabelle has resulted in the in-
clusion of three basic features:

— higher-order syntax
— logical variables and unification
— search primitives based on lazy lists

These have interesting implications, especially when combined in one system, as
we shall see. Automation and flexibility have also affected the design of Isabelle’s
more specialized tactics, such as the rewriter.

11



PVS [7] provides automation in the form of special-purpose decision proce-
dures. These are valuable, but the great majority of theorems cannot be proved
using decision procedures alone. The rest of the system must provide sufficient
automation to deal with more general problem domains.

2 Higher-Order Syntax

Most provers support quantifiers, and a few go further. A higher-order syntax
allows users to define new variable-binding constructs such as least n P(n). A
higher-order syntax will typically be based upon some form of typed A-calculus.

Most research still seems to be devoted to first-order systems and, if I may
be provocative, this is a curious state of affairs. First-order logic is not expres-
sive: consider how powerful resolution provers are, and how few applications
they have. Adding set theory to first-order logic yields an expressive system [14,
16], but formalizing concepts such as set comprehension, {x € A | P(x)}, and
general union, | J,. 4, B(z), requires a higher-order syntax. Approaches based on
first-order syntax are not attractive—we might have a clumsy language of com-
binators or be forced to define an auxiliary function every time we want to write
a comprehension.

In spite of its strengths, set theory is unfashionable. Higher-order logic has
an established track record, especially for hardware verification; it is the basis of
interactive verification tools such as PVS and HOL-Light [2]. But it is important
to remember that higher-order syntax does not force us to use higher-order
logic. It merely allows us to define variable-binding constructs, and that provides
flexibility.

3 Logical Variables and Unification

By logical variables I mean that certain variables in formulas can be automati-
cally instantiated using unification. The automated reasoning community is well
aware of their benefits:

— don’t know parts of a goal can be left unspecified until later
— unification can complete those parts automatically
— proof procedures (such as free-variable tableaux) can exploit unification

Logical variables have a further advantage that is relevant to Isabelle. They
allow inference rules to be represented declaratively, as a generalization of Horn
clauses. For example, Isabelle/HOL defines the bounded quantifier V,c 4 P(x) to
be Vz [z € A — P(z)] and derives the rule

VecaP(x) a€ A
P(a)

A declarative representation supports many operations on rules. They can be
displayed. They can be used forwards (to derive theorems from theorems) or

12



backwards (to derive subgoals from goals). Proof tools can classify and transform
rules automatically. The cost of applying rules is independent of the computa-
tional effort expended to prove them in the first place.

Other systems represent rules procedurally, as code to transform formulas or
subgoals. The best they can do is to exploit higher-order quantification, express-
ing the rule as a formula:

VPVaVANyca P(x) ANa € A — P(a)]

This form is declarative, but it only works in higher-order logic.

Despite the advantages of logical variables, many new tools lack them. Unifi-
cation is hard to provide in the presence of higher-order syntax. Isabelle performs
higher-order unification, using Huet’s procedure [3]. It is curious that such an
important and useful procedure has received so little attention. Perhaps higher-
order unification’s theoretical limitations are to blame. It is semidecidable and
sometimes yields infinitely many unifiers. But Isabelle seldom encounters these
hard cases. Pattern unification is a refinement that handles only the easy cases:
there is a fairly simple decision procedure, which yields at most one unifier.
Miller introduced pattern unification in his logic programming language Ly [4].
Isabelle uses pattern unification [5] to reduce the number of calls to Huet’s pro-
cedure. One could base a proof assistant on pattern unification alone: Nipkow
has found that it covers 97% of unifications in Isabelle.

The HOL family of provers [2] follows a strict philosophy intended to ensure
soundness. In part, it demands that all proof steps should go through a trusted
kernel of minimal size. Isabelle follows a similar philosophy (otherwise you get
a tool in which users prove 0=1 every few months), but allows the kernel to
contain a sophisticated unification algorithm.

The difficulty of combining higher-order syntax with logical variables reminds
us that that distinct goals (flexibility and automation) may be hard to achieve
simultaneously.

4 Search Primitives Based on Lazy Lists

Many automated reasoning systems employ search, but there are many different
strategies. A programmer could hardly cope with a version of Prolog that used
anything other than depth-first search. Stickel’s PTTP [18] brought depth-first
iterative deepening into fashion. Some Isabelle reasoning tactics use best-first
search. Flexibility requires giving the user a choice of search strategies.

A lazy list is a list (possibly infinite) whose elements are computed upon
demand rather than all at once. Lazy lists provide a uniform interface to an
arbitrary search strategy. (Most functional programmers know this; for examples
see my ML book [9, Chap. 5].) The idea is to implement your search strategy so
that it yields up its results as a lazy list. The recipient of the list, just by looking
through the elements, incrementally invokes the search strategy. Isabelle uses
lazy lists to return, in a prescribed order, possibly infinitely many higher-order
unifiers.

13



In Isabelle, proof strategies are called tactics. An Isabelle tactic can generate
a lazy list of results. The simplest tactics consist of the application of a single
rule to a goal. Users can combine tactics using simple control structures such
as THEN and ORELSE. The latter tactical introduces choice, thereby defining a
search space. They can explore this search space using primitives such as REPEAT,
DEPTH_FIRST, BEST_FIRST, ITER_DEEPEN, etc. Nor is this menu fixed: Isabelle
is coded in ML, and users can code their own search strategies. For example,
Norbert Volker has implemented the A* search strategy [17], which is a form of
best-first search.

5 The Benefits

The applications of strategic design choices can’t be predicted precisely. But it is
obvious that a system that combines search strategies and unification will have
some potential for automatic proof search. Add interaction and higher-order
syntax, and you have an ideal test-bed for experimentation with different proof
strategies.

In early work I focussed on intuitionistic logic, independently discovering
Dyckhoft’s techniques [1] (which he went on to prove complete). Turning to
classical logic, it was not hard to build simple tableau provers. But such provers
are practically useless, since users don’t work in pure first-order logic: they use
set theory and other complex notions of their own. Further experimentation led
to Isabelle’s classical reasoner [10]. Its tactics, such as fast_tac, achieve the
necessary integration—users can give it any reasonable inference rules, repre-
sented declaratively as discussed in Sect.3. The details do not concern us here;
let me just stress that its heuristics are elementary by modern standards, and
that its power comes from the combination of higher-order syntax, unification
and search primitives.

Recently I have built a new tactic, blast_tac [11]. It finds proofs using its
own generic tableau prover, which is coded directly in ML for speed. Because
it cuts corners, it converts the resulting proof into tactics for verification using
Isabelle’s unification and search primitives. Perhaps one could add such a tactic
to a proof assistant that lacked logical variables, but the job would be harder.

Though it cannot prove challenge problems that feature in theorem prover
competitions, blast_tac is valuable against subgoals that arise in practice [6].
The majority of systems entered in such competitions could not even parse,
let alone prove, these subgoals, since they typically involve complex variable
binding. Often the proof involves concepts (such as inductively defined relations)
that cannot be expressed in first-order logic. Consider this example, formulated
in ZF set theory [8]:

C#0— () [A@ N B@] = (] A@) N () B)
zeC zeC zeC

Back in 1988, proving it required manually replacing C' # @) by —(C C ), then
applying two repetitive tactics. Now, it takes blast_tac half a second. I suspect
it is still a hard challenge for other set theory provers.

14



Isabelle supports higher-order logic as well as set theory, and the same classi-
cal reasoner works for both. Many set theory problems become easier to prove in
higher-order logic, but perhaps they are still challenging. Some examples appear
in my blast_tac paper [12].

I have also implemented model elimination (MESON) on Isabelle’s proof en-
gine. Compared with PTTP it is absurdly slow, but it crushes blast_tac on
harder first-order challenge problems. Unfortunately, one seldom encounters pure
predicate logic tasks that can be given to the MESON tactic. Because it is generic,
blast_tac finds uses throughout the Isabelle case studies. This paradox illus-
trates the irrelevance of traditional challenge problems to real-world verification.

6 Conclusions

Isabelle’s combination of features—higher-order syntax, logical variables and
search primitives—is ideal for trying out new proof strategies. It is less ideal for
producing high-performance tools. Implementing blast_tac required a direct
resort to ML. The same thing happened with the simplifier: early versions ran
as logic programs upon Isabelle’s proof engine, but it too is now coded in ML
for speed. We can expect most proof procedures to be expressed ultimately as
algorithms and implemented as straight code.

Of course, the final implementation should retain the new ideas discovered
during experimentation. Isabelle’s simplifier has unusual features, such as con-
gruence rules [13, Sect.4.5]. These express contextual rewriting, for instance,
given A A B, to assume A to be true while rewriting B. Congruence rules were
discovered back when the simplifier ran on Isabelle’s proof engine.

Beginning users do not conduct research on automatic proof, but even they
benefit from Isabelle’s combination of features. Higher-order syntax is indis-
pensable in any general-purpose specification language. Logical variables arise
naturally, and can be left to be instantiated automatically. Even search can
arise naturally. Giving Isabelle a list of rules makes it search for the first one
that is applicable, and joining two tactics using THEN can cause a bit of search
to find a route through both tactics. Over time, users learn to undertake more
adventurous searches.

Acknowledgement. Isabelle is the outcome of many years’ collaboration with
Tobias Nipkow and his group at the Technical University of Munich. Isabelle
has been supported by numerous grants, including the EPSRC grant GR/K57381
‘Mechanizing Temporal Reasoning’ and the ESPRIT working group 21900 ‘Types.’
Tim Leonard made detailed suggestions on this paper; James Margetson and
Norbert Volker also commented.

References

1. Dyckhoff, R., Contraction-free sequent calculi for intuitionistic logic, Journal of
Symbolic Logic 57, 3 (1992), 795-807

15



10.

11.

12.

13.

14.

15.

16.

17.
18.

Gordon, M., From LCF to HOL: a short history, In Plotkin et al. [15], In press
Huet, G. P., A unification algorithm for typed A-calculus, Theoretical Comput.
Sei. 1 (1975), 27-57

Miller, D., A logic programming language with lambda-abstraction, function
variables, and simple unification, Journal of Logic and Computation 1, 4 (1991),
497-536

Nipkow, T., Functional unification of higher-order patterns, In Fighth Annual
Symposium on Logic in Computer Science (1993), M. Vardi, Ed., IEEE Computer
Society Press, pp. 64-74

Nipkow, T., Verified lexical analysis, In Theorem Proving in Higher Order Logics:
TPHOLs 98 (1998), J. Grundy M. Newey, Eds., LNCS, pp. ?7-77, invited lecture
Owre, S., Rushby, J. M., Shankar, N., Srivas, M. K., A tutorial on using PVS for
hardware verification, In Theorem Provers in Circuit Design: Theory, Practice,
and Ezperience (1995), R. Kumar, Ed., LNCS 901, Springer, pp. 258-279
Paulson, L. C., Isabelle: The next seven hundred theorem provers (system
abstract), In 9th International Conference on Automated Deduction (1988),

E. Lusk R. Overbeek, Eds., LNCS 310, Springer, pp. 772-773

Paulson, L. C., ML for the Working Programmer, 2nd ed., Cambridge University
Press, 1996

Paulson, L. C., Generic automatic proof tools, In Automated Reasoning and its
Applications: Essays in Honor of Larry Wos, R. Veroff, Ed. MIT Press, 1997,

ch. 3

Paulson, L. C.; A generic tableau prover and its integration with Isabelle, Tech.
Rep. 441, Computer Laboratory, University of Cambridge, Jan. 1998

Paulson, L. C., A generic tableau prover and its integration with Isabelle
(extended abstract), In CADE-15 Workshop on Integration of Deduction Systems
(1998), in press

Paulson, L. C., Tool support for logics of programs, In Mathematical Methods in
Program Development: Summer School Marktoberdorf 1996, M. Broy, Ed., NATO
AST Series F. Springer, Published 1997, pp. 461-498

Paulson, L. C., Grabczewski, K., Mechanizing set theory: Cardinal arithmetic and
the axiom of choice, Journal of Automated Reasoning 17, 3 (Dec. 1996), 291-323
Plotkin, G., Stirling, C., Tofte, M., Eds., Essays in Honor of Robin Milner, MIT
Press, 1998, In press

Quaife, A., Automated deduction in von Neumann-Bernays-Godel set theory,
Journal of Automated Reasoning 8, 1 (1992), 91-147

Rich, E., Knight, K., Artificial Intelligence, 2nd ed., McGraw-Hill, 1991

Stickel, M. E., A Prolog technology theorem prover: Implementation by an
extended Prolog compiler, Journal of Automated Reasoning 4, 4 (1988), 353-380

16



