
Strategic Principles in the Design of Isabelle

Lawrence C� Paulson
lcp�cl�cam�ac�uk

Computer Laboratory� University of Cambridge� Cambridge CB� �QG� England

Abstract� Interactive proof assistants can support proof strategies� if
the right primitives have been included� These include higher�order syn�
tax� logical variables and a choice of search primitives� Such a system
allows experimentation with di�erent automatic proof methods� even
for constructive logics� new variable�binding operators� etc� The built�in
uni�cation and search make proof procedures easy to implement� typi�
cally using tableau methods� Against subgoals that arise in practice� even
straightforward heuristics turn out to be powerful�

� Introduction

This paper describes the role of strategic principles in proof assistants� tak�
ing Isabelle as an example� I use �strategic� in two senses� �rst� in the sense of
proof strategies� and second� in the sense of decisions that have long�term conse�
quences� Building a proof assistant is a major investment� and we cannot foresee
at the outset precisely how it will be used� So we must identify those features
that seem likely to be of potential bene�t� and 	if we are in the academic world

of scienti�c interest�

Key objectives are automation and �exibility� Why automation� Because
Isabelle is interactive� and formal proofs are long� obvious formulas� at least�
should be proved automatically� Why 
exibility� Because users will have di�erent
problems and goals from those we have foreseen� They need not just a 
exible
syntax but control over deep properties of their formalism� it might be �rst�
order or higher�order� constructive or classical� etc� A 
exible system gives users
a choice of tools to use for automating their chosen formalism�

Soundness is obviously necessary� a proof assistant should deliver correct
results and should behave in a way that inspires trust� It should also be e�cient in
space and time� capable of supporting realistic proofs in a range of applications�

The desire for automation and 
exibility in Isabelle has resulted in the in�
clusion of three basic features�

� higher�order syntax
� logical variables and uni�cation
� search primitives based on lazy lists

These have interesting implications� especially when combined in one system� as
we shall see� Automation and 
exibility have also a�ected the design of Isabelle�s
more specialized tactics� such as the rewriter�

��



PVS ��� provides automation in the form of special�purpose decision proce�
dures� These are valuable� but the great majority of theorems cannot be proved
using decision procedures alone� The rest of the system must provide su�cient
automation to deal with more general problem domains�

� Higher�Order Syntax

Most provers support quanti�ers� and a few go further� A higher�order syntax
allows users to de�ne new variable�binding constructs such as least n P 	n
� A
higher�order syntax will typically be based upon some form of typed ��calculus�

Most research still seems to be devoted to �rst�order systems and� if I may
be provocative� this is a curious state of a�airs� First�order logic is not expres�
sive� consider how powerful resolution provers are� and how few applications
they have� Adding set theory to �rst�order logic yields an expressive system ����
���� but formalizing concepts such as set comprehension� fx � A j P 	x
g� and
general union�

S
x�A

B	x
� requires a higher�order syntax� Approaches based on
�rst�order syntax are not attractive�we might have a clumsy language of com�
binators or be forced to de�ne an auxiliary function every time we want to write
a comprehension�

In spite of its strengths� set theory is unfashionable� Higher�order logic has
an established track record� especially for hardware veri�cation� it is the basis of
interactive veri�cation tools such as PVS and HOL�Light ���� But it is important
to remember that higher�order syntax does not force us to use higher�order
logic� It merely allows us to de�ne variable�binding constructs� and that provides

exibility�

� Logical Variables and Uni�cation

By logical variables I mean that certain variables in formulas can be automati�
cally instantiated using uni�cation� The automated reasoning community is well
aware of their bene�ts�

� don�t know parts of a goal can be left unspeci�ed until later
� uni�cation can complete those parts automatically
� proof procedures 	such as free�variable tableaux
 can exploit uni�cation

Logical variables have a further advantage that is relevant to Isabelle� They
allow inference rules to be represented declaratively� as a generalization of Horn
clauses� For example� Isabelle�HOL de�nes the bounded quanti�er �x�A P 	x
 to
be �x �x � A� P 	x
� and derives the rule

�x�A P 	x
 a � A

P 	a


A declarative representation supports many operations on rules� They can be
displayed� They can be used forwards 	to derive theorems from theorems
 or

��



backwards 	to derive subgoals from goals
� Proof tools can classify and transform
rules automatically� The cost of applying rules is independent of the computa�
tional e�ort expended to prove them in the �rst place�

Other systems represent rules procedurally� as code to transform formulas or
subgoals� The best they can do is to exploit higher�order quanti�cation� express�
ing the rule as a formula�

�P �a�A ��x�AP 	x
 � a � A� P 	a
�

This form is declarative� but it only works in higher�order logic�
Despite the advantages of logical variables� many new tools lack them� Uni��

cation is hard to provide in the presence of higher�order syntax� Isabelle performs
higher�order uni�cation� using Huet�s procedure ���� It is curious that such an
important and useful procedure has received so little attention� Perhaps higher�
order uni�cation�s theoretical limitations are to blame� It is semidecidable and
sometimes yields in�nitely many uni�ers� But Isabelle seldom encounters these
hard cases� Pattern uni�cation is a re�nement that handles only the easy cases�
there is a fairly simple decision procedure� which yields at most one uni�er�
Miller introduced pattern uni�cation in his logic programming language L� ����
Isabelle uses pattern uni�cation ��� to reduce the number of calls to Huet�s pro�
cedure� One could base a proof assistant on pattern uni�cation alone� Nipkow
has found that it covers ��� of uni�cations in Isabelle�

The HOL family of provers ��� follows a strict philosophy intended to ensure
soundness� In part� it demands that all proof steps should go through a trusted
kernel of minimal size� Isabelle follows a similar philosophy 	otherwise you get
a tool in which users prove ��� every few months
� but allows the kernel to
contain a sophisticated uni�cation algorithm�

The di�culty of combining higher�order syntax with logical variables reminds
us that that distinct goals 	
exibility and automation
 may be hard to achieve
simultaneously�

� Search Primitives Based on Lazy Lists

Many automated reasoning systems employ search� but there are many di�erent
strategies� A programmer could hardly cope with a version of Prolog that used
anything other than depth��rst search� Stickel�s PTTP ���� brought depth��rst
iterative deepening into fashion� Some Isabelle reasoning tactics use best��rst
search� Flexibility requires giving the user a choice of search strategies�

A lazy list is a list 	possibly in�nite
 whose elements are computed upon
demand rather than all at once� Lazy lists provide a uniform interface to an
arbitrary search strategy� 	Most functional programmers know this� for examples
see my ML book ��� Chap� ���
 The idea is to implement your search strategy so
that it yields up its results as a lazy list� The recipient of the list� just by looking
through the elements� incrementally invokes the search strategy� Isabelle uses
lazy lists to return� in a prescribed order� possibly in�nitely many higher�order
uni�ers�

��



In Isabelle� proof strategies are called tactics� An Isabelle tactic can generate
a lazy list of results� The simplest tactics consist of the application of a single
rule to a goal� Users can combine tactics using simple control structures such
as then and orelse� The latter tactical introduces choice� thereby de�ning a
search space� They can explore this search space using primitives such as repeat�
depth first� best first� iter deepen� etc� Nor is this menu �xed� Isabelle
is coded in ML� and users can code their own search strategies� For example�
Norbert V olker has implemented the A� search strategy ����� which is a form of
best��rst search�

� The Bene�ts

The applications of strategic design choices can�t be predicted precisely� But it is
obvious that a system that combines search strategies and uni�cation will have
some potential for automatic proof search� Add interaction and higher�order
syntax� and you have an ideal test�bed for experimentation with di�erent proof
strategies�

In early work I focussed on intuitionistic logic� independently discovering
Dyckho��s techniques ��� 	which he went on to prove complete
� Turning to
classical logic� it was not hard to build simple tableau provers� But such provers
are practically useless� since users don�t work in pure �rst�order logic� they use
set theory and other complex notions of their own� Further experimentation led
to Isabelle�s classical reasoner ����� Its tactics� such as fast tac� achieve the
necessary integration�users can give it any reasonable inference rules� repre�
sented declaratively as discussed in Sect� �� The details do not concern us here�
let me just stress that its heuristics are elementary by modern standards� and
that its power comes from the combination of higher�order syntax� uni�cation
and search primitives�

Recently I have built a new tactic� blast tac ����� It �nds proofs using its
own generic tableau prover� which is coded directly in ML for speed� Because
it cuts corners� it converts the resulting proof into tactics for veri�cation using
Isabelle�s uni�cation and search primitives� Perhaps one could add such a tactic
to a proof assistant that lacked logical variables� but the job would be harder�

Though it cannot prove challenge problems that feature in theorem prover
competitions� blast tac is valuable against subgoals that arise in practice ����
The majority of systems entered in such competitions could not even parse�
let alone prove� these subgoals� since they typically involve complex variable
binding� Often the proof involves concepts 	such as inductively de�ned relations

that cannot be expressed in �rst�order logic� Consider this example� formulated
in ZF set theory ����

C �� � �
�

x�C

�A	x
 � B	x
� � 	
�

x�C

A	x

 � 	
�

x�C

B	x



Back in ����� proving it required manually replacing C �� � by 		C 
 �
� then
applying two repetitive tactics� Now� it takes blast tac half a second� I suspect
it is still a hard challenge for other set theory provers�

��



Isabelle supports higher�order logic as well as set theory� and the same classi�
cal reasoner works for both� Many set theory problems become easier to prove in
higher�order logic� but perhaps they are still challenging� Some examples appear
in my blast tac paper �����

I have also implemented model elimination 	meson
 on Isabelle�s proof en�
gine� Compared with PTTP it is absurdly slow� but it crushes blast tac on
harder �rst�order challenge problems� Unfortunately� one seldom encounters pure
predicate logic tasks that can be given to the meson tactic� Because it is generic�
blast tac �nds uses throughout the Isabelle case studies� This paradox illus�
trates the irrelevance of traditional challenge problems to real�world veri�cation�

� Conclusions

Isabelle�s combination of features�higher�order syntax� logical variables and
search primitives�is ideal for trying out new proof strategies� It is less ideal for
producing high�performance tools� Implementing blast tac required a direct
resort to ML� The same thing happened with the simpli�er� early versions ran
as logic programs upon Isabelle�s proof engine� but it too is now coded in ML
for speed� We can expect most proof procedures to be expressed ultimately as
algorithms and implemented as straight code�

Of course� the �nal implementation should retain the new ideas discovered
during experimentation� Isabelle�s simpli�er has unusual features� such as con�
gruence rules ���� Sect� ����� These express contextual rewriting� for instance�
given A � B� to assume A to be true while rewriting B� Congruence rules were
discovered back when the simpli�er ran on Isabelle�s proof engine�

Beginning users do not conduct research on automatic proof� but even they
bene�t from Isabelle�s combination of features� Higher�order syntax is indis�
pensable in any general�purpose speci�cation language� Logical variables arise
naturally� and can be left to be instantiated automatically� Even search can
arise naturally� Giving Isabelle a list of rules makes it search for the �rst one
that is applicable� and joining two tactics using then can cause a bit of search
to �nd a route through both tactics� Over time� users learn to undertake more
adventurous searches�

Acknowledgement� Isabelle is the outcome of many years� collaboration with
Tobias Nipkow and his group at the Technical University of Munich� Isabelle
has been supported by numerous grants� including the epsrc grant GR�K�����
�Mechanizing Temporal Reasoning� and the esprit working group ����� �Types��
Tim Leonard made detailed suggestions on this paper� James Margetson and
Norbert V olker also commented�

References

	� Dyckho�� R�� Contraction�free sequent calculi for intuitionistic logic� Journal of
Symbolic Logic ��� � 
	����� 
�����


��



�� Gordon� M�� From LCF to HOL� a short history� In Plotkin et al� �	��� In press
�� Huet� G� P�� A uni�cation algorithm for typed ��calculus� Theoretical Comput�

Sci� � 
	�
��� �
��

�� Miller� D�� A logic programming language with lambda�abstraction� function

variables� and simple uni�cation� Journal of Logic and Computation �� � 
	��	��
��
����

�� Nipkow� T�� Functional uni�cation of higher�order patterns� In Eighth Annual

Symposium on Logic in Computer Science 
	����� M� Vardi� Ed�� ieee Computer
Society Press� pp� ���
�

�� Nipkow� T�� Veri�ed lexical analysis� In Theorem Proving in Higher Order Logics�

TPHOLs ��� 
	����� J� Grundy M� Newey� Eds�� LNCS� pp� ������ invited lecture

� Owre� S�� Rushby� J� M�� Shankar� N�� Srivas� M� K�� A tutorial on using PVS for

hardware veri�cation� In Theorem Provers in Circuit Design� Theory� Practice�

and Experience 
	����� R� Kumar� Ed�� LNCS ��	� Springer� pp� �����
�
�� Paulson� L� C�� Isabelle� The next seven hundred theorem provers 
system

abstract�� In �th International Conference on Automated Deduction 
	�����
E� Lusk R� Overbeek� Eds�� LNCS �	�� Springer� pp� 

��

�

�� Paulson� L� C�� ML for the Working Programmer� �nd ed�� Cambridge University
Press� 	���

	�� Paulson� L� C�� Generic automatic proof tools� In Automated Reasoning and its

Applications� Essays in Honor of Larry Wos� R� Vero�� Ed� MIT Press� 	��
�
ch� �

		� Paulson� L� C�� A generic tableau prover and its integration with Isabelle� Tech�
Rep� ��	� Computer Laboratory� University of Cambridge� Jan� 	���

	�� Paulson� L� C�� A generic tableau prover and its integration with Isabelle

extended abstract�� In CADE�	
 Workshop on Integration of Deduction Systems


	����� in press
	�� Paulson� L� C�� Tool support for logics of programs� In Mathematical Methods in

Program Development� Summer School Marktoberdorf 	���� M� Broy� Ed�� NATO
ASI Series F� Springer� Published 	��
� pp� ��	����

	�� Paulson� L� C�� Gr�abczewski� K�� Mechanizing set theory� Cardinal arithmetic and
the axiom of choice� Journal of Automated Reasoning ��� � 
Dec� 	����� ��	����

	�� Plotkin� G�� Stirling� C�� Tofte� M�� Eds�� Essays in Honor of Robin Milner� MIT
Press� 	���� In press

	�� Quaife� A�� Automated deduction in von Neumann�Bernays�G�odel set theory�
Journal of Automated Reasoning �� 	 
	����� �	�	�


	
� Rich� E�� Knight� K�� Arti�cial Intelligence� �nd ed�� McGraw�Hill� 	��	
	�� Stickel� M� E�� A Prolog technology theorem prover� Implementation by an

extended Prolog compiler� Journal of Automated Reasoning �� � 
	����� �������

��


