
16 April 2012 — Milner Symposium, Edinburgh

LCF + Logical Frameworks = Isabelle
(25 Years Later)

Lawrence C. Paulson, Computer Laboratory, University of Cambridge

1979

Edinburgh LCF: From the Preface

“… the ML type discipline is used… so
that—whatever complex procedures
are defined—all values of type thm
must be theorems, as only inferences
can compute such values…. This
security releases us from the need to
preserve whole proofs… — an
important practical gain since large
proofs tended to clog up the working
space…" [page IV]

Robin Milner’s LCF Architecture

✤ A programmable metalanguage (ML)

✤ An abstract type of theorems, to ensure soundness

✤ … and to eliminate the need to store proofs

✤ Plus the original objective: to support a novel and interesting
formalism, Scott’s Logic for Computable Functions.

LCF Proof Style

“There are three important elements in our proposed
‘natural’ proof style. Most important is the adoption
of natural deduction… here inference rules play the
dominant role…

the second element is to use goal-directed proof
procedures… one aim in designing ML was thus to
make it easy to program tactics and tacticals.…

The third element of natural proof style is to
emphasise theory structure’’ [Edinburgh LCF, page 2]

Goal-Directed Proof in LCF

✤ Inference rules: coded as ML functions from premises to the
conclusion, within the abstract type barrier

✤ Tactics: coded as ML functions from the goal to the subgoals, outside
of the abstract type

✤ … but also returning a validation function coded using inference rules

goal subgoal1, …, subgoaln
tactic

theorem! theorem1, …, theoremn

validation

Invalid Tactics

✤ An invalid tactic is one that doesn’t correctly invert an inference rule.

✤ It doesn’t violate soundness, but it wastes your time!

✤ Proving the subgoals doesn’t prove the original goal.

✤ The function delivers the wrong theorem, or otherwise fails.

goal subgoal1, …, subgoaln
bad tactic

??? theorem1, …, theoremn

bad validation

Proof without Programming?

✤ Most inference rules are symbolic. Can they be expressed
declaratively?

✤ No need to code inference rules

✤ … and no need to code their inverses, to create tactics.

✤ No validation functions. No invalid tactics.

✤ Instead of calling functions, simply paste partial proofs together.

Some Declarative Inference Rules

introduction (I) elimination (E)

Conjunction
A B

A & B

A & B

A

A & B

B

Disjunction
A

A ∨ B

B

A ∨ B

A ∨ B
[A]

C

[B]

C

C

Implication

[A]
B

A ⊃ B

A ⊃ B A

B

Contradiction
⊥
A

Figure 1: The rules of intuitionistic propositional logic

∧
AB . [[A]] ⇒ ([[B]] ⇒ [[A & B]]) (&I)

∧
AB . [[A & B]] ⇒ [[A]]

∧
AB . [[A & B]] ⇒ [[B]] (&E)

∧
AB . [[A]] ⇒ [[A ∨ B]]

∧
AB . [[B]] ⇒ [[A ∨ B]] (∨I)

∧
ABC . [[A ∨ B]] ⇒ ([[A]] ⇒ [[C]]) ⇒ ([[B]] ⇒ [[C]]) ⇒ [[C]] (∨E)

∧
AB . ([[A]] ⇒ [[B]]) ⇒ [[A ⊃ B]] (⊃ I)

∧
AB . [[A ⊃ B]] ⇒ [[A]] ⇒ [[B]] (⊃ E)

∧
A . [[⊥]] ⇒ [[A]] (⊥E)

Figure 2: Meta-level axioms for intuitionistic propositional logic

9

introduction (I) elimination (E)

Universal quantifier
A

∀x.A
∗ ∀x.A

A[t/x]

Existential quantifier
A[t/x]

∃x.A

∃x.A
[A]
B

B
∗

*Eigenvariable conditions :
∀I: provided x not free in the assumptions

∃E: provided x not free in B or in any assumption save A

Figure 6: Quantifier rules

∧
F . (

∧
x . [[F (x)]]) ⇒ [[∀x.F (x)]] (∀I)

∧
Fy . [[∀x.F (x)]] ⇒ [[F (y)]] (∀E)

∧
Fy . [[F (y)]] ⇒ [[∃x.F (x)]] (∃I)

∧
FB . [[∃x.F (x)]] ⇒ (

∧
x . [[F (x)]] ⇒ [[B]]) ⇒ [[B]] (∃E)

Figure 7: Meta-level axioms for the quantifier rules

∧
Fy . [[F (y)]] ⇒ [[∃x.F (x)]]

∧
y . [[G(y)]] ⇒ [[∃x.G(x)]]

[[G(u)]] ⇒ [[∃x.G(x)]]

...
[[G(u)]]

[[∃x.G(x)]]

Figure 8: The meta-proof formalizing an ∃I inference

∧
FB . [[∃x.F (x)]] ⇒ (

∧
x . [[F (x)]] ⇒ [[B]]) ⇒ [[B]]

∧
B . [[∃x.G(x)]] ⇒ (

∧
x . [[G(x)]] ⇒ [[B]]) ⇒ [[B]]

[[∃x.G(x)]] ⇒ (
∧

x . [[G(x)]] ⇒ [[C]]) ⇒ [[C]]

...
[[∃x.G(x)]]

(
∧

x . [[G(x)]] ⇒ [[C]]) ⇒ [[C]]

[[[G(y)]]]
...

[[C]]
[[G(y)]] ⇒ [[C]]∧
y . [[G(y)]] ⇒ [[C]]

[[C]]

Figure 9: The meta-proof formalizing an ∃E inference

19

Built-in concept
of “implies”

Built-in concept
of “for all”

User-defined
logical symbols

Higher-order variables

Declaring the Rules of
Intuitionistic Propositional Logic

introduction (I) elimination (E)

Conjunction
A B

A & B

A & B

A

A & B

B

Disjunction
A

A ∨ B

B

A ∨ B

A ∨ B
[A]

C

[B]

C

C

Implication

[A]
B

A ⊃ B

A ⊃ B A

B

Contradiction
⊥
A

Figure 1: The rules of intuitionistic propositional logic

∧
AB . [[A]] ⇒ ([[B]] ⇒ [[A & B]]) (&I)

∧
AB . [[A & B]] ⇒ [[A]]

∧
AB . [[A & B]] ⇒ [[B]] (&E)

∧
AB . [[A]] ⇒ [[A ∨ B]]

∧
AB . [[B]] ⇒ [[A ∨ B]] (∨I)

∧
ABC . [[A ∨ B]] ⇒ ([[A]] ⇒ [[C]]) ⇒ ([[B]] ⇒ [[C]]) ⇒ [[C]] (∨E)

∧
AB . ([[A]] ⇒ [[B]]) ⇒ [[A ⊃ B]] (⊃ I)

∧
AB . [[A ⊃ B]] ⇒ [[A]] ⇒ [[B]] (⊃ E)

∧
A . [[⊥]] ⇒ [[A]] (⊥E)

Figure 2: Meta-level axioms for intuitionistic propositional logic

9

But the LCF Architecture...???

✤ It’s still there! Only now, the
abstract type of theorems
encodes a logical framework.

✤ Which logical framework?
Intuitionistic higher-order logic.
No proof objects!

✤ Because Robin Milner said we
don’t need to store proofs.

✤ [And proofs still take up too
much “working space”, even
though we have 10,000 times as
much memory as in 1975!]

Combining LCF with a logical framework yields Isabelle.

One system, many logics! And…

✤ Support for new logics, including
embedded logics, sharing infrastructure.

✤ Logical variables in subgoals. [With Huet’s
higher-order unification to join proofs.]

✤ … so proof search (Prolog-style) is easy to
implement. And tactics have been
generalised to return a lazy list of
possible outcomes.

Pure Isabelle�

IFOL� CTT� HOL� LK�

ZF� LCF�

Modal�
 logics�FOL� HOLCF�

1989–2011

Supporting Higher-Order Logic

✤ Identifying HOL types with those of the logical framework

✤ Order-sorted polymorphism (Nipkow)

✤ Axiomatic type classes (Wenzel)

✤ Isabelle/HOL is the most popular Isabelle instance and receives most
development…

It is even the basis for a formalisation of LCF!

Automatic Proof and Disproof

✤ The classical reasoner: generalised backtracking proof search both
forward and backward chaining, available to all classical logics

✤ Sledgehammer: one-click delivery of the Isabelle proof state to a
collection of automatic theorem provers

✤ Automatic counterexample finding: (1) Quickcheck and (2) Nitpick.

1. for problems that are executable in a very general sense

2. a separate, SAT-based tool for non-executable situations

✤ seL4: the first machine proof of a general-purpose operating system

✤ Verification of cryptographic protocols (Cambridge and elsewhere)

✤ Verisoft: industrial-grade software verification

A Few Applications

Formalising Mathematics

✤ Many people have formalised many, many mathematical results.

✤ Sometimes, these formalisations yield special insights…

✤ Newton’s Principia (formalised by Fleuriot)

✤ Axiomatic set theory (K Grąbczewski, LCP)

“To explore both the expressive and deductive power of a particular
logic and the pragmatic problems which arise in conducting proofs in it"

— [Edinburgh LCF, page 1]

Newton’s Non-Standard Geometry

✤ Newton’s treatise on the orbits
of planets did not use calculus.

✤ His proofs used geometric
arguments and infinitesimals.

✤ Here, he proves the inverse-
square law for gravity.

✤ Can such proofs be formalised
as they were written, within
infinitesimal geometry?

The “Kepler Problem”

Formalised Infinitesimal
Geometry (Fleuriot’s PhD Work)

✤ defining non-standard analysis: the hyperreals, limits, continuity,...

✤ defining geometric concepts using the signed-area and full-angle
methods

✤ formalising Newton’s infinitesimal arguments directly

✤ Fleuriot found an error in Newton’s proof of Proposition XI, but
found an alternative route to the result.

Despite lacking a rigorous theory of infinitesimals,
Newton usually reasoned soundly with them.

Axiomatic Set Theory

✤ It is “well known” that ZF set theory is not suitable for machine
implementation because it requires infinitely many axioms.

✤ This belief doesn’t reckon with the use of a logical framework with
higher-order variables! (And yes, ! remains a first-order formula.)

✤ But can we work effectively in this formalism, supposedly the
foundation of mathematics? Yes!

We can address some of the most fundamental issues in logic.

3 SET THEORY 6

Replacement entails the principle of Separation. Let A be a set and ψ[x] a
unary predicate. Separation yields a set, written {x ∈ A . ψ[x]}, consisting of those
elements of A that satisfy ψ:

a ∈ {x ∈ A . ψ[x]} ↔ a ∈ A ∧ ψ[a]

The class {x . ψ[x]} is an unrestricted collection of sets. Every set B is a class,
namely {x . x ∈ B}. Many classes are too big to be sets, such as the universal
class, V ≡ {x . x = x}. If V were a set then we could obtain Russell’s Paradox via
Separation: define the set R ≡ {x ∈ V . x %∈ x}, then R ∈ R ↔ R %∈ R. We could
define R as a class, namely R ≡ {x . x %∈ x}, but this yields no paradox because a
proper class cannot be a member of another class: R ∈ R is false.

3.1 Which axiom system?
The two main axiom systems for set theory, Zermelo-Fraenkel (ZF) and Bernays-
Gödel (BG), differ in their treatment of classes. In ZF, variables range over sets;
classes do not exist at all, but we may regard unary predicates as classes if we like. In
BG, variables range over classes, and A ∈ V states that the class A is actually a set.
Although ZF and BG are similar in strength, mathematicians generally consider ZF
to be the standard system for set theory [14, page iii] [50, page 327]. BG frequently
requires showing that certain classes are sets; a ∈ {a} holds only if a ∈ V .

One obstacle to automating ZF is that Replacement is an infinite axiom scheme.
There is no finite axiom system for ZF, if ZF is consistent [24, page 138]. Here is
a proof sketch. The Reflection Theorem implies that every finite subset of the ZF
axioms has a model in ZF. Assume, for contradiction, that ZF has a finite axiom
system. By the Compactness Theorem, ZF has a finite axiom system Z0 that is a
subset of the ZF axioms. By the Reflection Theorem, Z0 has a model in ZF. Thus
ZF proves the consistency of Z0. Now Z0 implies the whole of ZF, so Z0 proves the
consistency of itself; this contradicts Gödel’s Incompleteness Theorem.

Boyer et al. [9] advocate BG because it is a finite system of axioms; Quaife [44]
has proved hundreds of theorems in BG, using the resolution prover Otter. But
the existence of a finite axiom system is perhaps irrelevant. Saaltink’s set theory
proofs [47] employ ZF, adopting a simple device for invoking instances of axiom
schemes; a resolution prover could do the same. Quaife notes that even BG requires
schematic reasoning in normal use. The key issue, then, is not finiteness of the
axiom system, but schematic reasoning.

3.2 Schematic reasoning in set theory
Isabelle supports schematic reasoning through its higher-order meta-logic. In the
axiom of Replacement, the binary predicate φ is a variable of type [i, i] ⇒ o, which is
the type of functions that map two sets to a truth value. Separation can be defined
in its schematic form, where the unary predicate ψ is a variable of type i ⇒ o. Rules
about Separation can be proved schematically.

Set Theory: Equivalents of AC

✤ K. Grąbczewski formalised the first two chapters of Rubin and
Rubin’s Equivalents of the Axiom of Choice, proving ...

✤ the equivalence of 7 formulations of the Well-ordering Theorem

✤ and 20 formulations of AC!

✤ Lots of highly technical and difficult mathematics.

Set Theory: Reflection Theorem

✤ relating truth of some ! in the class M to its truth in certain sets M"

✤ impossible to formalise as a single statement in ZF set theory
(because the proof depends upon the structure of !)

✤ meta-level reasoning is necessary, but can be reduced to an induction
over the structure of formulas

✤ This yields a repetitive tactic for proving any instances of the
reflection theorem.

ON

{M↵}↵2ON

↵ < � implies M↵ ✓ M�

M↵ = S
⇠2↵ M⇠

M = S
↵2ON M↵

Set Theory: Gödel’s Proof of the
Relative Consistency of AC
✤ A technically difficult milestone in 20th century logic, addressing

Hilbert’s First Problem and introducing the “inner model method”

✤ definition of the class L of “constructible sets” (these are the sets
that can be defined by formulas and therefore must be present)

✤ proof that the concept of “constructible set” is absolute across
models of ZF set theory

✤ proof that L is a model of set theory, including the axiom of choice

✤ Any contradiction in set theory + AC can be effectively transformed into
a contradiction in set theory alone.

Absoluteness; Skolem’s Paradox

✤ If set theory is consistent, then
(of course) it has models.

✤ It even has a countable model,
M, by the Löwenheim-Skolem
theorem!

✤ In M, all sets are countable,
apparently violating Cantor’s
theorem. How can this be??

✤ Countability is not absolute: no
function enumerating the
elements of M is itself in M.

✤ Crucial to Gödel’s consistency
proof is that ...

CONSTRUCTIBILITY IS
ABSOLUTE

✤ The proof requires a detailed
analysis of the definition of
constructibility.

V L

Gödel’s inner model method

✤ V, the class of all sets
(the universe)

✤ L, the constructible sets

✤ From within L, all sets are
constructible

✤ and the axiom of choice holds.

Gödel’s Proof: Special Motivations

No formal theorem statement, just a series of suggestive results!

“This clearly is a momentous achievement. Nevertheless,
viewed 65 years later, the proof has very little flavor of a
mathematical character. Rather, it is an achievement of
definitions and of a point of view.” — Paul Cohen

Can we formalise such a thing??

Gödel’s Proof in Isabelle

✤ formalising sections of Kunen’s textbook Set Theory

✤ a detailed formal definition of the concept of constructibility

✤ absoluteness proofs for constructibility, using no meta-theoretical
reasoning; a proof that the axiom of choice holds in the class L

✤ a specific, finite list of axiom instances used in these proofs

eliciting some interest from philosophical logicians
(albeit none from computer scientists…)

2012

A Break with LCF: Oracles

✤ Theorems can be created by trusted external components (such as
model checkers; also code generated for computational reflection)

✤ … but never in “normal” proofs (not even using sledgehammer)

✤ … and all such dependencies are tracked internally

✤ … and let’s not mention mk_thm

A Break with LCF: hiding ML

Goalw [inj_def, surj_def]
 "[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)";
by (safe_tac (claset_of ZF.thy));
by (swap_res_tac [exI] 1);
by (res_inst_tac [("a", "lam z:A. if f`z=m then y else f`z")] CollectI 1);
by (best_tac (claset() addSIs [if_type RS lam_type]
 addEs [apply_funtype RS succE]) 1);
(*Proving it's injective*)
by (Asm_simp_tac 1);
by (blast_tac (claset() delrules [equalityI]) 1);
qed "inj_not_surj_succ";

Structured proofs
are much clearer!

Users can extend this
language using ML.

Conclusion: Milner’s LCF
Architecture Still Stands

✤ an abstract type of theorems

✤ no proof objects (most of the time)

✤ a simple hierarchical theory structure

✤ a higher-order programming language

and of course: investigating unusual formalisms
is still good science

