L.CEF + Logical Frameworks = Isabelle
25 Years Later)

Lawrence C. Paulson, Computer Laboratory, University of Cambridge

16 April 2012 — Milner Symposium, Edinburgh

1979

Fdinburgh L.CF: From the Preface

Lecture Notes in | “... the ML type discipline is used... so
Computer Science

that—whatever complex procedures
are defined—all values of type thm
must be theorems, as only inferences
can compute such values.... This
security releases us from the need to
preserve whole proofs... — an
important practical gain since large
proofs tended to clog up the working
space..." [page IV]

Robimm Milner’s L.CF Architecture

* A programmable metalanguage (ML)
* An abstract type of theorems, to ensure soundness
... and to eliminate the need to store proofs

* Plus the original objective: to support a novel and interesting
formalism, Scott’s Logic for Computable Functions.

L.CKF Proof Style

“There are three important elements in our proposed
‘natural’ proof style. Most important is the adoption

of natural deduction... here inference rules play the

dominant role...

the second element is to use goal-directed proof
procedures... one aim in designing ML was thus to
make it easy to program tactics and tacticals....

The third element of natural proof style is to
emphasise theory structure” [Edinburgh LCF, page 2]

Goal-Directed Proof in 1LCF

tactic

goal =——]- subgoal, ..., subgoal,

validation

-

theorem! -ssijjrmmmmnsmnnne theorem; ..., theorem,,

* Inference rules: coded as ML functions from premises to the
conclusion, within the abstract type barrier

+ Tactics: coded as ML functions from the goal to the subgoals, outside
of the abstract type

* ... but also returning a validation function coded using inference rules

Invahd Tacties

bad tactic
goal =——]- subgoal, ..., subgoal,

‘bad validation

7 7 7 = theorem; ..., theorem,

......

* An invalid tactic is one that doesn’t correctly invert an inference rule.
* It doesn’t violate soundness, but it wastes your time!
* Proving the subgoals doesn’t prove the original goal.

* The function delivers the wrong theorem, or otherwise fails.

Proof without Programming?

* Most inference rules are symbolic. Can they be expressed
declaratively?

+ No need to code inference rules
+ ... and no need to code their inverses, to create tactics.
+ No validation functions. No invalid tactics.

* Instead of calling functions, simply paste partial proofs together.

Some Declarative Inference Rules

N AB . [A & B])
Built-in concept Built-in concept User-defined
of “for all” of “implies” logical symbols

\ Higher- order variables /

AE /\x (@)]) = [Va.F(z)]

Declaring the Rules of

Intuiionistic Propositional Logic

NAB . [A] = ([B] = [A & B]) (&1)
N AB . [A& B] = [4] N\ AB . [A& B] = [B] (&E)
NAB . [A] = [AV B] NAB .[B] = [AV B] (VI)
NABC .[AV B] = ([4] = [C]) = ([B] = [C]) = [C] (VE)
NAB . ([A] = [B]) = [A D B] (D 1)
NAB.[AD B] = [A] = [B] (D E)

AA.[L] = [A] (LE)

But the L.CF Architecture...???

* t’s still there! Only now, the * Because Robin Milner said we
abstract type of theorems don’t need to store proofs.
encodes a logical framework.

* |And proofs still take up too

* Which logical framework? much “working space”, even
Intuitionistic higher-order logic. though we have 10,000 times as
No proof objects! much memory as in 1975!]

Combining LCF with a logical framework yields Isabelle.

One system, many logics! And...

* Support for new logics, including ZJF LCF
embedded logics, sharing infrastructure. \ / e
oda
FOL HOLCF logics

* Logical variables in subgoals. [With Huet’s ‘ ‘ ‘
higher-order unification to join proofs.] IEGIEE S GRS H T A1

Noae

Pure Isabelle

* ... so proof search (Prolog-style) is easy to
implement. And tactics have been
generalised to return a lazy list ot
possible outcomes.

1989-2011

Supporting Higher-Order Logic

* Identifying HOL types with those of the logical framework
* QOrder-sorted polymorphism (Nipkow)
* Axiomatic type classes (Wenzel)

+ Isabelle/HOL is the most popular Isabelle instance and receives most
development...

It 1s even the basis for a formalisation of LCF!

Automatic Proof and Disproof

* The classical reasoner: generalised backtracking proof search both
forward and backward chaining, available to all classical logics

* Sledgehammer: one-click delivery of the Isabelle proof state to a
collection of automatic theorem provers

* Automatic counterexample finding: (1) Quickcheck and (2) Nitpick.
1. for problems that are executable in a very general sense

2. a separate, SAT-based tool for non-executable situations

A Few Applications

Archive of Formal Proofs

4 . 2012-03-1: Abortable Linearizable Modules
o3 . ALONADIE Linearizabie ViIoQuies
S€L4. the flI‘ St maChlne Pr o]0 Author: Rachid Guerraoui, Viktor Kuncak and Giuliano Losa

2012-02-29: Executable Transitive Closures

2011-11-19: A Definitional Encoding of TLA* in Isabelle/| 2012-02-06: A Probabilistic Proof of the Girth-Chromatic Number Theorem

Author: Gudmund Grov and Stephan Merz Author: Lars Noschinski

2011-11-09: Efficient Mergesort 2012-01-30: Dijkstra's Shortest Path Algorithm
Author: Christian Sternagel Author: Benedikt Nordhoff and Peter Lammich
2011-09-22: Pseudo Hoops 2012-01-30: Refinement for Monadic Programs

Author: George Georgescu, Laurentiu Leustean and Vioir Author: Peter Lammich

2011-09-22: Algebra of Monotonic Boolean Transformer; 2012-01-03: Markov Models
Author: Viorel Preoteasa Author: Johannes Hélzl and Tobias Nipkow

2011-09-22: Lattice Properties
Author: Viorel Preoteasa

2011-08-26: The Myhill-Nerode Theorem Based on Regular Expressions
Author: Chunhan Wu, Xingyuan Zhang and Christian Urban

2011-08-19: Gauss-Jordan Elimination for Matrices Represented as Functions
Author: Tobias Nipkow

2011-07-21: Maximum Cardinality Matching
Author: Christine Rizkallah

Formalising Mathematics

“To explore both the expressive and deductive power of a particular
logic and the pragmatic problems which arise in conducting proofs in it"

— [Edinburgh LCE, page 1]
* Many people have formalised many, many mathematical results.
* Sometimes, these formalisations yield special insights...
* Newton’s Principia (formalised by Fleuriot)

* Axiomatic set theory (K Grabczewski, LCP)

Newton’s Non-Standard Geometry

SECTION 1IL

Of the motion of bodies in eccenlric conic sections.

* Newton’s treatise on the orbits
. PROPOSITION XI. PROBLEM VL
Of planets dld nOt use Calculus- If a body revolves in an ellipsis ; it is required to find the law of the

centripetal force tending to the focus of the ellipsis.

l.et S be the focus l'.
: . of the ell'psis. Draw e *\\> X
* His proofs used geometric Bty e dame- © -.
. S . ter DK of the ellipsis
arguments and infinitesimals. in , and the ordinate >
Qv in z; and com- ' "y b
¢ 7

plete the parallelogram
Q2PR. 1t is cvidcnt{

* Here, he proves the inverse- that EP is cqual tothe| S \\
. greater semi-axis AC:
square law for gravity. for drawing HI from

the other focus H of
the ellipsis parallel to

D

IEC, because CS, CH /
% 1 arc equal, ES, EI will |
Can SUCh prOOfS be formallsed be also equal ; so that EP is the half sum of PS, PI, that is (because of
1 1 " the parallels HI, PR, and the equal angles IPR, HPZ), of P'S, PH, which
ds they were ertten’ Wlthln taken together are equal to the whole axis 2AC. Draw QT perpendicu-
. 11 > g SP, : ing L. inci al lat ipsi
lnﬁnlteSImal geometry?]'u' to SP 'lnd putt]n‘5 L. for the princi al latus rectum Of the c]hpsm (Or fot

The “Kepler Problem”

Formalised Infinitesimal

Geometry (Fleuriot’s PhD Work]

* defining non-standard analysis: the hyperreals, limits, continuity;,...

* defining geometric concepts using the signed-area and full-angle
methods

* formalising Newton’s infinitesimal arguments directly

Fleuriot found an error in Newton’s proof of Proposition XI, but
found an alternative route to the result.

Despite lacking a rigorous theory of infinitesimals,
Newton usually reasoned soundly with them.

Axiomatic Set Theory

a€{reA.Ylx|} —ae ANY|a

* Itis “well known” that ZF set theory is not suitable for machine
implementation because it requires infinitely many axioms.

* This belief doesn’t reckon with the use of a logical framework with
higher-order variables! (And yes, 1) remains a first-order formula.)

* But can we work effectively in this formalism, supposedly the
foundation of mathematics? Yes!

We can address some of the most fundamental issues in logic.

Set Theory: Equivalents of AC

Case 1. (VB)[B < a and £(B) # 2 » (3y) (38) [y, 8§ < a,
9(u6¥6) # @ and ﬂ(uBYé) <ml]].

For each B < a with f(B) # g, let AS and g be the
lexicographically < - first ordinal numbers Y and 6 such

SEE GI'QbCZQWSki fOI' that ﬂ(uBYé) # @ and ﬂ(uBYG) <m. (That is, first find

ordinal numbers Yy and ¢ which satisfy the conditions. Then

St .
RU‘bln S Equwalents let AB be the < - smallest such Y which satisfies the
conditions. Then given XB' let “B be the < - smallest §

% the equivalence (which satisfies the conditions.) Now define:

’ .
72 (u) if f£(B) # @
BIXBIHB

'} if f£(B) =90 ,

=

* and 20 formulati Vg

\

il

- LOtS Of hlghly te(and Wo f(R) ~ Vge Next we define a function g as follows:

ﬂ(g) = o + a,
if B < a then g(B) = Vg

if a s B, and B ~a =z vy < a then g(B) = wY "

Set Theory: Reflection Theorem

M= UaEON Ma

* relating truth of some ¢ in the class M to its truth in certain sets M,

* impossible to formalise as a single statement in ZF set theory
(because the proof depends upon the structure of 1)

* meta-level reasoning is necessary, but can be reduced to an induction
over the structure of formulas

* This yields a repetitive tactic for proving any instances of the
reflection theorem.

Set Theory: Godel’s Proof of the
Relative Consistency of AC

* A technically difficult milestone in 20th century logic, addressing
Hilbert’s First Problem and introducing the “inner model method”

+ definition of the class L of “constructible sets” (these are the sets
that can be defined by formulas and therefore must be present)

* proof that the concept of “constructible set” is absolute across
models of ZF set theory

* proof that L is a model of set theory, including the axiom of choice

* Any contradiction in set theory + AC can be effectively transformed into
a contradiction in set theory alone.

Absoluteness; Skolem’s Paradox

* If set theory is consistent, then * Countability is not absolute: no
(of course) it has models. function enumerating the
elements of M is itself in M.

+ It even has a countable model,

M, by the Lowenheim-Skolem * Crucial to Godel’s consistency
theorem! proof is that ...
* In M, all sets are countable, CONSTRUCTIBILITY IS

apparently violating Cantor’s ABSOLUTE

theorem. How can this be??
* The proof requires a detailed

analysis of the definition of
constructibility.

(Godel’s mner model method

+ 'V, the class of all sets
(the universe)

+ L, the constructible sets

* From within L, all sets are
constructible

* and the axiom of choice holds.

Godel’s Proof: Special Motivations

No formal theorem statement, just a series of suggestive results!

“This clearly is a momentous achievement. Nevertheless,
viewed 65 years later, the proof has very little flavor of a
mathematical character. Rather, it is an achievement of
definitions and of a point of view.” — Paul Cohen

Can we formalise such a thing??

Godel’s Proof in Isabelle

* formalising sections of Kunen'’s textbook Set Theory
* a detailed formal definition of the concept of constructibility

* absoluteness proofs for constructibility, using no meta-theoretical
reasoning; a proof that the axiom of choice holds in the class L

* a specific, finite list of axiom instances used in these proofs

eliciting some interest from philosophical logicians
(albeit none from computer scientists...)

2012

A Break with 1.CF: Oracles

* Theorems can be created by trusted external components (such as
model checkers; also code generated for computational reflection)

* ... but never in “normal” proofs (not even using sledgehammer)
* ... and all such dependencies are tracked internally

“ ... and let’s not mention mk thm

A Break with LL.CF: hiding ML

Llemma inj not surj succ:
assumes fi: "f € inj (A, succ(m))" and fns: "f & surj(A, succ(m))"
shows "df. f € inj(A,m)"
proof -
from fi [THEN inj is fun] fns
obtain y where y: "y € succ(m)" "Ax. xéA = f * x # y"
by (auto simp add: surj def)
show ?thesis
proof
show "(AzeA. if f 'z = m then y else f z) € inj(A, m)" using y fi
by (simp add: inj def)
(auto intro!: if type [THEN lam type] intro: Pi type dest: apply funtype)
qed
ged

Structured proofs Users can extend this
are much clearer! language using ML.

Conclusion: Milner’s 1.CF
Architecture Sull Stands

* an abstract type of theorems

* no proof objects (most of the time)

* a simple hierarchical theory structure
* a higher-order programming language

and of course: investigating unusual formalisms
is still good science

