Automatic Theorem Proving:
Impressions from the *Interactive* World

Lawrence C Paulson / Computer Laboratory / University of Cambridge

CADE-26, Gothenburg, 11 August 2017
The Great Divide

- **Automatic Theorem Provers**
 - Put in your conjecture and axioms
 - Full automation!
 - First-order logic (+T)
 - Careful about correctness

- **Interactive Proof Assistants**
 - Create big specification hierarchies
 - You do the hard work
 - Nice rich logics
 - Neurotic about correctness
But interactive proof is like building one of these...
So everybody wanted automation!

- **LCF**: conditional rewriting (as in Boyer/Moore, 1977!)
- **PVS**: various decision procedures, BDDs, etc (1995)
- **HOL**: decision procedures, resolution provers (1996–)
- **Coq**: decision procedures, reflection
Isabelle, in the beginning (1985)

Based on a higher-order logical framework, but with

- *unification* (even though it had to be higher-order)
- *backtracking primitives via lazy lists*

 because I assumed these were *necessary* for automation

- so, something like a higher-order Prolog
Sequent calculi in Isabelle (1986)

\[\Gamma_1, A[t/x], \Gamma_2 \Rightarrow \Delta \]
\[\Gamma_1, \forall x A, \Gamma_2 \Rightarrow \Delta \]

- using associative unification (via a higher-order trick) to support sequent calculus rules directly
- some automation using backtracking
- the equivalent of old-style “semantic tableaux”
A sequent calculus for set theory

It was easy to derive a proof calculus of high-level rules for set theory, and prove many facts automatically:

\[A \neq \emptyset \land B \neq \emptyset \rightarrow \bigcap (A \cup B) = (\bigcap A) \cap (\bigcap B) \]

\[C \neq \emptyset \rightarrow \bigcap_{x \in C} (A(x) \cap B(x)) = (\bigcap_{x \in C} A(x)) \cap (\bigcap_{x \in C} B(x)) \]

(From a system description published at CADE-9 in 1988)
The push for more power

The discovery that this automation could make a difference in *real proof developments* … and that it was far inferior to even *quite basic* automatic provers … led to the perusal of *this paper*:

Pelletier’s problem #43

∀xy (ψ(x, y) ↔ ∀z (ϕ(z, x) ↔ ϕ(z, y)))
→ ∀xy (ψ(x, y) ↔ ψ(y, x))

requires a reasonably sophisticated treatment of quantifiers

Trivial? Not using sequent methods…
Time to try a *good* proof strategy?

D.A. Plaisted. A sequent-style model elimination strategy and a positive refinement. *JAR* 6 (1990), 389–402
meson: The world’s slowest model elimination theorem prover (1992)

- An obscure Isabelle tactic, inspired by Stickel’s PTTP
- Runs on Isabelle’s “Prolog” engine (so no trust issues)
- Far better than naive methods for first-order logic

But not generic — pure FOL only — so a dead end… ?
Spinoffs from Isabelle’s ME tactic

- meson (1992)
- J Harrison’s MESON_TAC for HOL Light (1996)
- J Hurd’s Metis resolution prover and HOL interface (2002)
- sledgehammer (2007)
- MetiTarski (2009)
Cryptographic protocol verification

- Based on operational semantics
- Inductive definitions and proofs in Isabelle
- Rewriting with respect to a formal theory of messages
- … followed by first-order reasoning (mainly forward and backward chaining)

Painful proofs despite partial automation
... versus Ernie Cohen’s TAPS

Automatic, deductive verification of crypto protocols!

Couldn’t figure out how it worked except

everything was translated to FOL

... and proved using SPASS!
The key to better automation??

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
 prove(A,[B|UnExp],Lits,FreeV,VarLim).
prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
 prove(A,UnExp,Lits,FreeV,VarLim),
 prove(B,UnExp,Lits,FreeV,VarLim).
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

 |
 length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).
prove(Lit,_,[L|Lits],_,_) :-
 (Lit = -Neg; -Lit = Neg) ->
 (unify(Neg,L); prove(Lit,[],Lits,_,_)).
prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
 prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).
leanTAP: simple; surprisingly good

It could prove Problem 43!

Could it be the inspiration for a better prover

... that was still generic?
The “blast” proof method (1998)

- Like leanTAP, but 1300 lines instead of 15
- Generic: forward and backward chaining without explicit quantifiers
- Runs in Standard ML; afterwards, successful proofs given to Isabelle’s “Prolog” engine
- Now central to Isabelle’s automation
But what about using *real* ATP in an interactive prover?

- Had been attempted many times (e.g. Omega, KIV)
- J Hurd: Integrating Gandalf and HOL (1999); Metis prover for the *ordered paramodulation calculus*

Automation for interactive proof

Key technical problems

- usability for both novices and pros
- not burying the ATPs
- higher-order & types
- trust issues

Solutions

- 1-click invocation using all known facts
- relevance filtering
- a range of translations
- proof reconstruction
Sledgehammer: key points

- Proofs are thrown away! *(ATPs used as relevance filters)*
- Completely recoded at Munich by Blanchette et al
- Now the main source of resolution problems
- That old "meson" method is still used for reconstruction
One more thing...
Gödel’s incompleteness theorems

1. Every reasonable* formal calculus is *incomplete*: at least one formula can neither be proved nor disproved.

2. No reasonable formal system proves its own consistency.

*reasonable = consistent and capable of expressing a certain amount of elementary arithmetic
Stages of the proofs

• The syntax of a first-order theory is formalised: terms, formulas, substitution...

• A deductive calculus for sequents of the form \(\Gamma \vdash \alpha \) (typically for Peano arithmetic)

• Meta-theory to relate truth and provability. E.g. “all true \(\Sigma \) formulas are theorems”. (The set of \(\Sigma \) formulas is built using \(\lor, \land, \exists \) and bounded \(\forall \).)

• A system of coding to formalise the calculus within itself. The code of \(\alpha \) is a term, written \(\lceil \alpha \rceil \).

• Syntactic predicates to recognise codes of terms, substitution, axioms, etc.

• (and correctness proofs for them)

• Finally the provability predicate \(\text{Pf} \), such that \(\vdash \alpha \iff \vdash \text{Pf} \lceil \alpha \rceil \).
First incompleteness theorem

* Construct δ to express “δ is not provable” ($\neg \text{Pf } \neg \delta$).

* It follows (provided the calculus is consistent) that neither δ nor its negation can be proved, and that δ is true.

* Need to show that substitution behaves like a function.

 * Requires a lengthy, low-level proof in the calculus

 * [… or other intricate calculations, to do with bounded quantifiers]
Second incompleteness theorem

If α is a Σ sentence, then $\vdash \alpha \rightarrow \text{Pf } \neg \alpha$.

* A crucial lemma! Proved by induction over the construction of α as a Σ formula.

* It requires generalising the statement above to allow the formula α to contain free variables.

 * complex technicalities

 * lengthy deductions in the formal calculus
Defining the deductive calculus

For substitution within a formula, we normally expect issues concerning the capture of a bound variable. Note that the result of substituting the term \(x \) for the variable \(i \) in the formula \(A \) is written \(A(i::=x) \).

Nominal

```plaintext
nominal primrec subst :: "fm \Rightarrow fm \Rightarrow bool" (infixl "\|=" 55)
wwhere
  Hyp: "A \in H \Rightarrow H \|= A"
| Extra: "H \|= extra_axiom"
| Bool: "A \in boolean_axioms \Rightarrow H \|= A"
| Eq: "A \in equality_axioms \Rightarrow H \|= A"
| Spec: "A \in special_axioms \Rightarrow H \|= A"
| HF: "A \in HF_axioms \Rightarrow H \|= A"
| Ind: "A \in induction_axioms \Rightarrow H \|= A"
| MP: "H \|= A \IMP B \Rightarrow H' \|= A \Rightarrow H \cup H' \|= B"
| Exists: "H \|= A \IMP B \Rightarrow
  \atom i \not\in B \Rightarrow \\forall C \in H. \atom i \not\in C \Rightarrow H \|= (Ex i A) \IMP B"
```
Two dozen predicates formalising logical syntax

definition MakeForm :: "hf ⇒ hf ⇒ hf ⇒ bool"
where "MakeForm y u w ≡
 y = q_Disj u w ∨ y = q_Neg u ∨
 (∃v u’. AbstForm v 0 u u’ ∧ y = q_Ex u’)"

 \(y = u ∨ w, \text{ or } y = \neg u, \text{ or } y = (∃v) u \)

with an explicit abstraction step on \(u \)

nominal_primrec MakeFormP :: "tm ⇒ tm ⇒ tm ⇒ fm"
where "[atom v ∉ (y,u,w,au); atom au ∉ (y,u,w)] \implies
 MakeFormP y u w =
 y EQ Q_Disj u w OR y EQ Q_Neg u OR
 Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q_Ex (Var au))))"

The “official” version as a formula, not a boolean
Steps to the first theorem

* We need a function \(K \) such that \(\vdash K(\neg \phi) = \neg \phi(\neg \phi) \)

* ... but we have no function symbols. Instead, define a relation, \(KRP: \)

  ```
  lemma prove_KRP: "\{\} \vdash KRP "Var i" \neg A \neg A(i::="A")"
  ```

* Proving that it behaves like a function takes 600 formal proof steps.

  ```
  lemma KRP_unique: "\{KRP v x y, KRP v x y'\} \vdash y' EQ y"
  ```

* Finally, the diagonal lemma:

  ```
  lemma diagonal:
    obtains \( \delta \) where "\{\} \vdash \delta IFF \alpha(i::="\delta")"  "supp \( \delta \) = supp \( \alpha \) - \{atom i\}"
  ```
theorem Goedel_I:
 assumes Con: "¬ \{\} \vdash Fls"
 obtains \(\delta\) where "\{\} \vdash \delta \iff \neg \text{Neg (PfP } \delta\}\)"
 "¬ \{\} \vdash \delta" "¬ \{\} \vdash \neg \delta"
 "eval_fm e \delta" "ground_fm \delta"

proof -
 obtain \(\delta\) where
 "\{\} \vdash \delta \iff \neg \text{Neg ((PfP (Var i))(i::="} \delta\))}"
 and [simp]: "\text{supp } \delta = \text{supp (Neg (PfP (Var i)))} - \{\text{atom } i\}"
 by (metis SyntaxN.Neg diagonal)
 hence diag: "\{\} \vdash \delta \iff \neg \text{Neg (PfP } \delta\}\)"
 by simp
 hence np: "¬ \{\} \vdash \delta"
 by (metis Con Iff MP_same Neg_D proved_iff_proved_Pf)
 hence npn: "¬ \{\} \vdash \neg \delta" using diag
 by (metis Iff_MP_same NegNeg_D Neg_cong proved_iff_proved_Pf)
 moreover have "eval_fm e \delta" using hfthm_sound [where e=e, OF diag]
 by simp (metis Pf_quot_imp_is_proved np)
 moreover have "ground_fm \delta"
 by (auto simp: ground_fm_aux_def)
 ultimately show \(\text{thesis}\)
 by (metis diag np npn that)
qed
Steps to the Second Theorem

* Coding must be generalised to allow variables in codes.

* \(r x \triangleleft y \sqcup = \langle r \triangleleft \sqcup, r x \sqcup, r y \sqcup \rangle \)
* \([x \triangleleft y]_V = \langle r \triangleleft \sqcup, x, y \rangle \)

* Variable renaming is needed, with the aim of creating “pseudo-terms” like \(\langle r \triangleleft \sqcup, Q x, Q y \rangle \).

* Q is a magic “name of” function: \(Q x = r t \sqcup \) where \(t \) is some canonical term denoting the set \(x \).
One of the Final Lemmas

\begin{align*}
\text{QR}(x, x'), \text{QR}(y, y') & \vdash x \in y \rightarrow \text{Pf} \left[x' \in y' \right]_{x', y'} \\
\text{QR}(x, x'), \text{QR}(y, y') & \vdash x \subseteq y \rightarrow \text{Pf} \left[x' \subseteq y' \right]_{x', y'} \\
\text{QR}(x, x'), \text{QR}(y, y') & \vdash x = y \rightarrow \text{Pf} \left[x' = y' \right]_{x', y'}
\end{align*}

\begin{itemize}
 \item The first two require \textit{simultaneous induction}, yielding the third.
 \item Similar proofs for the symbols \lor, \land, \exists and bounded \forall.
 \item The proof in the formal predicate calculus needs under 450 lines.
\end{itemize}
is a \(k \)-element sequence representing the conditions (4) and (5). Induction on the sum of the lengths allows us to prove

\[x^2 y \sim \text{Pf}^b x^0 \sim y^0 \sim \{x^0, y^0\} \]

by case analysis on the form of \(y \), while proving

\[x^\sim \text{Pf}^b x^0 \sim y^0 \sim \{x^0, y^0\} \]

by case analysis on the form of \(x \). One case of the reasoning is as follows:

\[x^1 C x^2 \sim y (x^1 \sim y)^x = \text{Pf}^b x^0 \sim y^0 \sim \{x^0, y^0\} \sim \text{Pf}^b x^0 \sim y^0 \sim \{x^0, y^0\} \]

\[x^1 C x^0 \sim y \sim \{x^0, x^0, y^0\} \]

by case analysis on the form of \(x \). One case of the reasoning is as follows:

\[x^1 \text{C PfP}^b x^0 \sim y \sim \{x^0, y^0\} \sim \text{PfP}^b \]

\[x^1 \sim y \sim \{x^0, y^0\} \sim \text{PfP}^b \]

\[x^1 \text{C PfP}^b \]

\[x^1 \sim y \sim \{x^0, y^0\} \sim \text{PfP}^b \sim \text{Neg} (\text{PfP}^b \sim \text{Fls}) \]

\[\text{by sledgehammer proofs!} \]

Nearly 25% of the proof lines in the Gödel proof come from sledgehammer!
Where are we now?

we can use automation from the world’s best ATPs

it’s frequently successful, returning surprising proofs

no longer need to understand the material, e.g. while porting 50,000 lines of HOL Light

Jordan curve theorem, Cauchy’s integral formula
What’s still needed?

• combined first-order logic + arithmetic reasoning
• automatic suggestions for parts of proofs
• higher-order reasoning
From this...
... to this!
Essential contributors

Tobias Nipkow

Strategic direction
- type system
- simplifier
- countless projects

Makarius Wenzel

- type classes
- structured proofs
- user interfaces
- multicore tech

Financial support from the UK’s EPSRC
Thank You!