Automatic Theorem Proving:
Impressions from the /nteractive World

Lawrence C Paulson / Computer Laboratory / University of Cambridge

CADE-26, Gothenburg, 11 August 2017

T he Great Divide

+ Automatic Theorem Provers + Interactive Proof Assistants
+ Put in your conjecture + Create big specification
and axioms hierarchies
CEvil e e e + You do the hard work
+ First-order logic (+T) % Nice rich logics

<« Careful about correctness ofe Neurotic about correctness

But interactive proof is like building
one of these...

So everybody wanted automation!

+ LCF: conditional rewriting (as in Boyer/Moore, 1977!)
+ PVS: various decision procedures, BDDs, etc (1995)
+ HOL: decision procedures, resolution provers (1996-)

+ Coq: decision procedures, reflection

Isabelle, in the beginning (1985

Based on a higher-order logical framework, but with
+ unification (even though it had to be higher-order)
+ backtracking primitives via lazy lists

because I assumed these were
necessary for automation

+ s0, something like a higher-order Prolog

Sequent calculi in Isabelle (1986)

Fl,A[t/x], [5 = A
[1,VxA, Iy = A

+ using associative unification (via a higher-order trick) to
support sequent calculus rules directly

+ some automation using backtracking

+ the equivalent of old-style “semantic tableaux”

A sequent calculus for set theory

[t was easy to derive a proof calculus of high-level rules
for set theory, and prove many facts automatically:

A40&B#0 — (AUB)=(NA4) Nn(B)
C#0 — [1(Al@)NB(=z)=([] A=) N (] Blz))

rxeC xeC rxeC

(From a system description published at CADE-9 in 1988)

The push for more power

The discovery that this automation could
make a difference in real proof developments

... and that it was far inferior to
even guite basic automatic provers ...

led to the perusal of this paper:

E. J. Pelletier, Seventy-five Problems for Testing
Automatic Theorem Provers, JAR 2 (1986), 191-216

Pelletier’s problem #43

vxy (P(x,y) « Vz (P(z,x) < d(z,y)))
— Vxy (b(x,y) < Py, x))

requires a reasonably sophisticated
treatment of quantifiers

Trivial? Not using sequent methods...

Time to try a good proof strategy!

M.E. Stickel. A Prolog technology theorem prover:
implementation by an extended Prolog compiler. JAR 4

(1988), 353—-380

D.A. Plaisted. A sequent-style model elimination strategy
and a positive refinement. [AR 6 (1990), 389402

meson: T'he world’s slowest model

elimimation theorem prover (1992)

+ An obscure Isabelle tactic, inspired by Stickel’s PTTP
+ Runs on Isabelle’s “Prolog” engine (so no trust issues)

+ Far better than naive methods for first-order logic

But not generic — pure FOL only — so a dead end... 4

Spinofts from Isabelle’s ME tactic

] Harrison’s
MESON TAC for HOL

Light (1996)

] Hurfi o B < sledgehammer
resolution prover (2007)
and HOL interface
(2002) B MictiTarski
(2009)

Cryptographic protocol verification

+ Based on operational semantics
+ Inductive definitions and proofs in Isabelle
+ Rewriting with respect to a formal theory of messages

+ ... followed by first-order reasoning (mainly forward and
backward chaining)

Painful proofs
despite partial automation

... versus Ermie Cohen’s TAPS

E. Cohen. TAPS: A first-order verifier for cryptographic
protocols. IEEE Comp. Security Foundations Workshop (2000).

* Automatic, deductive verification of crypto protocols!
+ Couldn’t figure out how it worked except
+ everything was translated to FOL

* ... and proved using SPASS!

The key to better automation?”

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).
prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- |,

\+ length(FreeV,VarLim),

copy term((X,Fml,FreeV),(X1,Fmll,FreeV)),

append(UnExp, [all(X,Fml)],UnExpl),

prove(Fmll,UnExpl,Lits, [X1|FreeV],VarLim).
PlRoveEls .t s el EEESH b e

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[],Lits, ,)).
prove(Lit, [Next|UnExp],Lits,FreeV,VarLim) :-

prove(Next,UnExp, [Lit|Lits],FreeV,VarLim).

leanTAP: simple; surprisingly good

B. Beckert & J. Posegga. leanTAP: Lean, tableau-based
deduction. JAR 15 (1995), 339-358

It could prove Problem 43!

Could it be the inspiration for a better prover

... that was still generic?

The “blast” proof method (1993

+ Like leanTAP, but 1300 lines instead of 15

+ Generic: forward and backward chaining without
explicit quantifiers

+ Runs in Standard ML; atterwards, successtul proofs
given to Isabelle’s “Prolog” engine

<+ Now central to Isabelle’s automation

But what about using rea/ ATP
in an iteractive prover?

+ Had been attempted many times (e.g. Omega, KIV)

+] Hurd: Integrating Gandalf and HOL (1999);
Metis prover for the ordered paramodulation calculus

Joe Hurd. An LCF-style interface between HOL and first-
order logic. In A. Voronkov, editor, CADE-18 (2002), 134-138.

Automation for interactive proof

Key technical problems

+ usability for both
novices and pros

+ not burying the ATPs
+ higher-order & types

<+ trust issues

Solutions

v 1-click invocation using
all known facts

v relevance filtering
v/ arange of translations

v/ proof reconstruction

Sledgehammer: key points

Proofs are thrown away!
(ATPs used as relevance filters)

completely recoded at Munich
by Blanchette et al

now the main source of
resolution problems

that old “meson” method is

still used for reconstruction

One more thing'. ..

Godel’s iIncompleteness theorems

1. Every reasonable™ formal calculus is incomplete: at least one
formula can neither be proved nor disproved.

2. No reasonable formal system proves its own consistency.

*reasonable = consistent and capable of expressing a
certain amount of elementary arithmetic

Stages of the proofs

* The syntax of a first-order
theory is formalised: terms,
formulas, substitution...

* A deductive calculus tor sequents
of the form I' F a (typically for

Peano arithmetic)

* Meta-theory to relate truth and
provability. E.g. “all true X
formulas are theorems”.

(The set of X formulas 1s built
using vV A 3 and bounded V.)

A system of coding to formalise
the calculus within itself. The
code of o is a term, written ra-.

Syntactic predicates to recognise
codes of terms, substitution,
axioms, etc.

(and correctness proofs for them)

Finally the provability predicate
Pf, such thatt a < + Pf ra-.

First incompleteness theorem

* Construct d to express “d is not provable” (=Pf - d).

+ [t follows (provided the calculus is consistent) that neither d nor its
negation can be proved, and that d is true.

* Need to show that substitution behaves like a function.
+ Requires a lengthy, low-level proof in the calculus

* [... or other intricate calculations, to do with bounded quantifiers]

Second mcompleteness theorem

If « is a 2 sentence, then - — Pf "« .

* A crucial lemma! Proved by induction over the construction of a as a
X formula.

* It requires generalising the statement above to allow the formula a to
contain free variables.

* complex technicalities

* lengthy deductions in the formal calculus

Defining the deductive calculus

inductive hfthm :: "fm set = fm = bool" (infixl "F" 55)
where
Hyp: "A € H=— HIF A"
| Extra: "H F extra_axiom"
| Bool: "A € boolean_axioms —> H F A"
| Eq: "A € equality axioms — H ~ A"
| Spec: "A € special_axioms —> H F A"
| HF: "A € HF axioms — H + A"
| Ind: "A € induction_axioms — H F A"
| MP: U P NE . —— e s A = i e R
| Exists: "H + A IMP B —>

atom i f B =—> VC€H. atom i C =— H - (Ex i A) IMP B"

Iwo dozen predicates formalising

logical syntax

definition MakeForm :: "hf = hf = hf = bool"
where "MakeForm y u w =
y = qDisj uw V y = q-Neg u V

(dv u’. AbstForm v O u u’ ANy = g_Ex u’)"
Y q

y:qu/ory:—lu,OI‘yZ(HU)u
with an explicit abstraction step on u

nominal_primrec MakeFormP :: "tm = tm = tm = fm"
where "[atom v § (y,u,w,au); atom au f (y,u,w)] —
MakeFormP y u w =
y EQ Q-Disj u w OR y EQ Q-Neg u OR
Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q-Ex (Var au)))"

The “official” version as a formula, not a boolean

Steps to the first theorem

* We need a function K such that F x(7¢7) = ¢("¢7)"

* ... but we have no function symbols. Instead, define a relation, KRP:

lemma prove KRP: "{} = KRP "Var i '"A'" "A(i::="A ")

* Proving that it behaves like a function takes 600 formal proof steps.
lemmma KRP unique: "{KRP v x y, KRP v x y’} F y’ EQ y"

* Finally, the diagonal lemma:

lemma diagonal:
obtains 0 where "{} - 0 IFF «a(i::="T0")" '"supp 0 = supp o - {atom i}t"

theorem Goedel I:
assumes Con: "— {} ~ Fls"
obtains 6 where "{} F 0 IFF Neg (PfP "6 ')"
S R 0 S (e e ROk
"eval_ fm e 0" ‘"ground_fm "
proof -
obtain 0 where "{} = 0 IFF Neg ((PfP (Var i))(i::="9"))"
and [simp]: "supp 6 = supp (Neg (PfP (Var i))) - {atom il}"
by (metis SyntaxN.Neg diagonal)
hence diag: "{} F 0 IFF Neg (PfP
by simp
hence np: "— {} F 9"
by (metis Con Iff _MP_same Neg_ D proved
hence npn: "— {} = Neg 0" using diag
by (metis Iff MP_same NegNeg D Neg_cong\prqved_ iff proved_Pf)
moreover have "eval fm e 0" using hft [where e=e, OF diag]
by simp (metis Pf_quot_imp_is_proved np)
moreover have "ground fm ¢"
by (auto simp: ground fm aux_def) Sledgehammer
ultimately show ?7thesis
by (metis diag np npn that) <«
qed

iff proved_Pf)

proofs!

Steps to the Second Theorem

* Coding must be generalised to allow variables in codes.

O 4 y‘l — <r4 Al X ry-|>

codes of variables

+ lxdylv=(r<-, x, y) are Iintegers

* Variable renaming is needed, with the aim of creating “pseudo-

terms” like (r<I+, Q x, Q).

* Q1is a magic “name of” function: Q x = rt~ where ¢ is some canonical
term denoting the set x.

One of the Final LLemmas

QR(z,2"), QR(y, ¥) Fx €y = Pf |2’ € ¢/ | (0 41y
QR(z,2"), QR(y, ¥) Fx Cy — Pf |2’ C o/ | w41y

ORI OR (o SE SRR [SRy 8

* The first two require simultaneous induction, yielding the third.
* Similar proofs for the symbols v A 3 and bounded V.

* The proof in the formal predicate calculus needs under 450 lines.

theorem Goedel II:
assumes Con: "— {} F Fls"
shows U1 el s iag ez igie 1)
proof -
from Con Goedel I obtain 9
where diag: "{} + 0 IFF Neg (PfP "o)" "= {} F o"
and gnd: '"ground fm 0"
by metis
have "{PfP "0 F PfP "PfpP "o "
by (auto simp: Rrovability ground fm_aux def supp_conv_fresh)
moreover have "{PfPNo '} - PfP "Neg (PfP "o ') '"
apply (rule MonPon PfP~ximplies_PfP [OF _ gnd])
apply (auto simp: ground Fm_aux def supp_conv_fresh) using diag
by (metis Assume ContraProve™~Nff MP_left Iff MP_left’ Neg Neg iff)
moreover have "ground fm (PfP ™S9 ™
by (auto simp: ground fm aux def Supp.conv_fresh)
ultimately have "{PfP "0 '} + PfP "Fls\'“using PfP_quot_contra
by (metis (no_types) anti_deduction cut
thus "— {} - Neg (PfP "Fis)"
by (metis Iff_MP2 same Neg mono cutl diag)
qed

sledgehammer

Nearly 25% of the proof lines in the Godel proof proofs!

come from sledgehammer!

Where are we now?

we can use automation from
the world’s best ATPs

it’s frequently successtul,
returning surprising proots

no longer need to understand the material,
e.g. while porting 50,000 lines of HOL Light

Jordan curve theorem,

Cauchy’s integral formula

What'’s stll needed?

+ combined first-order logic + arithmetic reasoning
+ automatic suggestions for parts ot proofs

+ higher-order reasoning

From this...

... to thas!

Essential contributors

Tobias Nipkow Makarius Wenzel

Strategic direction
* type system

+ simplifier

+ countless projects

+ type classes

+ structured proofs
+ user interfaces

+ multicore tech

Financial support from the UK’s EPSRC

T hank You!

