A Career 1in Research: Mike Gordon

and Hardware Verification

Lawrence C Paulson

Automated Reasoning Workshop 2018

The world of Computmg n 1975

16MB a colossal
amount of memory

minicomputers,
e.g. 16KB memory

mainframe disk, about 5SMB

T'he world of theory, 197550

C. A. R. Hoare. An axiomatic basis for computer programming
Communications of the ACM 12 (10), Oct. 1969

Dana Scott. Outline of a mathematical theory of computation.
Technical Report PRG-2, University of Oxford, Nov. 1970.

denotational semantics and
fixed-point theory

operational semantics
just emerging

R. Milner. A Calculus of Communicating Systems. Springer, 1980.

process algebras

type theory emerging

Edinburgh LCF (1975 1979

M. J. C. Gordon, R. Milner, and C. P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation.
LNCS 78. Springer, 1979.

+ The first real proof assistant (for computation theory)

+ Introducing ML (the first polymorphic functional
language)

With so many nascent fields,

what did Mike decide to do?

Software is being solved, so let’s verity hardware.
He talked to the hardware experts at Edinburgh
and sketched out some theory

... and designed his own computer!

A model of register transfer systems
with applications to microcode and
VLSI correctness.

Technical Report CSR-82-81,
University of Edinburgh, Mar. 1981.

the circuitry

ditohes fowbd button

. i.;

3):
|

: Control Unit
ROM(») . CONTROL x,0)

| 1
wmerr maran el e rpa wvace rac~ (e rir g aluomel réuf

o NS

1 L——
MR} MEMIm) PClw 1 }

I T

pe aae ey Tdle

Fig. XIV: 'he host machine for implemanting the camputer

3

:

@ @ N M w N =m O

DO M MO BN e o et N NS

26

Microinstruction

ready, idle; butten—~1,0

; knoh+l
rew,wpe ;0
rew,wace ; {
rpe,umar ;7
ready ;3 button+0,6
rps,wmar 5 8
racc,urite; 0
read,wir ; 9

5 opcodet10

; 0
rir,upe ; b

; ace=0 + 11,17
rdoc,wvarg ; 19
race,warg ; 22
rir,umar ; 24
rirv,umar ; 25
rre,ine 3 18
rbuf,wpe ; 5
rir,wmar ; 20
read,add ; 21
rhuf, wace ;3 17
rir,wmar ; 23
read,aub ; 21
reacd,wace ; 17

race,wrtte; 17

a microprogram

branch to i if button pressed, othrrwise loor

decode knob position

switchas + PC

awitcehea + ACC

PC + MAR

begin fetch-deaxle—axecute cycle
PC > MAR

ACC + MEM(MAR) . fetch
MEM(MAR) +~ IR
decode

halt

JMP; IR+PC
JZRO:
ADD:ACC ~ ARG
SUB:ACC ~ ARG
LD:IR ~ MAR
ST:IR » MAR
PC+1 + BUF
BUF + FC

IR +MAR

ARG + MEM(MAR) » BUF
BUE » ACC

I +MAR
ARG-MEM(ARG) » BIIF
MEM(MAR) » ACT

ACC » MEM(MAR)

increment program counter

Fig. XVI Microinstruction in control unmlts' RON: the microprogram mucode

internal specifications

HOSTMACHINE = (S, out, next)
5 = Wordl 51 x Mem x Nordl 13 x Wordl 12) « Word(16 x Word(161 x Wordl 16 x Word[16]

S 0 T R A A |

memoxy MAR PC ACC IR ARG BUF
out((knob =k, button = : . '
s buttom = b, owitohea = aw}, ("”'"’"o""i""z""3""u""5))
= {pe =W, 00 =1, ready = (w=0vw=5+1,0), idla=(w=0+1,0)}
next({knob = k - o -
s button =b, ewitches = swl, (w,m,w ,u ""2-""3""!3""5“
=ws=0+(C b~ 1,0
we=1»(o,) ’ L R O L s Wy 5 Wy W 15
m o, o X)
w=2+(0 Z 0 P A L
5 Mmoo, Wy EWSOI18%, W, , Wy . Wy W,),
w= 3o A'
(0 ’ m » wo » w_' » [i25) » W > 1o * ’.,f).
W= 4ol 7 A)
£l m E} U‘- > wl e b’2 s t”-‘ ’ wu L} ws)’
Ww=35+(b»o0,8) , m W W t
6' (E 0 » l > ? » '03 > wq > ws ”
W =
"(8 » m » Ml £3 wl » wz K3 ua » "”. E vs).’
W=7+ 0
,m(wQ/mJJ. Wy s W, s Wy Woooa v,
w=8+(e § moo, Wy, W s W, ,m(wo), w, s we y 8
W= 94(w3<15:15>+10 ” Mmoo, Wy s Wy, Wy, Wy, Wy, W, 3
w=10>() 4 m |, w - w w w')
=11 (0 1 2 Vy s Wy LWy, ¥)
= > 5 > m o, ¥ .m3q‘7: 12>, ”2 s Wa 5 W, W J,
w=134((,,,?=o+ 11,17), moo, Wy, B T, W, Wy, W, 5),
=13+ 19 » Mmoo, Wy, Wy Wy, Wy, W, c A
=]d~+ :
=14+ (22 G Mmoo, Wy s Wy w, o om, o, Wy, We)s
we=15+ 3¢ . om o w<0:12>, W W, . oW :
Ww=16~+(3 ’ 1 * Wy o Wy s Wy Ve Js
= -+ g 3
25 3 m ,1.13<0.12>, v, y U, o, Wy, W, W, X
w=17-(18 » m . (%) (%) w , : ?-.“’
w=18+(0o 1 0 Wo s Wy s Wy oW 0:18%H),
5 » m G ¥y sW <0: 13>, W, 5 Mg 4 Wy, W,),
w=i2»(2 : . | : Z
20 R Mmoo o <0:13>, Wy s W, s Wy, W We),
=20+ (al o m uw u w y (
St " o . 1 » Wy, Wy W, ¥, +m(m0) Js
17 . m ., W , , W, , W) w J
B i 1 5 R Ty 5 »
=22 23 & mo W 20:12>, W w te! w) J
w=23+(21 ! T 3]
i . m u
Zatn i ’ ’ s 1 Ny s Wy s Wy s B ,wl.—m(zm) P 1R
’ Mmoo W, R W e), w 2 (])
n=20+(17 mlw s | l : S > g
yMB, 01 Vg s Wy s W, Wy LW, Ve)

even the industrial design!

l/ L dLdddILdLLLESL LS
Switches

7 load PC

2 load ACC o Ccooc00CcO00 00O
3 store PC display lights r

4 run

COOOOCO0POOO0OCOOOD
Acce display lignts

Mike wrote 21 pages on the computer alone

75 pages on a theory of hardware verification, from
gates to computers

Already many key insights by 1981, e.g. to treat
combinational (stateless) devices like sequential ones.

T'hree 1deas for modelling devices

+ 1981: recursive domain equations (too complicated)

+ 1983: Logic for Sequential Machines, or LSM: Mike’s
hardware formalism, loosely based on CCS (too ad-hoc)

+ 1985: higher-order logic! And all devices as relations.

A concerted effort to minimise reliance on theory!

A counter using domains (1931}

sun ceh
N

MUX

Tu_

REG(n) ‘

B

e

COUNT (n) = X(switch,tn). (out =n + 1), COUNT (ewttch +in, n+1)

Fig. II. Behaviour of COUNT(n)

out

A counter in LLSM (1983

switch in

uuuuuuuuuu

@ o, o m W Gr My e ke kw

When the counter is clocked, the new value of the state variable
becomes n+1 (i.e. the old value plus one) if false is being input on

line switch, otherwise it becomes the value input on line in. We can
express this by:

CLOCK(n) --> CLOCK(switech -> itn | n+i)

In LSM the behaviour of the counter would be specified by the formula

COUNT(n) == devlswiteh,in,out]. [out=n]; COUNT(switch -> in | n+i)

A CMOS full adder im HOL. (1985)

AR

PR ®2h, can, sum, cout) =P

%7051]3 6 D7 ﬁénp?f{ P10 P11-
b0, P3) AP (iR g, ps) b, 12, PSF A Ptran(a, pg, pa)A

Jmpim Ntraw{a, 43p5)/\N+ra R(pT; P4, pe) A Ntran(b, ps, ps) A
T PRS ps, p11) N Ntran(cenpBg, p11|)P2R Ptran(a, po, pr) A Ptran(b, pg, p7)A

}r 95) A Ptran(m+ %:Tll) A Ptran(b, pg, p1) A Ntran(cin, p1, pg) A

O, P o, P, P NHraT 7jp11)/\|\|tran(ajplojp11)/\

11

Pwr(pg) A Ptran(p4 po,sum) A Ntran(py, sum, py)A

fa

Gnd(py1) A Ptran(py, po, cout) A Ntran(py, cout, pyq)

The insight that devices are relations

D1 C

D3 ® d

D(a,b,¢c,d) = dp q. D1(a,b,p) A Do(p,d,c) A Ds(q,b,d)

HO Logic was a radical choice!

“Unlike first-order logic and some of its less barogue extensions,
second and higher-order logic have no coherent well-established
theory; the existent material consisting merely of scattered

remarks quite diverse with respect to character and origin.”
(Van Benthem and Kees Doets, 1983.)

And we need a type of n-bit words, so we
need dependent types, right?

WRONG

Veritying Mike’s computer

+ In 1983, using LCF_L5M

“The entire specification and verification described here took several

months, but this includes some extending and debugging of
LCF_LSM ... it would take me two to four weeks to do another
similar exercise now. The complete proof requires several hours CPU

time on a 2 megabyte Vax 750.”

+ In 1986, with Jeff Joyce, Graham Birtwistle, using HOL

+ And — under the name Tamarack — by many others!

A\ A
A N |
\J \{§
! Y X \
\' & . g '.',;I''v ‘: : .'..
IR T L ‘u‘*,.:)"',l. L W

It was even fabricated!

Verifying a real computer: VIPER

+ designed by a UK defence lab for military purposes
+ specified by a series ot abstract layers
+ equivalence of the top three proved by Avra Cohn

+ controversy due to exaggerated claims made by the
chip’s marketers

Hardware verification went from plan
(1981) to realisation (1989) in eight years!

Some papers from that era

Mike Gordon. Proving a computer correct with the LCF
LSM hardware verification system (1983).

Avra Cohn. A proof of correctness of the VIPER
microprocessor: The first level (1987).

Avra Cohn. Correctness properties of the Viper block
model: The second level (1988).

Brian T. Graham. The SECD Microprocessor, A
Verification Case Study. Kluwer, 1992.

“Verification involves a pair of models that bear an
uncheckable and possibly imperfect relation to the
intended design and to the actual device.”

—Avra Cohn, 1989

So what next?

“a long term project on verifying combined hardware/software
systems by mechanized formal proof”

Mike Gordon, “Mechanizing programming
logics in higher order logic”, 1989

+ Mike derived Hoare logic in HOL from the operational semantics
of a programming language

+ supporting the illusion by pretty-printing

+ the first shallow embedding of one formalism within another

Whooshing to the year 2000...

Lots of PhDs on floating point arithmetic,
process calculi, BDDs, etc., etc....

Veritying the ARMO processor

+ a “commercial off-the-shelf” design
+ joint project with Graham Birtwistle at Leeds

+ verification by Anthony Fox at Cambridge

* the ARM6 microarchitecture implements its ISA

+ And we have a complete formal spec of this machine

Verification and assembly language

(Magnus Myreen, working with Mike)
+ Hoare-style logics for assembly languages
+ decompilation of assembler to HOL (for 3 machines!)
+ proof-producing translation from HOL to assembler

“verifying combined hardware/software systems”

Culmimating in CakeMIL.

A dialect of Standard ML, with semantics formalised in HOL
The compiler backend can generate code for 5 different architectures
Source code can be written directly or translated from HOL

Bootstrapped via compilation within HOL4, yielding a
“verified binary that provably implements the compiler itself”

The work of Ramana Kumar, Magnus Myreen, Scott Owens, etc.

How Mike accomplished so much

+ he ignored “hot topics” to pursue an original plan
+ ... and talked to “the enemy” across the Department
+ ... to learn another subject really well

+ while using his own knowledge of theory
(denotational semantics and CCS)

Learn your application thoroughly

E.g. cryptographic protocols: such a simple field

... so much flawed research

... leading to more bad research

Because people weren't
learning from security experts!

Rely on robust tools and theory

+ LCF provided a good verification engine
+ Higher-order logic was old, solid theory (1940!)
+ |Standard ML was emerging; Mike didn’t use it!]

Type theory would take many years to settle down
and would have been a distraction back in 1985.

Where are we today?

+ LCF architectures dominate the landscape

+ ... using higher-order logic or its extensions

+ hardware verification is done extensively in industry
+ academic research continues to push forward

But modern processors are still
too complex to verity in full!

Mike Gordon

19452017

