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Abstract. The approach previously used to mechanise lemmas and
Kepler’s Law of Equal Areas from Newton’s Principia [13] is here used
to mechanically reproduce the famous Propositio Kepleriana or Kepler
Problem. This is one of the key results of the Principia in which New-
ton demonstrates that the centripetal force acting on a body moving in
an ellipse obeys an inverse square law. As with the previous work, the
mechanisation is carried out through a combination of techniques from
geometry theorem proving (GTP) and Nonstandard Analysis (NSA) us-
ing the theorem prover Isabelle. This work demonstrates the challenge
of reproducing mechanically Newton’s reasoning and how the combina-
tion of methods works together to reveal what we believe to be flaw in
Newton’s reasoning.

1 Introduction

The reasoning of Newton’s Philosophie Naturalis Principia Mathematica (the
Principia [14]), as it was originally published, is a mixture of geometric and al-
gebraic arguments together with Newton’s own proof techniques. These combine
to produce a complex mathematical reasoning that is used to explain the phys-
ical world. The demonstrations of Lemmas and Propositions in the Principia
are, in fact, proof sketches that require a lot of work on the part of the reader
for a detailed understanding. There are several reasons that make the Principia
a very difficult text to master. First of all, the proofs are very involved and one
requires an adequate knowledge of geometry to be able to understand many of
the steps made by Newton. Secondly, Newton’s exposition can be tedious and
difficult to grasp in places. Many mathematicians contemporary to Newton, des-
pite their grounding in ancient Greek geometry and familiarity with the style of
the exposition, had difficulties understanding Newton’s mathematical reasoning.
This gives an indication of the demands that a thorough study of the Principia
has on the modern reader.

As we mentioned in a previous paper, Newton’s geometry is also notable
for his use of limit or ultimate arguments in his proofs [13]. These are implicit
notions of differential calculus that are at the core of Newton’s treatment and
give Newton’s geometry an infinitesimal nature. Newton further adds motion to



his reasoning and enriches the geometry with various kinematics concepts that
enable points to move towards points for example. Thus, Newton’s geometry
consists in studying the relations, such as ratios, between various parts of the
constructed diagrams as certain of its elements tend towards limiting positions
or become infinitely small.

In this paper, we build on the tools and techniques that we presented before
[13]. In section 2, we review the geometric methods and concepts that we have
formalised in this work. We also give examples of theorems proved in Isabelle
using these techniques. Section 3 is a brief introduction to the concepts from
NSA that we use; it also outlines the infinitesimal aspects of our geometry. We
then present in Section 4, as a case study, the proof of the Kepler Proposition.
This is a key proof of the Book 1 of the Principia and our work follows, in its
steps, the analysis made by Densmore [9]. This extended case study shows our
combination of techniques from geometry and NSA at work to provide a formal
proof of a major proposition. The challenge inherent to the mechanisation of
Newton’s reasoning— especially in an interactive environment such as Isabelle
where the user guides the proof— will become obvious as we highlight the steps
and difficulties encountered. Section 5 offers our comments and conclusions.

2 Geometry

We use methods that are based on geometric invariants [5,6] and high level
geometry lemmas about these invariants. A particular property is ideal as an
invariant if it ensures that the proofs generated are short. This enables some of
the proofs to be derived automatically using the powerful tactics of Isabelle’s
classical reasoner. Also, the methods should be powerful enough to prove many
properties without adding auxiliary points or lines. The other important aspect
is to achieve diagram independence for the proofs, that is, the same proof can
be applied to several diagrams.

2.1 The Signed Area Method

In this method, there are basic rules about geometric properties called signed
areas. These can be used to express various geometric concepts such as collinear-
ity (coll), parallelism (||) and so on. Moreover, the basic rules can be combined
to prove more complex theorems which deal with frequently-used cases and help
simplify the search process.

We represent the line from point A to point B by A—B, its length by len(A—
B), and the signed area Sge1ta ABC' of a triangle is the usual notion of area with
its sign depending on how the vertices are ordered. We follow the usual approach
of having Sge1ta ABC' as positive if A—B—C is in anti-clockwise direction and
negative otherwise. Some of the rules and definitions used are:

a—b|lc—d = (Saertaa@bc = Sge1taabd)
collabc = len(a — b) X Sge1tapbc = len(b — c) X Sge1tapab



We can also introduce new points using the following property and define the
signed area of a quadrilateral Squaqa abcd in terms of signed areas of triangles:

Sgelta @& be= Sgelta @& bd+ Sgelta @& de+ Sgelta dbce

Squad abed = Sdelta @ be+ Sdeltaacd

We have proved a number of theorems about the sign of Squaaabcd that
depend on the ordering of the vertices, for example Squaa @bcd = —Squaaa dcb.

When dealing with geometry proofs, we often take for granted conditions
that need to be stated explicitly for machine proofs: for example, two points
making up a line should not coincide. The machine proofs are valid only if
these conditions are met. These are known as non-degenerate conditions and are
required in many cases to prevent the denominators of fractions from becoming
zero in the various algebraic statements.

2.2 The Full-Angle Method

A full-angle (u,v) is the angle from line u to line v measured anti-clockwise. We
define the equivalence relation of angular equality as follows:

r=qy=dneN. |z—y|=nn
and can use it to express that two lines are perpendicular
T
a—blc—d={a—bc—d)=, 5

Other properties of full-angles concern their sign and how they can be split
or joined. The same rule therefore either introduces a new line or eliminates a
common one from the full angles depending on the direction in which it is used.

(u,v) =4 —(v,u)
(u,v) =4 (u, ) + (x,v)

Full-angles are used instead of traditional angles because their use simplifies
many proofs by eliminating case-splits. Moreover, as we have already mentioned,
these methods are useful to us since they relate closely to the geometric prop-
erties used by Newton [13]. They preserve the intuitive nature of his geometry
and can easily be extended with infinitesimal notions, as we will see shortly.

2.3 A Simple Example: Euclid 1.29

Euclid’s proposition 29 of Book I [10], can be easily proved using the full-angle
method. The proposition states that if A — B || C' — D and the transversal P — @
intersects A — B and C — D then (A — B,P—Q)=(C —D,P — Q).



A P B

Fig. 1. Euclid Proposition I1.29

We prove this theorem easily by using the rules about full-angles given in
Section 2.2 and the fact the angle between two parallel lines is zero.
Proof:

A-B|C-D=>(A-B,C—D)=,0
(A—B,P—Q)+(P-Q,C—D)=,0

(A= B,P-Q) =, —(P—Q,C - D)

(A= B,P-Q) =, (C-D,P-Q).

2.4 Extending the Geometric Theory

The main aim of the Principia is to investigate mathematically the motion of
bodies such as planets. Thus, we need to have definitions for geometric figures
such as the circle, the ellipse and their tangents. The ellipse is especially import-
ant for this work since Kepler’s Problem is concerned with elliptical motion. The
circle can be viewed as a special case of the ellipse where the foci coincide.

ellipse f, fur = {p. [Len(f, — p)| + [Len(fa — p)] = r}
circlexzr = ellipsezz (2-7)
arclenzab =|len(z —a)| X (a —z,z — b)
e_tangent (a —b) f, fo E = (is_ellipsefi fo E N a € E A
(fi—a,a=b) =, (b—a,a—f>))

We need to prove a number of properties relating to the ellipse such as the
one stating that all parallelograms described around a given ellipse are equal to
each other (Figure 2).

This relationship appears (in slightly different wording) as Lemma 12 of
the Principia where it is employed in the solution of Proposition 11, the famous
Propositio Kepleriana or Kepler problem. Newton refers us to the “writers on
the conics sections” for a proof of the lemma. This lemma is demonstrated in



Fig. 2. Circumscribed Parallelograms

Book 7, Proposition 31 in the Conics of Apollonius of Perga [1]. Of course, unlike
Newton, we have to prove this result explicitly in Isabelle to make it available
to any other proof that might use it.

3 Infinitesimal Geometry

In this section, we give a brief overview of our geometry containing infinitesimals.
We first give formal definitions for the various types of numbers that exist and
which can be used to describe geometric quantities.

3.1 The Nonstandard Universe IR*

Definition 1. In an ordered field extension R* D IR, an element x € R* is
said to be an infinitesimal if |x| < r for all positive r € R; finite if |z| < r
for some r € R; infinite if |z| > r for all r € R.

The extended, richer number system IR* is known as the hyperreals. It has
been developed in Isabelle through purely definitional means using an ultrapower
construction. We will not give more details of this substantial construction in
the present paper so as to concentrate on the geometric aspects only.

Definition 2. z,y € IR* are said to be infinitely close, © ~ y if |v — y| is
infinitesimal.

This is an important equivalence relation that will enable us to reason about
infinitesimal quantities. For example, we can formalise the notion of two points
coinciding by saying that the distance between them is infinitely close to zero.
Two geometric quantities that become ultimately equal can also be modelled
using it. The relation and its properties are used to formalise ultimate situations
that might be considered degenerate by ordinary GTP methods [13].

Using the relation, we can also define the concept of two full-angles being infin-
itely close:

alﬁaGQEHTLEﬂ\I. |a1—a2|znﬂ'



Various other new properties, such as ultimately similar and ultimately congruent
triangles, can then be defined as we showed previously [13]. These are then
used to prove various Lemmas that are needed to demonstrate the important
Propositions of the Principia.

4 An Overview of the Proof

This is Proposition 11 of Book 1 of the Principia. This Proposition is im-
portant for both mathematical and historical reasons as it lays the foundations
for Kepler’s first law of Gravitation. It provides the mathematical analysis that
could explain and confirm Kepler’s guess that planets travelled in ellipses round
the sun [15].

The proof of this proposition will be studied in detail as it gives a good
overview of the mixture of geometry, algebra and limit reasoning that is so char-
acteristic of Newton’s Principia. It also gives an idea of the depth and amount of
mathematical expertise involved in Newton’s proof. The proof that Newton de-
scribes, though relatively short on paper, becomes a major demonstration when
expanded and reproduced using Isabelle. The elegance of many of the construc-
tions, which could be glossed over, are revealed through the detailed analysis.

We give formal justifications of the steps made by Newton in ultimate situ-
ations through our formal and logical use of infinitesimals. Infinitesimal reason-
ing is notorious for leading to contradictions. However, nonstandard analysis is
generally believed to be consistent and hence ensure that our mechanisation is
rigorous. We will give the enunciation of the Proposition and the proof (sketch)
provided by Newton. We will then expand on the sketch and provide detailed
proofs of the steps that are made by Newton. This will require the use of the
rules from the geometric and NSA theories developed in Isabelle.

4.1 Proposition 11 and Newton’s Proof

Proposition 11 is in fact stated as a problem by Newton at the start of Section 3
of the Principia. This section deals with “the motion of bodies in eccentric conic
section”. Particular orbits and laws governing forces that are relevant to the
universe are investigated. The mathematical tools are developed for later use in
Book III of the Principia when natural phenomena of our world are investigated.
Our task consists in expressing Newton’s result as a goal which is then proved.
Figure 3 shows Newton’s original diagram used for this Proposition.

Proposition 11 If a body revolves in an ellipse; it is required to find the law of
the centripetal force tending to the focus of the ellipse

Newton’s Proof:

Let S be the focus of the ellipse. Draw SP cutting the diameter DK of the
ellipse in E, and the ordinate Qu in z; and complete the parallelogram QzPR.
It is evident that EP is equal to the greater semiazis AC': for drawing HI from
the other focus H of the ellipse parallel to EC, because C'S, CH are equal, ES,



Fig. 3. Newton’s Original Diagram for Proposition 11

ET will be also equal; so that EP is the half-sum of PS, PI, that is (because
of the parallels HI, PR, and the equal angles IPR, HPZ ), of PS, PH, which
taken together are equal to the whole axis 2AC. Draw QT perpendicular to SP,

and putting L for the principal latus rectum of the ellipse (or for 2?82 ), we shall
have

L-QR:L-Pv=QR:Pv=PE:PC=AC: PC,
also, L - Pv:Gv-Pv =L:Gv, and, Gv- Pv: Qu? = PC?: CD?

By Corollary 2, Lemma 7, when the points P and Q) coincide, Qu> = Qz2,
and Qz? or Qv : QT? = EP? : PF? = CA? : PF?, and (by Lemma 12)
= CD? : CB?. Multiplying together corresponding terms of the four proportions,
and by simplifying, we shall have

L-QR:QT?=AC-L-PC?-CD?:PC-Gv-CD?-CB? =2PC : Gu,

since AC - L = 2BC?. But the points Q and P coinciding, 2PC and Gv are
equal. And therefore the quantities L - QR and QT?, proportional to these, will
also be equal. Let those equals be multiplied by %—Iﬁ, and L-SP? will become equal

to %. And therefore (by Corollary 1 and 5, Proposition 6) the centripetal

force is inversely as L - SP2, that is, inversely as the square of the distance SP.
Q.E.L

Newton’s derivation concludes that the centripetal force, for a body moving
in an ellipse, is inversely proportional to the square of the distance.



Our proof proceeds in several steps where we set up various relationships
that we will need for the conclusion. This involves proving Newton’s intermediate
results and storing them as intermediate theorems (we avoid calling them lemmas
so as not to confuse them with Newton’s own Lemmas).

4.2 A Geometric Representation for the Force

An investigation of the Proposition and Newton’s result indicates that our goal
is to prove that 3k € IR. force =~ k x # (i.e. force x # ultimately). We now
demonstrate through a combination of geometric and infinitesimal procedures
how to prove the theorem.

Our combination of methods was previously used to prove Kepler’s Law of
Equal Areas [13]. This is an important result which states that a body moving
under the influence of a centripetal force describes equal areas in equal times.
Using this result we can now derive a completely geometric representation for
the force acting on the orbiting body.

Force
S

Fig. 4. Diagram for Geometric Representation of Force

Consider Figure 4 in which a point P is moving along an arc of finite curvature
under the influence of a centripetal force acting towards S. Let ) be a point
infinitely close to P, that is, the length of the arc from P to @ is infinitesimal. QR,
parallel to SP, represents the displacement from the rectilinear motion (along
the tangent) due to the force acting on P. QT is the perpendicular dropped to
SP. From Newton’s Lemma 10, Corollary 3, we have that displacement “in
the very beginning of motion” is proportional to the force and the square of the
time, and hence (for some real proportionality constant ki) that

len(Q —R)

Time? (1)
Since the distance between P and @) is infinitesimal, the angle (P — S, S — Q)
is infinitely small, and hence the area of the sector SPQ (Sarc SPQ) is infinitely
close to that of the triangle SPQ:

force =~ k1 %

(P—SaS—Q> zaO:>Sarcspgwsdelt’.aspm
= Sarc SPQ~ 1/2 x len(Q — T) X len(S — P) (2)



From Kepler’s Law of Equal Areas, we can replace Time by S.,.SPQ [13] and,
hence, using (1) and (2), we have the following geometric representation for the
force (for some new proportionality constant k)

len(Q —R)
len(Q — T)? X len(S — P)?

force ~ k x (3)

This is a general result (Proposition 6 of the Principia) that applies to any
motion along an arc under the influence of a central force. We justify the use
of a circular arc for the general arc by the fact that it is possible to construct
a circle at the point P that represents the best approximation to the curvature
there. This circle, sometimes known as the osculating circle!, has the same first
and second derivative as the curve at the given point P. Thus, the osculating
circle has the same curvature and tangent at P as the general curve and an
infinitesimal arc will also be same. We refer the reader to Brackenridge for more
details on the technique [2, 3].

With this result set up, to prove the Kepler Problem, we need to show that the
ratio involving the infinitesimal quantities Q R and QT is equal or infinitely close
to some constant (finite) quantity. Thus, the proof of Proposition 11 involves, in
essence, eliminating the infinitesimals from relation (3) above. This relation is
transformed using the geometry of the ellipse to one involving only macroscopic
(i.e. non-infinitesimals) aspects of the orbit. We show next how the various GTP
and NSA techniques are applied to the analysis of an elliptical orbit to determine
the nature of the centripetal force.

4.3 Expanding Newton’s Proof

A detailed account of our mechanisation of Newton’s argument for Proposition
11 would take several pages since the proof sketch given by Newton is complex
and we would have to present a large number of derivations. We will highlight
the main results that were proved and, in some cases, details of the properties
that needed to be set up first. We will also mention the constraints that needed
to be satisfied within our framework before the various ratios that were proved
could be combined. Our mechanisation was broken down into several steps that
roughly followed from Newton’s original proof. The main results that are set up
are as follows (see Fig. 3):

len(E —P) = len(A — C)

— len(A—C)/len(P—C) =L x len(Q —R)/L X len(P — v)

L x len(P —v)/(len(G — v) X len(P —v)) = L/len(G — v)

— len(G —v) x len(P — v)/1len(Q — v)? = len(P — C)?/1en(C — D)2
— len(Q — v)%/1en(Q — T)2 ~ len(C — D)?/1en(C — B)?

Step 1: Proving len(E — P) = len(A — C)

! from the Latin osculare meaning to kiss— the term was first used by Leibniz



This result shows that the length of EP is independent of P and Newton’s
proof uses several properties of the ellipse. We will give a rather detailed over-
view of this particular proof as it gives an idea of the amount of work involved
in mechanising Newton’s geometric reasoning. Moreover, the reader can then
compare Newton’s proof style and prose with our own proof and see the GTP
methods we have formalised in action.

Fig. 5. Construction for Step 1 of Proposition 11

In Figure 5, the following holds

— (' is the centre of the ellipse with S and H the foci
— P is a point of the curve

— RZ is the tangent at P

— the conjugate diameter D — K || P — Z

— P — S intersects D — K at E

— H-T||E—-C and H — I intersects P — S at I

Since H—I || E — C, the following theorem holds,
H—I||E—C:>Sde1taCEI:SdeltaCEH (4)

But the foci are collinear with and (by Apollonius III1.45 [1]) equidistant from
the centre of the ellipse; so the following can be derived using the signed-area
method,

coll SCH=> len(S — C) X Sgerta CEH = len(C — H) X Sge1ta CSE
— Sge1ta CEH = Sge1ta CSE (5)

Also, points S, E and I are collinear and therefore combining with (4) and (5)
above, we verify Newton’s “ES,EI will also be equal”

coll SEI = len(S — E) X Sge1ta CEI = len(E — I) X Sge1ta CSE
= len(S—E) = len(E — I) (6)



Next, the following derivations can be made, with the help of the last result
proving Newton’s “EP is the half-sum of PS, PI”

coll EIP = len(E—P) = len(E—I) + len(I —P)
— len(E—P) = len(S —E) + len(I —P)
= 2 x len(E— P) = len(E — P) + 1len(S — E) + len(I — P)
= 2 x len(E —P) = len(S — P) + len(I — P)
len(S—P) + len(I — P)
2

= len(E—P) =

Note the use of the following theorem in the derivation above
coll SEP = len(S —E) + len(E — P) = len(S — P)
Next, Newton argues that in fact (7) can be written as

len(S — P) + len(H — P)
2

len(E—P) =

(8)

So, a proof of len(I —P) = len(H — P) is needed to progress further. This will
follow if it can be shown that APHI is an isosceles, that is

(P-—HH—-I)=(H-1I,1—P) (9)
To prove (9), both H—I||P—Z and H—I| P —R are derived first using
H-I||E-CAE-C||P-Z=—H-1I|P-2Z (10)

H—I||P—ZAcoll PZR=H—-I||P—R (11)

From (10), (11), and the proof of Euclid I1.29 given in Section 2.3

H—I||P-Z= (P—HH—I)=(H—P,P—2) (12)
H—I||P-R= (H-I,I-P)=(R—P,P—1I)
— (H-I,I-P)=(R—P,P—8) (13)

From the definition of the tangent to an ellipse and the collinearity of P, I, and
S (also recall that full-angles are angles between lines rather than rays and are
measured anti-clockwise),

e_tangent (P—Z) S H Ellipse = (H—P,P—-Z) =(R—P,P—1I)
— (H—P,P—2Z)=(R—P,P—S) (14)

From (12), (13) and (14), the following is deduced as required



(P-HH-I)=(H—1,I—P)

Thus, we have len(I — P) = len(H — P) (Euclid 1.6 [10]), and hence (8) is proved,
that is, Newton’s assertion that “[EP is the half sum of] PS,PH”.

Next, it follows from the definition of an ellipse that the sum of 1len(S — P) and
len(P — H) is equal to the length of the major axis, that is,

P € Ellipse = len(S — P) + len(P —H) = 2 x len(A — C) (15)

From (15) and (8), we can finally derive the property that Newton states as
being evident: “EP is equal to the greater semiaxis AC”

len(E —P) = len(A —C) (16)

The first step has shown Newton’s geometric reasoning in action. For the
next steps, as the various ratios are derived, we will not always show the detailed
derivations of the geometric theorems. We will concentrate on the setting up of
the proportions and how everything is put together to get the final result. We will
state Newton’s Lemmas when they are used and theorems about infinitesimals
that we use.

LQR _ QR _ PE _ AC

Step 2: Showing

L. Pv — Puv PC — PC

Fig. 6. Construction for Steps 2—4 of Proposition 11

In Figure 6, in addition to properties already mentioned, the following holds

- QT LSP

— QzPR is a parallelogram
— @, x, and v are collinear
— ( is infinitely close to P



It is easily proved that v —x || C — E and so the following theorem follows

v-x||C—E=(P—v,v—x)=(P—-C,C—E) (17)

From (17) and the fact that APvx and APCE share P as a common vertex,
it follows that they are similar. Also, since QxPR is a parallelogram, we have
len(Q —R) = len(P — x). Thus, the following derivations follow

len(P—E) len(P—x) 1len(Q—R) 1len(A-C)

SIM PVxPCE = = = =
len(P—C) 1len(P—v) 1len(P—v) 1len(P—C)

(18)

One of the substitution used in (18) follows from (16) proved in the previous
step. The equations above verify Newton’s ratios.

LPU_L

Step 3: Showing e

The proof of the ratio

L X len(P —v) _ L
len(G—v) x len(P —v) len(G—v) (19)

is trivial and we will not expand on it. We only note that the constant L is
known as the latus rectum? of the ellipse at A.

Gv Pv _ PC?

Step 4: Showing = &Pz

By Apollonius 1.21 [1], if the lines DC' and Qu are dropped ordinatewise to the
diameter PG, the squares on them DC? and Qu® will be to each other as the
areas contained by the straight lines cut off GC', CP, and Gv, vP on diameter
PG. Algebraically, we proved the following property of the ellipse,

len(D—C)? 1len(G—C) x len(C—P)
len(Q —v)2  len(G—v) x len(P —v)
len(P — C)?2

len(G—v) x len(P —v)
Rearranging the terms, we get the required ratio,

len(G—v) x len(P—v)  len(P —C)?
len(Q — v)2 ~ len(D - C)2

~ CD?

QT2 ~ &gz and intermediate ratios

Step 5: Showing <

In Figure 7, we have the additional property,

% The latus rectum is defined as L = 2 x len(B — C)?/1len(A — C)



G K

Fig. 7. Construction for Step 5 of Proposition 11

- PF 1 DK

Again, it can be easily proved that Qx || EF. The following theorem then follows
from Euclid 1.29 as given in Section 2.3

Q—x||E-F= {(Q—x,x—E)=(F—EE—x)
= Q—-x,x—T)=(F—EE—-P) (21)

Since (P —F,F—E,) =(x —T,T— Q) = /2 and (21), it follows that APEF and
AQxT are similar. The next theorems (using (16) where needed) then hold and
verify Newton’s intermediate results for the current Step.

len(Q—x)? len(P—E)?  len(C— A)?
len(Q—T)2 len(P—F)2 len(P—F)2

SIM PEFQxT = (22)
Newton’s Lemma 12 (See Figure 2) is now needed for the next result. According
to the Lemma, the parallelogram circumscribed about DK and PG is equal to
the parallelogram circumscribed about the major and minor axes of the ellipse.
Thence, we have the following theorem

len(C—A) x len(C —B) = len(C — D) x len(P — F) (23)

Rearranging (23), we have len(C — A)/len(P — F) = len(C — D)/1len(C — B) and
substituting in (22), leads to

len(Q —x)?> len(C—D)?
len(Q —T)2 1len(C — B)2 (24)




By Newton’s Lemma 7, Corollary 2, when the distance between ) and P
becomes infinitesimal as they coincide, we have the following result [13]:

len(Q—v) ~1 (25)
len(Q — x)

Now, to reach the final result for this step, we need to substitute len(Q — v)
for len(Q — x) in (22). However, we cannot simply carry out the substitution
even though the quantities are infinitely close. Indeed, one has to be careful
when multiplying the quantities on both sides of the ~ relation because they
might no longer be infinitely close after the multiplication. Consider, the non-
zero infinitesimal e,

exelbutex /e e? x 1/e

It is possible, however, to multiply two infinitely close quantities by any finite
quantity; the results are still infinitely close. This follows from the theorem:

rRYyAu€Finite=zx XUy Xu (26)

Now, assuming that len(C — D) and len(C — B) are both finite but not infin-
itesimal (for example, len(C — D),1len(C —B) € IR), then len(C — D)/len(C — B)
is Finite. Hence, the ratio of infinitesimals len(Q — x)/len(Q — T) is Finite.
Therefore, from (25), (26), and using (24) the following theorem is derived:

len(Q —v)®> len(C-D)?
len(Q—T)2  len(C —B)?

(27)

This gives the result that we wanted for the fifth step of the proof of Proposition
11. We are now ready for putting all the various results together in the next and
final step. This will then conclude the formal proof of the Proposition.

Step 6: Putting the ratios together

Combining (20) and (27), with the help of theorem (26) and some algebra
yields,

len(Q -~ v)? _ len(C—D)? len(G—v) x len(P—v) . .
len(Q — T)2 ~ len(C — B)? Ten(q— v)? € Finite
len(G—v) x len(P—v) len(P—C)’ o8)
len(Q —T)? - len(C — B)?

which is combined with (19) to derive the next relation between ratios. The
reader can check that both sides of the ~ relation are multiplied by finite quant-
ities ensuring the results are infinitely close:



Lxlen(P—v) len(P—C)2 x L
len(Q-T)2 ~ len(C-—B)? x len(G— v)
The next task is to combine the last result (29) with (18) to yield the follow-
ing ratio which is equivalent to Newton’s “L- QR : QT? = AC-L-PC?-CD? :
PC-Gv-CD*-CB*?
Lxlen(@—R) len(P—C)xLxlen(A—C)
len(Q—T)2  1len(C—B)2 x len(G —v)

(29)

(30)

But, we know that L = 2 x len(B — C)2/1len(A — C), so (30) can be further sim-
plified to give Newton’s other ratio “L - QR : QT? = 2PC : Gv”

Lxlen(Q—R) 2xlen(P—C)
len(Q—T)2 ~  1len(G—v)

(31)

Once these ratios have been derived, Newton says “But the points () and P
coinciding, 2PC and Gv are equal. And therefore the quantities L-QR
and QT?, proportional to these are also equal.”

We formalise this by showing that len(P — v) = 0 as the distance between @
and P becomes infinitesimal; thus, it follows that 2 x len(P — C)/len(G — v) ~ 1
and so, using (31) and the transitivity of ~, we have the result

L x len(Q —R) ~1 (32)
len(Q — T)?
The final step in Newton’s derivation is “Let those equals be multiplied
by SQ—I;; and L - SP? will become equal to &g]ﬂ,,_ This final ratio gives
the geometric representation for the force, as we showed in Section 4.2, and
hence enables Newton to deduce immediately that the centripetal force obeys
an inverse square law.

We would like to derive Newton’s result in the same way, but remark that

len(S —P) € Finite — Infinitesimal A len(Q —R) € Infinitesimal
len(S — P)?

Ten(Q—R) € Infinite (33)

as @ and P become coincident. So, there seems to be a problem with simply
multiplying (32) by Newton’s ratio SP?/QR since we cannot ensure that the
results are infinitely close. Our formal framework forbids the multiplication that
Newton does as the result is not necessarily a theorem!

Therefore, we need to find an alternative way of arriving at the same result
as Newton. Recall from Section 4.2, that we have proved the following geometric
representation for the centripetal force:

len(Q —R) 1

Joree = ke x len(Q — T)? X len(S — P)?

(34)



Now from (32), we can deduce that since L € Finite — Infinitesimal, the
following theorems hold

% € Finite — Infinitesimal (35)

len(Q — T)2 N

Ten@-R) (36)
_T)2

% € Finite (37)

Since (35) holds and 1/1len(S — P)? € Finite, it follows that force € Finite and
so we can now use the following theorem about the product of finite, infinitely
close quantities

a~b AN c~d AN aé€Finite A c€ Finite=—axcrbxd

with (34), (36), and (37) to yield

~ len(Q —R) 1 Len(Q — T)°
force x L = k x Ten(Q — T)? x len(S—P)2 " 1len(Q —R)
1
~k x m (38)

Note that we also used the fact that ~ is symmetric in the derivation above.
Finally from (38), we get to the celebrated result since L is finite (real) and

constant for a given ellipse,

f k o 1
orce ~ —
L len(S—P)?
1
i _— 39
force Xuyitimate lel’l(s — P)2 ( )

5 Final Comments

We would like to conclude by mentioning some important aspects of this mech-
anisation and possible changes to the geometry theory that could improve auto-
mation. We also briefly review what we have achieved.



5.1 On Finite Geometric Witnesses

We have made an important remark about steps involving infinitesimals, ratios of
infinitesimals and the infinitely close relation. Whenever we are dealing with such
ratios, care needs to be exercised as we cannot be sure what the result of dividing
two infinitesimals is: it can be infinitesimal, finite or infinite. We notice, when
carrying out our formalisation, that whenever Newton is manipulating the ratio
of vanishing quantities, he usually makes sure that this can be expressed in terms
of some finite quantity as in the proof for Step 5 of Section 4.3. Thus, the ratio of
infinitesimals is shown to be infinitely close or even equal to some finite quantity.
This ensures that such a finite ratio can be used safely and soundly within our
framework. The importance of setting up such finite geometric witnesses cannot
be under-stated since the rigour of NSA might prevent steps involving ratios of
infinitesimals from being carried out otherwise. Indeed, we have seen that the
lack of a finite witness in the last step of Newton’s original argument prevents
us from deriving the final result in the same way as he does. The alternative way
we went about deriving the result, however, is sound and follows from rules that
have been proved within our framework.

5.2 Further Work

In our previous work [13], we mentioned the existence of other methods, such
as the Clifford algebra, that provide short and readable proofs [4, 11]. Although
these algebraic techniques are more difficult to relate with the geometric concepts
that are actually used in Newton’s reasoning, interesting work done by Wang et
al. has come to our attention in which powerful sets of rewrite rules have been
derived to carry out proofs in Euclidean geometry [12, 16]. It would be interesting
to see how these could be integrated with Isabelle’s powerful simplifier to provide
a greater degree of automation in some of our proofs. In a sense, such an approach
would match in the level of details some of the results that Newton states (as
obvious) and does not prove in depth.

As an interesting observation, it is worth noting that the Kepler Problem
can be proved, or even discovered, using algebraic computations. This has been
demonstrated through the work on mechanics done by Wu [17], and also by Chou
and Gao [7, 8], in the early nineties.

5.3 Conclusions

We have described in detail the machine proof of Proposition 11 of the Principia
and shown how the theories developed in Isabelle can be used to derive Newton’s
geometric representations for physical concepts. We have used the same combin-
ation of geometry and NSA rules introduced in our previous work to confirm,
through a study of one of the most important Propositions of the Principia, that
Newton’s geometric and ultimate procedures can be cast within the rigour of our
formal framework. The discovery of a step in Newton’s reasoning that could not
be justified formally— in contrast with other ones where Newton explicitly sets



up finite witnesses— is an important one. The alternative derivation presented in
this work shows how to use our rules to deduce the same result soundly.

Once again, the mechanisation of results from the Principia has been an in-
teresting and challenging exercise. Newton’s original reasoning, though complex
and often hard to follow, displays the impressive deductive power of geometry.
The addition of infinitesimal notions results in a richer, more powerful geometry
in which new properties can emerge in ultimate situation. Moreover, we now
have new, powerful tools to study the model built on Newton’s exposition of the
physical world.
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