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Abstract. The use of computer algebra is usually considered beneficial for mechanised
reasoning in mathematical domains. We present a case study, in the application domain
of coding theory, that supports this claim: the mechanised proofs depend on non-trivial
algorithms from computer algebra and increase the reasoning power of the theorem prover.

The unsoundness of computer algebra systems is a major problem in interfacing them to
theorem provers. Our approach to obtaining a sound overall system is not blanket distrust
but based on the distinction between algorithms we call sound and ad hoc respectively. This
distinction is blurred in most computer algebra systems. Our experimental interface there-
fore uses a computer algebra library. It is based on formal specifications for the algorithms,
and links the computer algebra library Sumit to the prover Isabelle.

We give details of the interface, the use of the computer algebra system on the tactic-level
of Isabelle and its integration into proof procedures.
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1. Motivation

Is the use of computer algebra technology beneficial for mechanised reasoning in and about
mathematical domains? Usually it is assumed that it is. Many works in this area, however,
either have little reasoning content, or use symbolic computation only to simplify expressions.
Exceptions are Analytica [Clarke and Zhao, 1993] and work by [Harrison, 1996]. Both these
approaches do not scale up. The former trusts the computer algebra system too much, the
latter, too little. Computer algebra systems are not logically sound reasoning systems, but
collections of algorithms.

The extension of a prover by computer algebra does not, or rather should not, change the
prover’s logical strength. In fact, trustworthy extension of a prover means that neither more nor
fewer theorems should be provable in principle, but proofs for certain theorems should become
shorter. The motivation for our work comes from the pragmatics of interactive proof, which
often is tedious and laborious. Therefore it is not helpful, if a computation obtained by a
computer algebra system needs to be verified. Many algorithms in computer algebra can be
trusted. It would be possible to verify such algorithms in a prover, and this has indeed been
done, for example by [Théry, 1998] for Buchberger’s algorithm. However, we are not concerned
with such applications of provers. Algorithms from computer algebra are generally not of much
use in these proofs, because the theorems that have to be proved are rather abstract. As far as
the design of a prover is concerned, not much can be learned from such experiments.

Apart from the verification of numerical hardware and software, linking mechanised reasoning
and computer algebra gives insight into the design of logically more expressive frameworks for
computer algebra, has applications in educational software and is a step towards the development
of mathematical assistants. Among the applications, geometry theorem proving is a prospective
candidate. For a survey on this, see [Geddes et al., 1992, Section 10.6].

This work presents a case study that requires hard techniques from both sides. The proofs
we mechanise require algorithms from computer algebra in order to be solved effectively. They
also rely on the formalisation of natural numbers, sets and lists, which are available in the prover
Isabelle, and make heavy use of advanced proof procedures.

The outline of this article is as follows. In Section 2 we briefly describe the context of
interactive theorem proving and the prover Isabelle. We then present an analysis of the soundness
problems in computer algebra and, based on this, describe the design of an interface. The
remainder of the paper is devoted to our case study. Section 3 introduces the mathematical
background along the lines of its mechanisation in Isabelle. Section 4 is a brief introduction to
coding theory and Section 5 presents the mechanised proofs. Section 6 reviews important details
of the implementation and conclusions follow in Section 7.

2. Interface between Isabelle and Sumit

The interface we present is between the prover Isabelle and the computer algebra library Sumit.
See [Paulson, 1994] and [Bronstein, 1996a, Bronstein, 1996b] respectively.
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2.1. Isabelle

Isabelle is a natural deduction-style theorem prover. Proofs are carried out interactively by
applying tactics to the proof state and so replacing subgoals by simpler ones until all the sub-
goals are proved. Isabelle provides tactics that perform single inference steps and also highly
automated proof procedures, like the simplifier and a tactic that implements a tableau prover.

Isabelle, like other LCF-style theorem provers, allows the user to program arbitrary tactics,
which can implement specialised proof procedures. The design of Isabelle ensures that unsound-
ness cannot be introduced to the system through these procedures. This is achieved by using an
abstract data-type thm for theorems. Theorems can only be generated by operations provided
by the data-type. These operations implement the primitive inference rules of the logic.

Isabelle also provides an oracle mechanism to interface trusted external provers. An oracle
can create a theorem, i.e. an object of type thm, without proving it through the inference rules.
This, of course, weakens the rigour of the LCF-approach, but theorems proved later on can
record on which external theorems they depend.

We use Isabelle’s object logic HOL, which implements Church’s theory of simple types, also
known as higher order logic. This is a typed version of the λ-calculus. The logic has the usual
connectives (∧,∨,−→, . . . ) and quantifiers (∀,∃). Currying is used for function application. We
write f a b instead of f(a, b). Equality = on the type bool is used to express if-and-only-if. For
definitions we use ≡, and =⇒ expresses entailment in a deduction rule. Some definitions require
Hilbert’s ε-operator, which is actually a quantifier: εx.P x denotes the unique value for which
the predicate P holds, presupposing its existence. The notation for formulae in this paper is
close to their representation in Isabelle. We have omitted all type information from formulae to
improve their legibility. If type information is necessary, we give it informally in the context.

2.2. Soundness in Computer Algebra

Computer algebra systems have been designed as tools that perform complicated algebraic com-
putations. Their soundness or, as some authors might prefer to say, unsoundness has become
a focus, see [Harrison, 1996, Homann, 1997] for examples. A systematic presentation of more
examples is [Stoutemyer, 1991]. We have identified the following reasons for unsoundness in the
design of computer algebra systems:
• They present a misleadingly uniform interface to collections of algorithms. An object,

which is used with a particular meaning in one algorithm, can be used with a different
meaning in another algorithm. Particularly problematic are symbols, which are used as
formal indeterminates in polynomials and as variables in expressions.

An example for this problem can be illustrated with the solve command:

solve(
(x− 1)2

x2 − 1
= 0, x)

yields x = 1 on a number of computer algebra systems. But this is not a solution to the
equation, because for x = 1 the denominator vanishes. If we perform the computation in
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Axiom [Jenks and Sutor, 1992] and split it in two steps we obtain a hint on the reason by
the system’s type system. See Figure 1.

frame0 (1) ->a := (x-1)^2/(x^2-1)

x - 1

(1) -----

x + 1

Type: Fraction Polynomial Integer

frame0 (2) ->solve(a = 0, x)

(2) [x= 1]

Type: List Equation Fraction Polynomial Integer

Figure 1. Solving the equation (x−1)2

x2−1
= 0 in Axiom.

The fraction is treated as a fraction of polynomials and automatically cancelled. This is
a valid operation on polynomials, because here x is an indeterminate, not a variable, and
in particular x − 1 6= 0. The solve-function, despite using the same type, treats x as a
variable. This incompatibility leads to the wrong answer. For a more precise description
of the problem, see Appendix A.

Therefore interfacing to a computer algebra system through its user interface is problem-
atic. In this case, the situation is even worse, because an algorithm that is built into the
system assumes the wrong semantics for the data-type it operates on.
• Computer algebra systems have only limited capabilities for handling side conditions or

case splits, if such facilities exist at all. An example is
∫
xn dx. Computer algebra systems

return xn+1

n+1 . Substituting n = −1 yields an undefined term, while the solution of the
integral is lnx. This problem is known as specialisation problem, but hardly ever referred
to in the literature, see [Corless and Jeffrey, 1997].
• Many algorithms that are implemented in computer algebra systems rest on mathemati-

cal theory, and their correctness is well established: proofs for their correctness have been
published. Examples for these are factorisation algorithms for polynomials, Gaussian elim-
ination and Risch’s method for integration in finite terms. The design of other algorithms
is less rigorous. A prominent example is definite integration. Computing the area under a
curve f is usually done by determining its anti-derivative F . By the fundamental theorem
of integral calculus, one gets

∫ b
a f = Fb − Fa. [Davenport, 1998] points out that this is

unsound for several reasons: the integral might not exist or contain discontinuities. Also
the output of Risch’s method does not necessarily correspond to a continuous function.

We call the former sort of algorithms sound and the latter ad hoc. A historic perspective
on this distinction can be found in [Calmet and Campbell, 1997, Section 2].

Of course, computer algebra systems also contain implementation errors. Depending on how
rigorous one wants to be, one can reject any result of a computer algebra system without formal
verification in the prover. Considering the amount of work required to re-implement these
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algorithms in a theorem prover, and the poor efficiency one could expect, we decide to live with
possible bugs but look for ways of avoiding the systematic errors.

2.3. Design of the Interface

The interface obviously needs to translate objects between Isabelle’s and the computer algebra
system’s representation. The translation cannot be performed uniformly, but needs to take into
account which algorithm the objects are passed to or returned from. As we can only use a
selection of algorithms of the system safely, we need to interface to these directly rather than to
the system as a whole.

Unfortunately, it turns out to be difficult to tell sound algorithms from ad hoc ones in large,
multipurpose computer algebra systems. Without lengthy code inspections one cannot be sure
that a piece of otherwise sound code depends on a module that is ad hoc. This is particularly
so, because code for simplification of expressions is usually spread all over the system.

We have therefore chosen the rather small computer algebra library Sumit, which is written
in the strongly typed language Aldor [Watt et al., 1994], originally designed for the computer
algebra system Axiom. References to the literature for the algorithms implemented by this
library. From these, formal specifications can be extracted.

The outline of a prototype interface between Isabelle and Sumit is straightforward. We
provide stubs that translate between Isabelle’s λ-terms and Sumit’s algebraic objects. Argu-
ments and results of the computation are composed to a λ-term representing a theorem. This
is done using what we call a theorem template: at this experimental stage, simply a piece of
code. The generated theorem is an instance of the algorithm’s formal specification. The alge-
braic algorithms, stubs and theorem templates are wrapped to a server dealing with Isabelle’s
requests. The server we obtain this way is only a skeleton: stubs and theorem templates are
added incrementally for algorithms that are to be used.

The relation between types, or more generally speaking representations, in the two systems
is involved. Sumit uses the type Integer to represent both natural numbers and integers. These
have to be distinguished in Isabelle, because they obey different laws of reasoning. Conversely,
polynomials in Isabelle are translated to sparse univariate polynomials in Sumit, if a factorisation
is to be computed. In order to solve the equation system given by comparing coefficients, the
polynomials need to be coerced to vectors of appropriate size.1 This means that the relation
between the types does not even form a mapping.

We resolve this problem by letting translations depend not only on the types, but also on
the algorithm they interface. We call an algorithm together with its translation functions a
service. Note that this also avoids the type reconstruction problem we would otherwise have,
when interfacing to an untyped computer algebra system.

1Representation changes are common in computer algebra. One could try and perform all of them in the

reasoning system. But this would not be very efficient, and given the state of art in mechanised reasoning,

formalising as few algebraic domains as possible is desirable.
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3. Polynomial Algebra

The algebraic approach to cyclic codes is based upon the theory of polynomial rings. We sketch
this theory briefly to provide the necessary background, and also to show to what extent it
has been formalised within Isabelle/HOL. The type system of this logic supports simple types
extended by axiomatic type classes, which we use to represent abstract algebraic structures.
Subtyping has to be made explicit using suitable embedding functions. Our formalisation follows
[Jacobson, 1985]. We have proved all the stated facts and theorems in Isabelle and in fact many
more lemmas, most of them being too trivial to be mentioned. Nevertheless, they are important
in order to reason in that domain.

3.1. The Hierarchy of Ring Structures

One obtains various kinds of rings by imposing conditions on the ring’s multiplicative monoid.
Integral domains, or domains for short, do not contain any zero divisors other than zero: formally,
a 6= 0 and b 6= 0 implies a · b 6= 0.

An element a is said to divide b, if there is an element d such that a · d = b. We write a | b.
Two elements are associated a ∼ b, if both a | b and b | a. An element that divides 1 is called
a unit. Associated elements differ by a unit factor only. An element is called irreducible if it is
nonzero, not a unit and all its proper factors are units. Formally,

irred a ≡ a 6= 0 ∧ a - 1 ∧ (∀d. d | a −→ d | 1 ∨ a | d).

An element is called prime if it is nonzero, not a unit and, whenever it divides a product, it
already divides one of the factors.

prime p ≡ p 6= 0 ∧ p - 1 ∧ (∀a b. p | a · b −→ p | a ∨ p | b)

The factorisation of an element x into irreducible elements is defined by the following predicate:

Factorisationx F u ≡ (x = foldr · F u) ∧ (∀a ∈ F. irred a) ∧ u | 1 (1)

F is the list of irreducible factors and u is a unit element. The list operator foldr combines all
the elements of a list, here by means of the multiplication operation “·”. The product of the
elements of F and of u is x.

An integral domain R is called factorial if the factorisation of the elements into irreducible
factors is unique up to the order of the factors and associated elements. This is equivalent to R
satisfying a divisor chain condition and every irreducible element of R being prime. The divisor
chain condition is not needed in our proofs. Therefore we formalise factorial domains only using
the second condition, which is also called the primeness condition. Fields are commutative rings
where every non-zero element has a multiplicative inverse.
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3.2. Polynomials

Polynomials are a generic construction over rings. For a given ring R, they are an abstraction of
functions from N→ R that map all but a finite number of natural numbers to zero. Appropriate
definitions of the operations make this structure a ring, which is denoted by R[X]. The symbol
X abbreviates the function (n 7→ if n = 1 then 1 else 0) and is called the indeterminate of the
polynomial ring. Further to the ring operations there is the embedding const :

{
R → R[X]

a 7→ aX0

}
. We

derive the representation theorem

deg p ≤ n =⇒
n∑
i=0

piX
i = p, (2)

where the pi denote the coefficients of p.
Polynomials must not be confused with polynomial functions.2 Their relation is described in

terms of the evaluation homomorphism. A function f : R→ S over rings is a ring homomorphism
if f(a+ b) = fa+fb, f(a · b) = fa ·fb and f1 = 1. Given a homomorphism φ : R→ S we define

EVALφ a p ≡
deg p∑
i=0

φpi · an.

EVALφ a : R[X] → S is a homomorphism as well. It evaluates a polynomial in S substituting
a ∈ S for the indeterminate and mapping the coefficients of p to S by φ. The following facts
express this characterisation formally.

homoφ =⇒ homo(EVALφ a) (3)

homoφ =⇒ EVALφ a (Xn) = an (4)

EVALφ a (const b) = φb (5)

Here the predicate homo asserts that its argument is a ring homomorphism.
Polynomial rings have the following properties in terms of the hierarchy of rings: polynomials

over a ring form a ring and polynomials over an integral domain again a domain. Polynomials
over a field form a factorial domain.

3.3. Fields and Minimal Polynomial

The field F2 = {0, 1} is fundamental in an algebraic treatment of binary codes. Codewords are
represented as polynomials in F2[X]. Note that associated elements are equal in these domains.

Let h be an irreducible polynomial of degree n. The residue ring obtained from F2[X] by
“computing modulo h” is a field with 2n elements. We do not need to carry out this quotient
construction of a field extension explicitly, as we only need to define the notion of minimal

2Polynomial functions are a subtype of R → R and not isomorphic to R[X] when R is finite: for F2 we have

|F2[X]| =∞, but |F2 → F2| = 4.
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polynomial. Let G be an extension field of F and a ∈ G. The non-zero polynomial m ∈ F [X] of
smallest degree, such that m evaluated at a is zero, is the minimal polynomial. Our definition
of the minimal polynomial uses two steps:

minimal g S ≡ g ∈ S ∧ g 6= 0 ∧ (∀v ∈ S. v 6= 0 −→ deg g ≤ deg v) (6)

min poly h a ≡ εg.minimal g {p|(EVAL const a p) remh = 0} (7)

The predicate minimal g S abbreviates that g is a polynomial of minimal degree, but not zero,
in the set S. This cannot be formalised using a function, because the minimal element need
not be unique. The minimal polynomial of a in the extension constructed with h is then the
unique minimal element of the set of solutions for p of the equation (EVAL const a p) remh = 0.
Note that here a ∈ F2[X] and hence the embedding const is needed to lift the coefficients of p
to F2[X]. The computation is carried out modulo h by means of the remainder function rem
associated with polynomial division.

4. Coding Theory

This discipline studies the transmission of information over communication channels. In practice,
information gets distorted because of noise. Therefore coding theory seeks to design codes that
allow for high information rates and the correction of errors introduced in the channel. At
the same time, fast encoding and decoding algorithms are required to permit high transmission
speeds.

The following presentation of coding theory follows [Hoffman et al., 1991]. The codes we are
interested in for the purpose of this case study belong to a class of binary codes with words of
fixed length, so called block codes. n-error-detecting codes have the capability to detect n errors
in the transmission of a word; n-error-correcting codes can even correct n errors. The distance
between two codewords is the number of differing bit-positions between them. The distance of
a code is the minimum distance between any two words of that code.

Definition 4.1. A code is linear if the exclusive or of two codewords is also a codeword. It is
cyclic if for every codeword a0 · · · an its cyclic shift ana0 · · · an−1 is also a codeword.

Codes that are linear and cyclic can be studied using algebraic methods. Linear codes are F2-
vector spaces. A code with 2k codewords has dimension k and there is a basis of codewords that
span the code. It is convenient to identify codewords with polynomials:

a0 · · · an−1 ←→ a0 + a1X + . . .+ an−1X
n−1

The cyclic shift of a codeword a is then (X · a) rem(Xn − 1).
There is a nonzero codeword of least degree in every linear cyclic code. This is called the

generator polynomial. It is unique and its cyclic shifts form a basis for the code. It is important,
because a linear cyclic code is fully determined by its length and its generator polynomial. The
generator polynomial has the following algebraic characterisation:
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Theorem 4.1. (Generator polynomial) There exists a cyclic linear code of length n such
that the polynomial g is the generator polynomial of that code if and only if g divides Xn − 1.

4.1. Hamming Codes

Hamming codes are linear codes of distance 3 and are 1-error-correcting. They are perfect codes:
they attain a theoretical bound limiting the number of codewords of a code of given length and
distance. For every r ≥ 2 there are cyclic Hamming codes of length 2r − 1.

An irreducible polynomial of degree n that does not divide Xm−1 for m ∈ {n+1, . . . , 2n−2}
is called primitive.3 This allows us to state the following structural theorem on cyclic Hamming
codes:

Theorem 4.2. (Hamming code) There exists a cyclic Hamming code of length 2r − 1 with
generator polynomial g, if and only if g is primitive and deg g = r.

4.2. BCH Codes

Bose-Chaudhuri-Hocquengham (BCH) codes can be constructed according to a required error-
correcting capability. We only consider 2-error-correcting BCH codes. These are of length 2r−1
for r ≥ 4 and have distance 5.

An element a of a field F is primitive if ai = 1 is equivalent to i = |F |−1 or i = 0. Let G be an
extension field of F2 with 2r elements and b ∈ G a primitive element. The generator polynomial
of the BCH code of length 2r − 1 is mb ·mb3 , where ma denotes the minimal polynomial of a in
the field extension. If we describe the field extension in terms of a primitive polynomial h, then
X corresponds to a primitive element. Note that, because h is irreducible, it is the minimal
polynomial of X. Therefore we can define BCH codes a follows:

Definition 4.2. Let h ∈ F2[X] be a primitive polynomial of degree r. The code of length 2r−1
generated by h ·min poly h X3 is called a BCH code.

5. Formalising Coding Theory

We formalise properties of codes with the following predicates. Codewords are polynomials over
F2 and codes are sets of them. The statement coden C means C is a code of length n. The
definitions of linear and cyclic are straightforward while generatorngC states that g is generator
polynomial of the code C of length n.

coden C ≡ ∀x ∈ C. deg x < n

linearC ≡ ∀x ∈ C.∀y ∈ C. x+ y ∈ C
cyclicn C ≡ ∀x ∈ C. (X · x) rem(Xn − 1) ∈ C
generatorn g C ≡ coden C ∧ linearC ∧ cyclicn C ∧minimal g C

3Note that the term primitive polynomial is used with a different meaning in other areas of algebra.



10 Clemens Ballarin and Lawrence C. Paulson / Extending Provers by Computer Algebra

5.1. The Hamming Code Proofs

We now describe our first application of the interface between Isabelle and Sumit. We use it to
prove which Hamming codes of a certain length exist. Restricting the proof to a certain length
allows us to make use of computational results obtained by the computer algebra system. The
predicate Hamming describes which codes are Hamming codes of a certain length. Theorems
4.1 and 4.2 are required and formalised as follows:

0 < n −→ (∃C. generatorn g C) = g | Xn − 1 (8)

(∃C. generator(2r − 1) g C ∧Hamming r C) = (deg g = r ∧ primitive g) (9)

These equations are asserted as axioms and are the starting point of the proof that follows.
Note that (9) axiomatises the predicate Hamming. Both theorems are not proved formally. The
generators of Hamming codes are the primitive polynomials of degree 2r − 1. The primitive
polynomials of degree 4 are X4 +X3 + 1 and X4 +X + 1. Thus for codes of length 15 we prove

(∃C. generator 15 g C ∧Hamming r C) = (g ∈ {X4 +X3 + 1, X4 +X + 1}).

We now give a sketch of this proof, which is formally carried out in Isabelle. The proof idea
for the direction from left to right is that we obtain all irreducible factors of a polynomial by
computing its factorisation. The generator g is irreducible by (9) and a divisor of X15 − 1 by
(8). The factorisation of X15 − 1 is computed using Berlekamp’s algorithm:

Factorisation(X15 − 1) [X4 +X3 + 1, X + 1, X2 +X + 1,

X4 +X3 +X2 +X + 1, X4 +X + 1] 1

All the irreducible divisors of X15 − 1 are in this list. This follows from

irred c ∧ Factorisationx F u ∧ c | x =⇒ ∃d. c ∼ d ∧ d ∈ F. (10)

Since associates are equal in F2[X] we have the stronger version

irred c ∧ Factorisationx F u ∧ c | x =⇒ c ∈ F.

It follows in particular that the generator polynomials are in the list above. But some poly-
nomials in that list cannot be generators: X + 1 and X2 + X + 1 do not have degree 4 and
X4 +X3 +X2 +X + 1 divides X5− 1 and hence is not primitive. The only possible generators
are thus X4 +X3 + 1 and X4 +X + 1.

It remains to show that these are indeed generator polynomials of Hamming codes. This
is the direction from right to left. According to (9) we need to show that X4 + X3 + 1 and
X4 +X + 1 are primitive and have degree 4. The proof is the same for both polynomials. Let
p be one of these. The irreducibility of p is proved by computing the factorisation, which is
Factorisation p [p] 1, and follows from the definition of Factorisation, equation (1).4

The divisibility condition of primitiveness is shown by verifying p - Xm−1 for m = 5, . . . , 14.
¤

4One might argue that using a factorisation algorithm to do a mere irreducibility test is like cracking a walnut
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5.2. The BCH Code Proofs

The predicate BCH is, in line with definition 4.2, defined as follows:

BCH r C ≡ (∃h.primitiveh ∧ deg h = r ∧
generator(2r − 1) (h ·min poly h X3) C)

(11)

We prove that a certain polynomial is generator of a BCH code of length 15:

generator 15 (X8 +X7 +X6 +X4 + 1) C =⇒ BCH 4 C

Here is the outline of the proof: X8+X7+X6+X4+1 is the product of the primitive polynomial
X4 +X+1 and the minimal polynomial X4 +X3 +X2 +X+1. According to the definition (11)
we need to show that the former polynomial is primitive. This has been described in the second
part of the Hamming proof. Secondly, we need to show that the latter is a minimal polynomial:

min poly(X4 +X + 1)X3 = X4 +X3 +X2 +X + 1

In order to prove this statement, we need to show that X4 +X3 +X2 +X + 1 is a solution of

(EVAL const X3 p) rem (X4 +X + 1) = 0 (12)

of minimal degree, and that it is the only minimal solution.

• Minimal solution: We substitute X4 + X3 + X2 + X + 1 for p in (12). The embedding
const is a homomorphism, and so also EVAL const X3. The left argument of the remainder
is simplified using the properties of the evaluation homomorphism (3) to (5), and the
remainder-operation is then evaluated by Sumit to 0. Hence X4 +X3 +X2 +X + 1 is a
solution of the equation.

Assuming deg p ≤ 3, we get by (2) that p = p0 + p1X + p2X
2 + p3X

3 for p0, . . . , p3 ∈ F2.
We substitute this representation of p in (12) and obtain, after simplification,

p0 + p1X
3 + p2(X2 +X3) + p3(X +X3) = 0.

Comparing coefficients leads to a linear equation system, which we can solve using the
Gaussian algorithm. The only solution is p0 = · · · = p3 = 0, so p = 0. This does not meet
the definition of minimal.

• Uniqueness: We need to show that X4 + X3 + X2 + X + 1 is the only polynomial of
smallest degree satisfying (11). We study the solutions of (12) of degree of ≤ 4 by setting
p = p0 + . . .+ p4X

4 and obtain another equation system

p0 + p1X
3 + p2(X2 +X3) + p3(X +X3) + p4(1 +X +X2 +X3) = 0.

with a sledgehammer. In fact, Berlekamp’s algorithm first determines the number of irreducible factors and then

computes them. So, in case of an irreducible polynomial, the algorithm stops after determining that there is

only one factor. In the first part of the proof, the use of Berlekamp’s algorithm reduces the number of possible

candidates for generators dramatically. Brute force testing of polynomials of degree r is not feasible: their number

increases exponentially with r.
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The theorem for the solution of this equation system, again computed by the Gaussian
algorithm, is

(p0 + p1X
3 + p2(X3 +X2) + p3(X3 +X) + p4(X3 +X2 +X + 1) = 0)

= (∃t. p = t ·s(X4 +X3 +X2 +X + 1)).

The set of solutions is therefore {0, X4 +X3 +X2 +X + 1}. The definition of minimality
excludes p = 0. So there are indeed no other solutions of minimal degree. ¤

6. Review of the Development

We have mechanised the mathematics outlined in Section 3 and the proofs described in Section
5 in our combination of Isabelle and Sumit. The mathematical background presented in Section
3 has been formalised by asserting definitions for the entities and deriving the required theorems
mechanically. This is advisable to maintain consistency. We have not done the same for coding
theory. Here we have only asserted the results, namely Theorems 4.1 and 4.2 and then mecha-
nised the proofs described in Section 5. Therefore this part is shorter than the development of
the mathematical background.

Isabelle is an interactive prover. To prove a statement, one enters it as a goal. This goal
is then reduced to a number of (hopefully simpler) subgoals. These are in turn reduced and
the process continues until all subgoals have been resolved. The reduction of goals is done
manually by the user by invoking proof-functions, which are called tactics. Thus the initiative
to drive the proof lies with the user. Some of the tactics provided by Isabelle are very simple.
They implement primitive deduction rules like modus ponens. Other tactics implement proof
procedures, for example for rewriting or to prove subgoals in first order logic. This is where
the automation comes in. Primitive tactics are usually used to guide proofs where automatic
tactics fail. Isabelle’s language of tactics is a full programming language and arbitrary proof
procedures can be implemented by the user. A sequence of tactic invocations that leads to a
proof is a proof script. A tactic usually produces an instantaneous answer, and only some proof
procedures can take longer. In this environment the computer algebra system is presented by
our interface as a function that returns theorems. These can be supplied to tactics (see Section
6.3).

Isabelle Sumit
Interface 23.7 Interface 43.3
Formalisation of algebra 61.8 Stubs and
Coding theory proofs 14.6 theorem templates 20.4

Table 1. Size of the development (code sizes in 1000 bytes)

Table 1 gives an overview on the effort. The figures are, however, misleading in so far that
developing proof scripts is much harder than ordinary programming.
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The interface of Sumit is considerably larger, because data-types for λ-terms and the server
functionality are provided as well. The entry “Coding theory proofs” includes the implementa-
tion of proof procedures for irreducibility and primitiveness of polynomials, which automatically
examine the proof state and retrieve the required theorems from Sumit.

6.1. Contributions of the Prover

We prove theorems about polynomial algebra, which do not have computational content, in
Isabelle. We also establish the relation between coding theory and the specifications of the
algebraic algorithms. In our informal presentation these translations may appear simple, but
some of them are in fact rather difficult.

For the Hamming code proofs take lemma (10), for example, which is proved by list induction.
The induction step, after unfolding definitions, is a quantifier expression, which is solved almost
automatically by Isabelle’s tableau prover. However, it requires search to a depth of six, which
means that six “difficult” rules have to be applied, and produces a proof with 221 inferences. A
depth of six is unusually deep in interactive proof. The complete proof of (10) is 372 inferences
long but only requires 8 invocations of tactics, which resemble the manual proof steps.

In the proofs about BCH codes, reasoning about minimality needs the full power of first
order logic. Note that the definition of minimality (6) contains a quantifier and phrases like “x
is the only element, such that P” are really statements that involve quantifiers.

6.2. Configuration of the Interface

Evaluation of Isabelle’s λ-terms into Sumit objects can be done uniformly, using an evaluator.
So far, λ-abstractions have not been needed, and thus the implementation does not handle this
case. Abstractions will occur, for example, in the context of an integration operator. Then a
choice of evaluation strategy will have to be made. Call-by-value seems appropriate, because
the purpose of the evaluation is to translate the whole given term into a Sumit object. Call-by-
name will not translate “unnecessary” subterms, which could save translation costs. We take
the point of view that all information should be passed on to the computer algebra system. If
β-reductions are desired, they can be done in the prover easily.

Aldor is a staticly typed language: all type information needs to be known at compile-
time, though parametric polymorphism is possible through dependent types. For the evaluator
this means that we need to provide an evaluation function for every type. This is done by
instantiating the evaluator, which is a polymorphic function. Table 2 shows evaluation functions
for which types are needed to evaluate expressions in F2[X], together with the constants and
their corresponding functions in Sumit. In Isabelle, the type bool is used also for the domain F2;
up is the type constructor for univariate polynomials. Sumit types are abbreviated: F2 stands
for SmallPrimeField 2 and Up for SparseUnivariatePolynomial. The constants Plus and
BCons encode a binary representation for numbers in Isabelle. These are essentially stored as
lists of bits, where Plus represents zero and BCons appending a least significant bit to the list



14 Clemens Ballarin and Lawrence C. Paulson / Extending Provers by Computer Algebra

Isabelle Sumit
Type Constant Type Operation
nat 0 Int 0

nat⇒ nat Suc Int -> Int λn. n + 1

nat⇒ nat⇒ nat +, ·, ˆ Int -> Int -> Int +, *, ^
− λm n. if m >= n then m - n else 0

bool True,False Bool true, false
nat Plus Int 0
nat⇒ bool⇒ nat Int -> Bool -> Int

BCons λx b. 2 * x + if b then 1 else 0

bool 0, 1 F2 0, 1
bool⇒ bool − F2 -> F2 -

bool⇒ bool⇒ bool +, · F2 -> F2 -> F2 +, *
bool⇒ nat⇒ bool ˆ F2 -> Int -> F2 ^

bool up 0, 1 Up F2 0, 1
bool up⇒ bool up − Up F2 -> Up F2 -

bool up⇒ bool up⇒ bool up +, ·, rem Up F2 -> Up F2 -> Up F2 +, *, rem
nat⇒ bool up monom Int -> Up F2 λn. monom ^ n

bool⇒ bool up const F2 -> Up F2 coerce

bool⇒ bool up⇒ bool up ·s F2 -> Up F2 -> Up F2 *

nat⇒ bool up⇒ bool Int -> Up F2 -> F2

coeff λn p. coefficient (p, n)

bool up⇒ nat Up F2 -> Int

deg λp. (n := degree p;

if n < 0 then 0 else p)

Table 2. Specification of the evaluator for expressions in F2[X].

of bits. Bits are represented as Boolean values. λ-notation is used here to abbreviate function
definitions in Aldor.

If a value of some type τ can be obtained by application of a function of type σ ⇒ τ to a
value of type σ, because of Aldor’s type system, we must also specify which evaluation functions
have to be used for the function and for its argument. In this example, 18 such pairs of types
can occur and need to be specified. Also evaluation functions for three more types, which do
not have any constants associated with them, are required. We have omitted this information
from Table 2. In future, we aim to generate these specifications automatically by a suitable tool.
Among evaluation functions for the other types, we obtain EvalUpF2 for F2[X].

The inverse operation, translating results back into Isabelle’s format, cannot be done uni-
formly. Sumit operations to traverse its data structures need to be used to build appropriate
λ-terms. Polynomials over F2, for instance, are translated into sums of monomials. A suitable
iterator, provided by Sumit, is used in the function BuildUpF2 to iterate over the monomials
of a polynomial. It only returns monomials with non-zero coefficients, which ensures that we
obtain a sparse representation. The zero-polynomial is, of course, mapped to 0.
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The instantiation of the interface is complete, if services are provided. We decribe this in
more detail for factorisation in the next section.

6.3. Contributions of Computer Algebra

Sumit computes normal forms for expressions that do not contain variables, here in the domains
N,F2 and F2[X]. This includes the decision of equality, inequalities and divisibility over these
expressions. Their theorem templates are of the form a¯ b = B, where ¯ is the corresponding
connective and B becomes either True or False.

Polynomials over F2[X] are factorised. This functionality, whose implementation we describe
in a little more detail, is provided by the service F2PolyFact. Sumit’s factorisation algorithms
for fields of prime cardinality reside in the module

PrimeFieldUnivariateFactorizer(

F: PrimeFieldCategory,

P: UnivariatePolynomialCategory F )

where the parameter F is a field of prime cardinality, and P is an implementation of univariate
polynomials over that field. The module, amongst other functions, provides

berlekamp : P -> List P

factor : ( P -> List P ) -> P -> ( F, Product P )

berlekamp p decomposes p into irreducible factors and returns them as a list. The argument
must be a square-free and monic polynomial. The latter means that its leading coefficient
is one. The decomposion into square-free factors can be obtained relatively easily, and is a
prerequisite for most factorisation algorithms. It is implemented in the function factor.
The function berlekamp is Sumit’s implementation of Berlekamp’s algorithm.

factor algorithm p factors an arbitrary non-zero polynomial p. It decomposes p into square-
free, monic polynomials and factors them into irreducible ones, using algorithm.5 It returns
the leading coefficient of p and all the irreducible factors. Product P is a type for multi-
sets, but also provides an operation to obtain the product of all the factors that are in it.
Leading coefficient and the product give the complete factorisation of p.

The service F2PolyFact takes a single polynomial x, converts it to Sumit’s representation
with EvalUpF2, factors it using factor with berlekamp as its first argument and obtains a
coefficient u and a product of irreduible factors P . The coefficient is lifted to the corresponding
constant polynomial, and this and the factors in P are converted back to λ-terms with the
build-function BuildUpF2. These are then assembled to the theorem

Factorisationx [x1, . . . , xk] u,

5Sumit also implements Cantor-Zassenhaus factorisation, which could be used here instead of Berlekamp’s

algorithm.
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where [x1, . . . , xk] is the list of factors in P . In F2[X] the polynomial u is, of course, 1. Also
in other fields, non-zero constant polynomials are always units in the corresponding polynomial
domain.

Linear equation systems over F2 are solved by Gaussian elimination. The matrix (a0| · · · |an)
is passed to the algorithm, where ai is the ith column vector. The algorithm returns a list of
vectors [v1, . . . , vk] that span the solution space. The theorem template generates the theorem

(
n∑
i=0

xiai = 0) = (∃t1 · · · tk. x = t1v1 + . . .+ tkvk)

or (
n∑
i=0

xiai = 0) = (x = 0), if k = 0.

The ti are variables in F2 and the xi are elements of the vector x. Note that we use polynomials
to denote vectors in Isabelle, as indicated in the proof.

Mechanising the proofs in a system that integrates the computer algebra component without
trusting it would require to additionally prove the theorems generated by these templates for-
mally. This holds in particular for [Harrison, 1996, chapter 6] and [Kerber et al., 1996], who try
to reconstruct the proofs using the result of the computation and possibly further information,
which resembles a certificate for the computation.

In the case of our proofs, the irreducibility of the factors, which constitute a factorisation,
is hard to establish as is the direction from left to right in the theorems generated by Gaussian
elimination.6 This direction states that the solution is complete, and it is the direction needed
in the proofs.

6.4. Use of Services on the Tactic Level

Proof scripts in Isabelle are coded in the programming language ML (for an introduction see
[Paulson, 1996]), which underlies the prover. The interface to the computer algebra system is
available on this level. Its main functions are

connect_server : string -> string list

disconnect_server : string -> unit

thm_service : string -> string -> term list -> thm

connect server server starts a process for the server with name server and obtains its list of
identifiers for available services, which it returns.

disconnect server server sends a terminate signal to the server and closes the connection.
thm service server service [t1, . . . , tn] invokes service service on server server. The λ-terms

t1, . . . , tn are passed to the service as arguments. Note that term is Isabelle’s type for
λ-terms. The result of the computation, a λ-term assembled by the theorem template

6Over some domains theorems of this kind can be proved by decision procedures for linear arithmetic. Here,

because |F2| = 2, this could be done by checking all the 2n+1 cases.
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of the service, is turned into a theorem by Isabelle’s oracle mechanism. The theorem is
returned.

The function thm service can be called directly, say to obtain the factorisation of X15 − 1
in the proof about Hamming codes. Alternatively, it can be called in a tactic that does a
particular proof task. To prove the primitiveness of a polynomial is such a task. This is needed
twice in the proof in Section 5.1 and once in Section 5.2. We provide a tactic primitive tac

that constructs a proof for primitive p, and automatically obtains the necessary lemmas from
the computer algebra system: the proof for primitiveness follows the definition and has been
outlined at the end of Section 5.1. It involves checking the irreducibility of the polynomial and
a number of divisibility tests.

We turn this tactic into a simplification procedure. This is a function that maps a λ-term to a
rewrite rule. Simplification procedures have been introduced as conversions by [Paulson, 1983].
The simplification procedure F2PolyPrimitive proc, which we obtain, maps a polynomial p to
the theorem primitive p ≡ True. Simplification procedures can be added to Isabelle’s rewriter,
together with a pattern, here primitive p. During a rewrite, when the pattern matches the
current redex, the simplification procedure in invoked, and if p can be proven irreducible, the
rewrite rule generated by the procedure is applied. Isabelle’s rewriter is integrated with its
classical reasoner, and with the above simplification procedure we can prove the last part of
Section 5.1, namely the subgoal

(∃C. generator 15 g C ∧ Hamming 4 C) = (deg g = 4 ∧ primitive g) ∧
g ∈ {X4 +X3 + 1, X4 +X + 1}
=⇒ (∃C. generator 15 g C ∧Hamming 4 C)

automatically.

7. Conclusion

Our approach is pragmatic: we trust the computer algebra component in our system rather than
reconstruct proofs for the results of computations within the prover’s logic. The approach relies
on implementations of algorithms that are trustworthy. This can be achieved by restricting the
use of computer algebra to algorithms, for which proofs of correctness have been published. This
is sufficient to avoid systematic soundness problems of computer algebra systems. Errors in the
implementation of these algorithms still jeopardise the integrity of the prover, but bugs of this
sort should not be more frequent in computer algebra systems than in other software (including
provers themselves).

Computational results are turned into theorems using theorem templates that can pro-
duce arbitrary theorems. This is more flexible than the approach suggested by one of us
[Ballarin et al., 1995], which only allowed conditional rewrite rules, because the logical meaning
of the result can be exploited more easily. Simplification procedures can be used to emulate the
behaviour of that approach.
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We have shown that the generation of translation-functions for objects from one system to
another can be — at least partly — automated. This is due to the choice of λ-calculus as
an intermediate language. In OpenMath [Dalmas et al., 1997], a project that aims at general
inter-platform communication in computer algebra, it seems impossible to generate phrase books
automatically [Huuskonen, 1997].

Our case study shows that theorems that are rather difficult to verify occur naturally in
proofs. It presents a challenge to the approach that does not trust the computer algebra com-
ponent. But it also makes a contribution: it clarifies which theorems need to be certified.

Our approach avoids Analytica’s soundness problems. This means, of course, that we cannot
make use of algorithms that are ad hoc. In an interactive environment it does not matter
too much that these are not complete. They need, however, to be made sound. Expressive
formalisms that are able to deal with side conditions and case splits are used in mechanised
reasoning. Expertise gained here could prove useful in the redesign of these algorithms as well.

Acknowledgements. This work has been funded in part by the Studienstiftung des
deutschen Volkes and by EPSRC grant GR/K57381 “Mechanizing Temporal Reasoning”.

A. Evaluation of Rational Functions

Fractions of polynomials are usually called rational functions. This is misleading. Formally,
the function g : x 7→ (x−1)2

x2−1
is not a rational function. Rational functions are obtained by

constructing the fraction field of a ring of polynomials. A fraction field FF(R) can be constructed
over any integral domain R.

The relation ∼ defined by (a, b) ∼ (c, d) ⇐⇒ a · d = b · c is an equivalence relation over
R × (R \ {0}). The induced equivalence classes are called fractions. One writes a

b , where (a, b)
is a representative of the class. Addition and multiplication are defined in the usual way:

a

b
+
c

d
=

a · d+ b · c
b · d and

a

b
· c
d

=
a · c
b · d

Note that these definitions are independent of the chosen representatives. The set of equivalence
classes is the fraction field FF(R). It is indeed a field, because any element a

b with a 6= 0 has
the inverse b

a .

How are g : x 7→ (x−1)2

x2−1
and (X−1)2

X2−1
∈ FF(R[X]) related? The evaluation homomorphism

for polynomials can be lifted to rational functions. Let Φa ≡ EVALφ a where φ is the identity
function on R and a ∈ R. This is the homomorphism evaluating a polynomial at a. For
p, q ∈ R[X] one would like to define Φa(pq ) = Φa(p)

Φa(q) , but this depends upon the representative for

the fraction p
q . If Φa(q) 6= 0 then Φa(p)

Φa(q) is defined. Although (p, q) and (p · (X − a), q · (X − a))

are in the same equivalence class, Φa(p·(X−a))
Φa(q·(X−a)) is not defined. Therefore, for a rational function

f ∈ FF(R[X]) one defines

Φa(f) =
Φa(p)
Φa(q)

, for p, q ∈ R[X] such that f =
p

q
and Φa(q) 6= 0.
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This definition is independent of the chosen polynomials p and q. If such polynomials do not
exist then Φa(f) is undefined. The usual notation for Φa(f) is f(a).

Let us return to the example in Section 2.2. The expression (x−1)2

x2−1
is undefined if x = 1, but(

(X−1)2

X2−1

)
(1) =

(
X−1
X+1

)
(1) = 0. Axiom treats the argument of the solve-function as a rational

function.
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