A Generic Tableau Prover and Its Integration with Isabelle

Lawrence C. Paulson

Computer Laboratory

University of Cambridge
Overview of Isabelle

- a generic interactive prover for FOL, set theory, HOL, ...
- Prolog influence: resolution of generalized Horn clauses

Existing classical reasoner (\texttt{Fast_tac})

- tableau methods
- \texttt{generic}: accepts supplied rules
- runs on Isabelle’s Prolog engine (trivial integration)
Objectives for the New Tactic

- **Genericity**: no restriction to predicate logic
- **Power**: quantifier duplication, transitivity reasoning . . .
- **Speed**: perhaps 10–20 seconds for interactive use
- **Compatibility** with Isabelle’s existing tools (Fast tac)
Why Write a New Tableau Prover?

Q. Why not rewrite with $A \subseteq B \iff \forall x \ (x \in A \rightarrow x \in B)$?

 A. Destroys legibility

 A. Not always possible: inductive definitions

Q. Why not just call Otter, SETHEO or LeanTaP?

 A. We need higher-order syntax
Complications from genericity:

- overloading
 - store some type info
- variable instantiation
 - heuristic limits
- recursive rules
 - ad-hoc checks
Prover Architecture

Free-variable tableau with iterative deepening (leanTaP)

Term data structure: no types; variables as pointers

Basic heuristics

- discrimination nets
- search-space pruning
- delayed use of unsafe rules (γ-rules)
- suppressing needless duplication
Integration I: Translating Isabelle Rules

- multiple goal formulas via negation
- dual Skolemization \Rightarrow standard Skolemization
- simplification of higher-order conclusions (η-contraction)
- limitations on function variables
- type translation for overloading
Integration II: Translating Tableau Proofs

Isabelle checks the proof—often the slowest phase

- direct correspondence from proof steps to Isabelle tactics
- failure might be caused by
 - breakdown of the correspondence
 - type complications
- recomputation of unifiers
- fancy tricks not possible (e.g. liberalized δ-rule)
Results & Limitations

Good performance on first-order benchmarks e.g. Pelletier’s

Mostly compatible with fast_tac; can be 10 times faster

- and proves more theorems
- but slower for some ‘obvious’ problems

Set theory challenge:

\[(\forall x, y \in S \ x \subseteq y) \rightarrow \exists z \ S \subseteq \{z\}\]
Conclusions

- the first tableau prover with higher-order syntax?
- the first tableau prover for ZF, HOL, inductive definitions, ...?
- has almost replaced fast_tac
- a good example of integration in daily use