A Machine-Assisted Proof of

Godel's Incompleteness Theorems

Lawrence C. Paulson, Computer Laboratory, University of Cambridge

T"he most misunderstood
theorems 1in mathematics

* GoOdel’s theorems have highly * For the first time, both of
technical, syntactic proofs. Godel’s proofs have been
mechanised, following a paper
1. Every “strong enough” by Swierczkowski (2003)
formal system is incomplete,
in that at least one formula * The machine proof, in the
can neither be proved nor structured Isar language, is
disproved. complete, almost readable, and

can be perused interactively.
2. And if such a formal system
admits a proof of its own
consistency, then it is actually
imconsistent.

Hereditarily finite set theory

* A hereditarily finite set is a finite set of HF sets.

* Many mathematical constructions, including natural numbers and
sequences, can be defined as in standard set theory.

* HF set theory is equivalent to Peano Arithmetic via the mapping

kb oty e g

Benetits of Using HIEF Set'Theory

* Can use standard definitions of =~ * The second incompleteness
pairing and sequences. theorem requires operations on
sequences and addition, but not
* The first incompleteness multiplication.
theorem requires an HF
development of the natural * No need for least common
numbers, induction, etc., but multiples, prime numbers or

not addition. the Chinese remainder theorem.

The Axioms of HIF Set Theory

z=0 < Vx|x & z]
z=x<dy+—Vuluez—uexVu=uy|
G (0) AVxy [d(x) Ad(y) — dlx ay)] — Vxld(x)]

* (0 denotes the empty set
* x < y denotes the set x extended with the element v.
* There are no other function symbols.

* Union, intersection, etc can be shown to exist by induction.

Stages of the Proofs

* The syntax of a first-order * A system of coding to formalise
theory is formalised: terms, the calculus within itself. The
formulas, substitution... code of a is a term, written ra .

* Adeductive calculus for sequents * Syntactic predicates to

of the form I' F a (typically for recognise codes of terms,
Peano arithmetic, but here HF) substitution, axioms, etc.

+ Meta-theory to relate truth and * Finally the predicate Pf, such
provability. E.g. “all true & thatt o <=+ Pf ra-.

formulas are theorems”. ¥
formulas are built using v A 3

and bounded V.

First Incompleteness T'heorem

* To prove Godel’s first incompleteness theorem, construct 0 that
expresses that d is not provable.

+ It follows (provided the calculus is consistent) that neither o nor its
negation can be proved.

+ Need to show that substitution behaves like a function.
* Requires a detailed proof in the calculus,

* ... alternatively, other detailed calculations.

Second Incompleteness T"heorem

If «is a 2 sentence, then - o — Pf "o .

* This crucial lemma for Godel’s second incompleteness theorem is
proved by induction over the construction of a as a X formula.

* [t requires generalising the statement above to allow the formula a to
contain free variables.

* complex technicalities

* lengthy deductions in the calculus

Proving T'heorems i the Calculus

Godel knew that formal proofs
were difficult. They could be
eliminated, but at what cost?

By coding all predicates as
executable functions, and
proving a meta-theorem, Godel
reduced provability to truth.

But then only bounded
quantifiers can be used, with
tricky arithmetical proofs that
the bounds are adequate.

* With X formulas, provability is

reduced to truth for most
desired properties, with no
tricky proofs about bounds.

Instead, some straightforward
inductions need to be
formalised in the calculus.

The second theorem requires
working in the calculus
anyway.

Isabelle/HOIL. and Nominal

* a proof assistant for higher-
order logic

* much automation to hide the
underlying proof calculus

* support for recursive functions
and inductive sets

* the nominal package, for working
with named variables

* Free names are significant, but
not once they are bound.

Syntax involving variable
binding can be defined using
recursion, provided variables
are used “sensibly”.

* During proof by induction,
bound variable names can be
quaranteed not to clash with
specified other terms.

De Bruin Indexes

* This approach to variable binding replaces names by numbers.
* (0 denotes the innermost bound variable, 1 for the next, etc.

* This approach destroys readability, but substitution and abstraction
are very easy to define.

* During coding, formulas are translated into the de Bruijn format.

* And so there is no need to formalise the nominal theory within HF.

Defining Terms and Formulas

nominal_datatype tm = Zero | Var name | Eats tm tm

nominal _datatype fm =
Mem tm tm (infixr "IN" 150)

| EqQ tm tm (infixr "EQ" 150)
| Disj fm fm (infixr "OR" 130)
| Neg fm

[

Ex x::name f::fm binds x In f

Variable binding

formalised using nominal

Defining Substitution

nominal_primrec subst :: "name = tm = tm = tm"
where
"subst 1 x Zero Zero"
| "subst i x (Var k) (if i=k then x else Var k)"
| "subst i x (Eats t u) = Eats (subst i x t) (subst i x u)"

nominal_primrec subst_fm :: "fm = name = tm = fm"
where
Mem: "(Mem t u)(i::=x) = Mem (subst i x t) (subst i x u)"
ikl "(Eq t u)(i::=x) = Eq (subst i x t) (subst i x u)"

| Disj: "(Disj A B)(i::=x) = Disj (A(i::=x)) (B(i::=x))"
| Neg: "(Neg A)(i::=x) Neg (A(i::=x))"
| Ex: "atom j § (i, x) — (Ex j A)(i::=x) = Ex j (A(i::=x))"

Properties of
substitution have
simple proofs.

The variable j must be

fresh for i and x

Defining the HF Calculus

inductive hfthm ::

where

Hyp: "A
| Extra: "H
| Bool: "A
1T "A
| Spec: "A
| HF: "A
| Ind: "A
| MP: "H
| Exists: "H

T T mmmmm T M

"fm set = fm = bool" (infixl "F" 55)

H— HF A"

extra_axiom"

boolean_axioms —> H F A"
equality_axioms — H F A"

special axioms —> H F A"

HF _axioms — H F A"
induction_axioms — H F A"
AIMPB — H A — HU H’ B"
A IMP B —

atom i f B —> VC€H. atom i f C — H + (Ex

The variable i must be

fresh for B and H

i A) IMP B"

Farly Steps in the HFE Calculus

* the deduction theorem (yielding a sequent calculus)
* derived rules to support explicit formal proofs

for defined connectives, including A = V

* for equality, set induction, ...

* definitions and proofs for subsets, extensionality, foundation and natural
number induction

> Formulas

Strict ¥ formulas only contain variables and are the basis for

the main induction of the second incompleteness theorem.

We can still derive the general case of ~ formulas.

inductive ss_fm ::

"fm = bool" where

MemI: '"ss fm (Var i IN Var j)"

DisjI: "ss_fm
ConjI: "ss_fm
ExI: "ss_fm
Al1121: "ss_fm

e s S S

A

A
A
A

I

ss.fm B =—> ss_.fm (A OR B)"

ss_.fm B —> ss_fm (A AND B)"

ss.fm (Ex i A)"

atom j f (i,A) =— ss_fm (A112 i (Var j) A)"

"Sigma fm A «—— (dB. ss.fm B & supp B C supp A & {} - A IFF B)"

theorem "[Sigma fm A; ground fm A; eval fm e0 A] — {} F A"

True Y. formulas are theorems!

Coding Terms and Formulas

* must first translate from nominal to de Bruijn format
* the actual coding is a simple recursive map:
+ r0~=0, ragr=k, rx 4 yo= (-, rx=, ryay,

* also define (in HF) predicates to recognise codes

* gbstraction over a variable — needed to define Form(x), the
predicate for formulas

+* substitution for a variable

Fxample: Making a Formula

definition MakeForm :: "hf = hf = hf = bool"
where "MakeForm y u w =
y =qDisj uw V y = qglNeg u V

(dv u’. AbstForm v 0 u u’ N v = g.Ex u’)"
Y q

Vi QT = i e = (S
with an explicit abstraction step on u

nominal_primrec MakeFormP :: "tm = tm = tm = fm"
where "[atom v § (y,u,w,au); atom au f (y,u,w)] —
MakeFormP y u w =
y EQ Q-Disj u w OR y EQ Q-Neg u OR
Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q_-Ex (Var au)))"

The “official” version as an HF formula, not a boolean

Those Coding Predicates

SeqgStTerm

VarNonOccTerm VarNonOccAtomic il SeqVarNonOccForm i VarNonOccForm

... And Proof Predicates

(a sequence of proof steps, and finally...)

Pt

Steps to the First Theorem

oo

We need a function K such that + K(T¢7) = r¢(m¢m)™

... but we have no function symbols. Instead, define a relation, KRP:

lemma prove KRP: "{} = KRP "Var i '"A " "A(i::="A ")

Proving its functional behaviour takes 600 HF proof steps.

lemma KRP_unique: "{KRP v x y, KRP v x y’} + y’ EQ y"

Finally, the diagonal lemma:

lemma diagonal:
obtains § where "{} + 6 IFF «a(i::="")"

"supp 0 = supp a - {atom i}"

theorem Goedel I:
assumes Con: "— {} F Fls"
obtains § where "{} - § IFF Neg (PfP "6")"
U N O R s e ol o
"eval fm e 0" ‘"ground fm ¢"
proof -
obtain 0 where "{} = 0 IFF Neg ((PfP (Var i))(i::=To'))"
and [simp]: "supp 0 = supp (Neg (PfP (Var i))) - {atom i}"
by (metis SyntaxN.Neg diagonal)
hence diag: "{} ~ 0 IFF Neg (PfP "o ')"
by simp
hence np: "— {} - 0"
by (metis Con Iff _MP_same Neg D proved_iff_proved_Pf)
hence npn: "— {} = Neg 0" using diag
by (metis Iff MP_same NegNeg D Neg cong proved_iff proved_Pf)
moreover have "eval fm e 0" using hfthm sound [where e=e, OF diag]
by simp (metis Pf_quot_imp_is_proved np)
moreover have "ground fm ¢"
by (auto simp: ground fm aux_def)
ultimately show ?thesis
by (metis diag np npn that)
qed

Steps to the Second Theorem

* Coding must be generalised to allow variables in codes.

i X 4 y‘l — <r4 B el ry-|>

codes of variables

s lx < ylv= (<, % y) are integers

* Variables must be renamed, with the intent of creating “pseudo-

terms” like (r<I+, Qx, Qvy).

* Qis a magic function: Q x = r £~ where ¢ is some canonical term
denoting the set x.

Complications

* Q must be a relation.

* Function symbols cannot be added...

* Sets do not have an easily defined canonical ordering.
* QR(0,0)

* QR(x,x"), QR(y,y") = QR(x d y, (-, x", y'))

One of the Final LLemmas

QR(Qj7 ZB/), QR(y7 y/) = E y— Pt _£C/ & y/J {z’,y’"}
QR(CB, CE/), QR(y7 y/) LA Yy — Pt _CBI C y/J a1

QR(SE, ,CU/), QR(y7 y/) -z = y— Pt _37/ 0 y/J {z’,y’"}

* The first two require simultaneous induction, yielding the third.
* Similar proofs for the symbols v A 3 and bounded V.
* The proof in the HF calculus needs under 450 lines.

* Fills a major gap in various presentations, including Swierczkowski’s.

theorem Goedel II:
assumes Con: "— {} - Fls"
shows HE T s e O (AP MR SR
proof -
from Con Goedel I obtain ¢
where diag: "{} F 0 IFF Neg (PfP "o)" "= {} F 0"
and gnd: '"ground fm 0"
by metis
have "{PfP "0 '} = PfP "PfpP "o ''"
by (auto simp: Provability ground fm aux_def supp_conv_fresh)
moreover have "{PfP "o '} - PfP "Neg (PfP "9 ') "
apply (rule MonPon PfP_implies_PfP [OF _ gnd])
apply (auto simp: ground fm aux def supp_conv_fresh) using diag
by (metis Assume ContraProve Iff MP_left Iff MP_left’ Neg Neg iff)
moreover have "ground fm (PfP "9 ')"
by (auto simp: ground fm aux def supp_conv_fresh)
ultimately have "{PfP "o '} = PfP "Fls '" using PfP_quot_contra
by (metis (no_types) anti_deduction cut2)
thus "— {} = Neg (PfP "Fls)"
by (metis Iff_MP2 same Neg mono cutl diag)
qed

What Did We L.earn?

* Some highly compressed proofs were finally made explicit.
* The entire proof development can be examined interactively.
* The nominal package can cope with very large developments...

(BUT: performance issues, some repetitive notation, complications in
accepting function definitions)

* <9 months for the first theorem, a further 4 for the second

* Under 16 000 lines ot proof script in all.

Conclusions

* the first-ever machine formalisation of Gédel’s second incompleteness
theorem

* using both nominal and de Bruijn syntax for bound variables
* within an axiom system for hereditarily finite set theory
+ conducted using Isabelle/ HOL.
Many thanks to Christian Urban for help at critical points!

Also Jesse Alama, Dana Scott.

