
A Machine-Assisted Proof of
Gödel's Incompleteness Theorems
Lawrence C. Paulson, Computer Laboratory, University of Cambridge

The most misunderstood
theorems in mathematics
✤ Gödel’s theorems have highly

technical, syntactic proofs.

1. Every “strong enough”
formal system is incomplete,
in that at least one formula
can neither be proved nor
disproved.

2. And if such a formal system
admits a proof of its own
consistency, then it is actually
inconsistent.

✤ For the first time, both of
Gödel’s proofs have been
mechanised, following a paper
by S!wierczkowski (2003)

✤ The machine proof, in the
structured Isar language, is
complete, almost readable, and
can be perused interactively.

Hereditarily finite set theory

✤ A hereditarily finite set is a finite set of HF sets.

✤ Many mathematical constructions, including natural numbers and
sequences, can be defined as in standard set theory.

✤ HF set theory is equivalent to Peano Arithmetic via the mapping

f(x) =
X

{2f(y) | y 2 x}

Benefits of Using HF Set Theory

✤ Can use standard definitions of
pairing and sequences.

✤ The first incompleteness
theorem requires an HF
development of the natural
numbers, induction, etc., but
not addition.

✤ The second incompleteness
theorem requires operations on
sequences and addition, but not
multiplication.

✤ No need for least common
multiples, prime numbers or
the Chinese remainder theorem.

The Axioms of HF Set Theory

✤ 0 denotes the empty set

✤ x ◁ y denotes the set x extended with the element y.

✤ There are no other function symbols.

✤ Union, intersection, etc can be shown to exist by induction.

Stages of the Proofs

✤ The syntax of a first-order
theory is formalised: terms,
formulas, substitution...

✤ A deductive calculus for sequents
of the form " ⊦ # (typically for
Peano arithmetic, but here HF)

✤ Meta-theory to relate truth and
provability. E.g. “all true $
formulas are theorems”. $
formulas are built using % & ∃
and bounded ∀.

✤ A system of coding to formalise
the calculus within itself. The
code of # is a term, written ⌜#⌝.

✤ Syntactic predicates to
recognise codes of terms,
substitution, axioms, etc.

✤ Finally the predicate Pf, such
that ⊦ # ⟺ ⊦ Pf ⌜#⌝.

First Incompleteness Theorem

✤ To prove Gödel’s first incompleteness theorem, construct ' that
expresses that ' is not provable.

✤ It follows (provided the calculus is consistent) that neither ' nor its
negation can be proved.

✤ Need to show that substitution behaves like a function.

✤ Requires a detailed proof in the calculus,

✤ … alternatively, other detailed calculations.

Second Incompleteness Theorem

✤ This crucial lemma for Gödel’s second incompleteness theorem is
proved by induction over the construction of # as a $ formula.

✤ It requires generalising the statement above to allow the formula # to
contain free variables.

✤ complex technicalities

✤ lengthy deductions in the calculus

Proving Theorems in the Calculus

✤ Gödel knew that formal proofs
were difficult.They could be
eliminated, but at what cost?

✤ By coding all predicates as
executable functions, and
proving a meta-theorem, Gödel
reduced provability to truth.

✤ But then only bounded
quantifiers can be used, with
tricky arithmetical proofs that
the bounds are adequate.

✤ With $ formulas, provability is
reduced to truth for most
desired properties, with no
tricky proofs about bounds.

✤ Instead, some straightforward
inductions need to be
formalised in the calculus.

✤ The second theorem requires
working in the calculus
anyway.

Isabelle/HOL and Nominal

✤ a proof assistant for higher-
order logic

✤ much automation to hide the
underlying proof calculus

✤ support for recursive functions
and inductive sets

✤ the nominal package, for working
with named variables

✤ Free names are significant, but
not once they are bound.

✤ Syntax involving variable
binding can be defined using
recursion, provided variables
are used “sensibly”.

✤ During proof by induction,
bound variable names can be
guaranteed not to clash with
specified other terms.

De Bruijn Indexes

✤ This approach to variable binding replaces names by numbers.

✤ 0 denotes the innermost bound variable, 1 for the next, etc.

✤ This approach destroys readability, but substitution and abstraction
are very easy to define.

✤ During coding, formulas are translated into the de Bruijn format.

✤ And so there is no need to formalise the nominal theory within HF.

Defining Terms and Formulas

Gödel describes a relation R(x1, . . . , xn

) as entscheidungsdefinit (the mod-
ern term is numeralwise expressible) provided there is a formula R(x1, . . . , xn

)
such that, for each x1, . . . , x

n

,

R(x1, . . . , xn

) implies ` R(x1, . . . , xn) (1)

R(x1, . . . , xn

) implies ` ¬R(x1, . . . , xn) (2)

Here, R means “not R” and x1, . . . , xn denotes the numerals expressing the
values of x1, . . . , x

n

(?, p. 130). This technique shows that ` R(x1, . . . , xn)
is a theorem of the formal calculus without requiring an explicit proof.

1 The Isabelle/HOL proof development: fun-
damentals.

z = 0 $ 8x [x 62 z] (HF1)

z = x C y $ 8u [u 2 z $ u 2 x _ u = y] (HF2)

�(0) ^ 8xy [�(x) ^ �(y) ! �(x C y)] ! 8x [�(x)] (HF3)

nominal datatype tm = Zero | Var name | Eats tm tm

nominal datatype fm =

Mem tm tm (infixr "IN" 150)

| Eq tm tm (infixr "EQ" 150)

| Disj fm fm (infixr "OR" 130)

| Neg fm

| Ex x::name f::fm binds x in f

The HF calculus includes an existential quantifier, denoted Ex, which involves
variable binding via the nominal framework. The infixr declarations provide
an alternative syntax for the membership relation, the equality relation, and
disjunction. A formula can also be a negation. The other logical connectives
are introduced later as abbreviations.

Substitution is often problematical to formalise, but here it is straight-
forward. Substitution of a term x for a variable i is defined as follows:

nominal primrec subst :: "name) tm) tm) tm"

where

"subst i x Zero = Zero"

| "subst i x (Var k) = (if i=k then x else Var k)"

| "subst i x (Eats t u) = Eats (subst i x t) (subst i x u)"

1

Variable binding
formalised using nominal

Defining Substitution

For substitution within a formula, we normally expect issues concerning
the capture of a bound variable. Note that the result of substituting the
term x for the variable i in the formula A is written A(i::=x).

nominal primrec subst fm :: "fm) name) tm) fm"

where

Mem: "(Mem t u)(i::=x) = Mem (subst i x t) (subst i x u)"

| Eq: "(Eq t u)(i::=x) = Eq (subst i x t) (subst i x u)"

| Disj: "(Disj A B)(i::=x) = Disj (A(i::=x)) (B(i::=x))"

| Neg: "(Neg A)(i::=x) = Neg (A(i::=x))"

| Ex: "atom j] (i, x) =) (Ex j A)(i::=x) = Ex j (A(i::=x))"

Substitution is again straightforward in the first four cases (membership,
equality, disjunction, negation). In the existential case, the precondition
atom j] (i, x) (pronounced “j is fresh for i and x”) essentially says that
i and j must be di↵erent names with j not free in x. We do not need to
supply a mechanism for renaming the bound variable, as that is part of the
nominal framework, which in most cases will choose a su�ciently fresh bound
variable at the outset. The usual properties of substitution (commutativity,
for example) have simple proofs by induction on formulas. In contrast, ?)
needed to combine three substitution lemmas in a simultaneous proof by
induction, a delicate argument involving 1900 lines of Coq.

The HF proof system is an inductively defined predicate, where H ` A

means that the formula A is provable from the set of formulas H .

inductive hfthm :: "fm set) fm) bool" (infixl "`" 55)

where

Hyp: "A 2 H =) H ` A"

| Extra: "H ` extra axiom"

| Bool: "A 2 boolean axioms =) H ` A"

| Eq: "A 2 equality axioms =) H ` A"

| Spec: "A 2 special axioms =) H ` A"

| HF: "A 2 HF axioms =) H ` A"

| Ind: "A 2 induction axioms =) H ` A"

| MP: "H ` A IMP B =) H’ ` A =) H [H’ ` B"

| Exists: "H ` A IMP B =)
atom i] B =) 8 C2H. atom i] C =) H ` (Ex i A) IMP B"

Note that the existential rule is subject to the condition that the bound
variable, i, is fresh with respect to B and the formulas in H . The definitions
of boolean axioms, etc., are taken from ?). He formalised a simpler inference
system, with theorems of the form ` A, but introducing H allows a proof of
the deduction theorem and the derivation of a sort of sequent calculus. This
is essential if we are to conduct proofs in this formal calculus.

2

Gödel describes a relation R(x1, . . . , xn

) as entscheidungsdefinit (the mod-
ern term is numeralwise expressible) provided there is a formula R(x1, . . . , xn

)
such that, for each x1, . . . , x

n

,

R(x1, . . . , xn

) implies ` R(x1, . . . , xn) (1)

R(x1, . . . , xn

) implies ` ¬R(x1, . . . , xn) (2)

Here, R means “not R” and x1, . . . , xn denotes the numerals expressing the
values of x1, . . . , x

n

(?, p. 130). This technique shows that ` R(x1, . . . , xn)
is a theorem of the formal calculus without requiring an explicit proof.

1 The Isabelle/HOL proof development: fun-
damentals.

z = 0 $ 8x [x 62 z] (HF1)

z = x C y $ 8u [u 2 z $ u 2 x _ u = y] (HF2)

�(0) ^ 8xy [�(x) ^ �(y) ! �(x C y)] ! 8x [�(x)] (HF3)

nominal datatype tm = Zero | Var name | Eats tm tm

nominal datatype fm =

Mem tm tm (infixr "IN" 150)

| Eq tm tm (infixr "EQ" 150)

| Disj fm fm (infixr "OR" 130)

| Neg fm

| Ex x::name f::fm binds x in f

The HF calculus includes an existential quantifier, denoted Ex, which involves
variable binding via the nominal framework. The infixr declarations provide
an alternative syntax for the membership relation, the equality relation, and
disjunction. A formula can also be a negation. The other logical connectives
are introduced later as abbreviations.

Substitution is often problematical to formalise, but here it is straight-
forward. Substitution of a term x for a variable i is defined as follows:

nominal primrec subst :: "name) tm) tm) tm"

where

"subst i x Zero = Zero"

| "subst i x (Var k) = (if i=k then x else Var k)"

| "subst i x (Eats t u) = Eats (subst i x t) (subst i x u)"

1

The variable j must be
fresh for i and x

Properties of
substitution have

simple proofs.

Defining the HF Calculus

For substitution within a formula, we normally expect issues concerning
the capture of a bound variable. Note that the result of substituting the
term x for the variable i in the formula A is written A(i::=x).

nominal primrec subst fm :: "fm) name) tm) fm"

where

Mem: "(Mem t u)(i::=x) = Mem (subst i x t) (subst i x u)"

| Eq: "(Eq t u)(i::=x) = Eq (subst i x t) (subst i x u)"

| Disj: "(Disj A B)(i::=x) = Disj (A(i::=x)) (B(i::=x))"

| Neg: "(Neg A)(i::=x) = Neg (A(i::=x))"

| Ex: "atom j] (i, x) =) (Ex j A)(i::=x) = Ex j (A(i::=x))"

Substitution is again straightforward in the first four cases (membership,
equality, disjunction, negation). In the existential case, the precondition
atom j] (i, x) (pronounced “j is fresh for i and x”) essentially says that
i and j must be di↵erent names with j not free in x. We do not need to
supply a mechanism for renaming the bound variable, as that is part of the
nominal framework, which in most cases will choose a su�ciently fresh bound
variable at the outset. The usual properties of substitution (commutativity,
for example) have simple proofs by induction on formulas. In contrast, ?)
needed to combine three substitution lemmas in a simultaneous proof by
induction, a delicate argument involving 1900 lines of Coq.

The HF proof system is an inductively defined predicate, where H ` A

means that the formula A is provable from the set of formulas H .

inductive hfthm :: "fm set) fm) bool" (infixl "`" 55)

where

Hyp: "A 2 H =) H ` A"

| Extra: "H ` extra axiom"

| Bool: "A 2 boolean axioms =) H ` A"

| Eq: "A 2 equality axioms =) H ` A"

| Spec: "A 2 special axioms =) H ` A"

| HF: "A 2 HF axioms =) H ` A"

| Ind: "A 2 induction axioms =) H ` A"

| MP: "H ` A IMP B =) H’ ` A =) H [H’ ` B"

| Exists: "H ` A IMP B =)
atom i] B =) 8 C2H. atom i] C =) H ` (Ex i A) IMP B"

Note that the existential rule is subject to the condition that the bound
variable, i, is fresh with respect to B and the formulas in H . The definitions
of boolean axioms, etc., are taken from ?). He formalised a simpler inference
system, with theorems of the form ` A, but introducing H allows a proof of
the deduction theorem and the derivation of a sort of sequent calculus. This
is essential if we are to conduct proofs in this formal calculus.

2

The variable i must be
fresh for B and H

Early Steps in the HF Calculus

✤ the deduction theorem (yielding a sequent calculus)

✤ derived rules to support explicit formal proofs

✤ for defined connectives, including ∧ ➝ ∀

✤ for equality, set induction, …

✤ definitions and proofs for subsets, extensionality, foundation and natural
number induction

Σ Formulas

states that the quantified variable (z) must be fresh for the terms t and u.
In other words, and in contrast to some treatments, the bound variable is a
parameter of the definition rather than being fixed; however, the choice of z
cannot a↵ect the denotation of the right-hand side, thanks to quotienting.

inductive ss fm :: "fm) bool" where

MemI: "ss fm (Var i IN Var j)"

| DisjI: "ss fm A =) ss fm B =) ss fm (A OR B)"

| ConjI: "ss fm A =) ss fm B =) ss fm (A AND B)"

| ExI: "ss fm A =) ss fm (Ex i A)"

| All2I: "ss fm A =) atom j] (i,A) =) ss fm (All2 i (Var j) A)"

One advantage of formal proof is that these conditions are immediately ev-
ident, when they may not be clear from an informal presentation. ?) does
not impose the last condition (on the bound of a universal quantifier), but it
greatly simplifies the main induction needed to reach the second incomplete-
ness theorem. (If we are only interested in formalising the first incompleteness
theorem, we can use a more generous notion of ⌃ formula, allowing atomic
formulas and their negations over arbitrary terms.) Formally, a ⌃ formula is
defined to be any formula that can be proved equivalent (in the HF calculus)
to a strict ⌃ formula:

"Sigma fm A ! (9 B. ss fm B & supp B ✓ supp A & {} ` A IFF B)"

The condition supp B ✓ supp A essentially means that every variable free
in B must also be free in A . After a certain amount of e↵ort, it is possible to
derive the expected properties of ⌃ formulas and ultimately to reach a key
result based on this concept:

theorem Sigma fm imp thm: " [[Sigma fm A; ground fm A; eval fm e0 A]] =)
{} ` A"

If A is a true ⌃ sentence, then `A. This result reduces the task of proving `
A in the formal calculus to proving that A holds (written eval fm e0 A) in
Isabelle/HOL’s native higher-order logic.

2 The Isabelle/HOL proof development: The
coding of syntax.

The coding of terms, formulas, substitution, the HF axioms and ultimately
the provability predicate is straightforward to formalise. ?) and ?) present

3

states that the quantified variable (z) must be fresh for the terms t and u.
In other words, and in contrast to some treatments, the bound variable is a
parameter of the definition rather than being fixed; however, the choice of z
cannot a↵ect the denotation of the right-hand side, thanks to quotienting.

inductive ss fm :: "fm) bool" where

MemI: "ss fm (Var i IN Var j)"

| DisjI: "ss fm A =) ss fm B =) ss fm (A OR B)"

| ConjI: "ss fm A =) ss fm B =) ss fm (A AND B)"

| ExI: "ss fm A =) ss fm (Ex i A)"

| All2I: "ss fm A =) atom j] (i,A) =) ss fm (All2 i (Var j) A)"

One advantage of formal proof is that these conditions are immediately ev-
ident, when they may not be clear from an informal presentation. ?) does
not impose the last condition (on the bound of a universal quantifier), but it
greatly simplifies the main induction needed to reach the second incomplete-
ness theorem. (If we are only interested in formalising the first incompleteness
theorem, we can use a more generous notion of ⌃ formula, allowing atomic
formulas and their negations over arbitrary terms.) Formally, a ⌃ formula is
defined to be any formula that can be proved equivalent (in the HF calculus)
to a strict ⌃ formula:

"Sigma fm A ! (9 B. ss fm B & supp B ✓ supp A & {} ` A IFF B)"

The condition supp B ✓ supp A essentially means that every variable free
in B must also be free in A . After a certain amount of e↵ort, it is possible to
derive the expected properties of ⌃ formulas and ultimately to reach a key
result based on this concept:

theorem Sigma fm imp thm: " [[Sigma fm A; ground fm A; eval fm e0 A]] =)
{} ` A"

If A is a true ⌃ sentence, then `A. This result reduces the task of proving `
A in the formal calculus to proving that A holds (written eval fm e0 A) in
Isabelle/HOL’s native higher-order logic.

2 The Isabelle/HOL proof development: The
coding of syntax.

The coding of terms, formulas, substitution, the HF axioms and ultimately
the provability predicate is straightforward to formalise. ?) and ?) present

3

Strict $ formulas only contain variables and are the basis for
the main induction of the second incompleteness theorem.

We can still derive the general case of $ formulas.

states that the quantified variable (z) must be fresh for the terms t and u.
In other words, and in contrast to some treatments, the bound variable is a
parameter of the definition rather than being fixed; however, the choice of z
cannot a↵ect the denotation of the right-hand side, thanks to quotienting.

inductive ss fm :: "fm) bool" where

MemI: "ss fm (Var i IN Var j)"

| DisjI: "ss fm A =) ss fm B =) ss fm (A OR B)"

| ConjI: "ss fm A =) ss fm B =) ss fm (A AND B)"

| ExI: "ss fm A =) ss fm (Ex i A)"

| All2I: "ss fm A =) atom j] (i,A) =) ss fm (All2 i (Var j) A)"

One advantage of formal proof is that these conditions are immediately ev-
ident, when they may not be clear from an informal presentation. ?) does
not impose the last condition (on the bound of a universal quantifier), but it
greatly simplifies the main induction needed to reach the second incomplete-
ness theorem. (If we are only interested in formalising the first incompleteness
theorem, we can use a more generous notion of ⌃ formula, allowing atomic
formulas and their negations over arbitrary terms.) Formally, a ⌃ formula is
defined to be any formula that can be proved equivalent (in the HF calculus)
to a strict ⌃ formula:

"Sigma fm A ! (9 B. ss fm B & supp B ✓ supp A & {} ` A IFF B)"

The condition supp B ✓ supp A essentially means that every variable free
in B must also be free in A . After a certain amount of e↵ort, it is possible to
derive the expected properties of ⌃ formulas and ultimately to reach a key
result based on this concept:

theorem " [[Sigma fm A; ground fm A; eval fm e0 A]] =) {} ` A"

If A is a true ⌃ sentence, then `A. This result reduces the task of proving `
A in the formal calculus to proving that A holds (written eval fm e0 A) in
Isabelle/HOL’s native higher-order logic.

2 The Isabelle/HOL proof development: The
coding of syntax.

The coding of terms, formulas, substitution, the HF axioms and ultimately
the provability predicate is straightforward to formalise. ?) and ?) present
full details. Many other authors prefer to simplify matters via repeated ap-
peals to Church’s thesis. Even the detailed presentations mentioned above

3

True $ formulas are theorems!

Coding Terms and Formulas

✤ must first translate from nominal to de Bruijn format

✤ the actual coding is a simple recursive map:

✤ ⌜0⌝=0 , ⌜xk⌝=k, ⌜x ◁ y⌝= 〈⌜◁⌝, ⌜x⌝, ⌜y⌝〉, …

✤ also define (in HF) predicates to recognise codes

✤ abstraction over a variable — needed to define Form(x), the
predicate for formulas

✤ substitution for a variable

Example: Making a Formula

"Sigma fm A ! (9 B. ss fm B & supp B ✓ supp A & {} ` A IFF B)"

The condition supp B ✓ supp A essentially means that every variable free in B

must also be free in A . After a certain amount of e↵ort, it is possible to derive
the expected properties of ⌃ formulas and ultimately to reach a key result based
on this concept:

theorem " [[Sigma fm A; ground fm A; eval fm e0 A]] =) {} ` A"

If A is a true ⌃ sentence, then `A. This result reduces the task of proving
` A in the formal calculus to proving that A holds (written eval fm e0 A) in
Isabelle/HOL’s native higher-order logic.

2 The Isabelle/HOL proof development: The
coding of syntax.

The coding of terms, formulas, substitution, the HF axioms and ultimately the
provability predicate is straightforward to formalise. ?) and ?) present full
details. Many other authors prefer to simplify matters via repeated appeals
to Church’s thesis. Even the detailed presentations mentioned above omit any
demonstration that the definitions are correct. The proof formalisation condi-

tion for the provability predicate (written PfP below) is typically stated with a
minimum of justification:

theorem proved iff proved Pf: "{} ` ↵ ! {} ` PfP p↵q"

The interplay of these various points can be seen below:

definition MakeForm :: "hf) hf) hf) bool"
where "MakeForm y u w ⌘

y = q Disj u w _ y = q Neg u _
(9 v u’. AbstForm v 0 u u’ ^ y = q Ex u’)"

Thus y is the code of a formula constructed from existing formulas u and v

provided y codes the disjunction u_v, the negation ¬u or the existential formula
9(u’), where u’ has been obtained by abstracting u over some variable, v. The
predicate AbstForm performs de Bruijn abstraction over a formula; its definition
is complicated, and omitted here. Note that the codes of quantified formulas do
not mention the names of bound variables.

This predicate is given by a higher-order logic formula, and therefore at the
level of the meta-theory. Working at this level eliminates the need to construct
HF proofs, and most of the correctness properties we need can be proved in
this manner. However, in order to perform the diagonalisation argument and
exhibit the undecidable formula, we need a version of every coding predicate as
an HF formula. Therefore, each predicate must be defined on both levels:

nominal primrec MakeFormP :: "tm) tm) tm) fm"
where " [[atom v] (y,u,w,au); atom au] (y,u,w)]] =)

MakeFormP y u w =
y EQ Q Disj u w OR y EQ Q Neg u OR
Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q Ex (Var au)))"

3

y = u % w, or y = ¬ u, or y = (∃v) u
with an explicit abstraction step on u

"Sigma fm A ! (9 B. ss fm B & supp B ✓ supp A & {} ` A IFF B)"

The condition supp B ✓ supp A essentially means that every variable free in B

must also be free in A . After a certain amount of e↵ort, it is possible to derive
the expected properties of ⌃ formulas and ultimately to reach a key result based
on this concept:

theorem " [[Sigma fm A; ground fm A; eval fm e0 A]] =) {} ` A"

If A is a true ⌃ sentence, then `A. This result reduces the task of proving
` A in the formal calculus to proving that A holds (written eval fm e0 A) in
Isabelle/HOL’s native higher-order logic.

2 The Isabelle/HOL proof development: The
coding of syntax.

The coding of terms, formulas, substitution, the HF axioms and ultimately the
provability predicate is straightforward to formalise. ?) and ?) present full
details. Many other authors prefer to simplify matters via repeated appeals
to Church’s thesis. Even the detailed presentations mentioned above omit any
demonstration that the definitions are correct. The proof formalisation condi-

tion for the provability predicate (written PfP below) is typically stated with a
minimum of justification:

theorem proved iff proved Pf: "{} ` ↵ ! {} ` PfP p↵q"

The interplay of these various points can be seen below:

definition MakeForm :: "hf) hf) hf) bool"
where "MakeForm y u w ⌘

y = q Disj u w _ y = q Neg u _
(9 v u’. AbstForm v 0 u u’ ^ y = q Ex u’)"

Thus y is the code of a formula constructed from existing formulas u and v

provided y codes the disjunction u_v, the negation ¬u or the existential formula
9(u’), where u’ has been obtained by abstracting u over some variable, v. The
predicate AbstForm performs de Bruijn abstraction over a formula; its definition
is complicated, and omitted here. Note that the codes of quantified formulas do
not mention the names of bound variables.

This predicate is given by a higher-order logic formula, and therefore at the
level of the meta-theory. Working at this level eliminates the need to construct
HF proofs, and most of the correctness properties we need can be proved in
this manner. However, in order to perform the diagonalisation argument and
exhibit the undecidable formula, we need a version of every coding predicate as
an HF formula. Therefore, each predicate must be defined on both levels:

nominal primrec MakeFormP :: "tm) tm) tm) fm"
where " [[atom v] (y,u,w,au); atom au] (y,u,w)]] =)

MakeFormP y u w =
y EQ Q Disj u w OR y EQ Q Neg u OR
Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q Ex (Var au)))"

3

The “official” version as an HF formula, not a boolean

Those Coding Predicates

SeqTerm Term SeqConst Const

SeqStTerm AbstTerm SubstTerm

AbstAtomic SeqAbstForm AbstForm

SubstAtomic SeqSubstForm SubstForm

SeqForm FormAtomic MakeForm

SeqVarNonOccForm VarNonOccFormVarNonOccTerm VarNonOccAtomic

… And Proof Predicates

Sent Equality_ax HF_ax Special_ax Induction_ax

Axiom ModPon Exists Subst

Pf

Prf (a sequence of proof steps, and finally...)

✤ We need a function K such that

✤ … but we have no function symbols. Instead, define a relation, KRP:

✤ Proving its functional behaviour takes 600 HF proof steps.

✤ Finally, the diagonal lemma:

Steps to the First Theorem
As we saw above in the definition of Subset, constraints are required on all
quantified variables. Here there are only two, but to define AbstForm requires
12 bound variables. The necessary declarations are lengthy and messy, and
put a heavy burden on the nominal package (proofs run very slowly), but the
alternative of having to rename explicit bound variables is also unattractive.

3 The Isabelle/HOL proof development: first
incompleteness theorem.

` K(p�q) = p�(p�q)q

lemma prove KRP: "{} ` KRP pVar iq pAq pA(i::=pAq)q"

The property of being single-valued is easily stated, but it is neither a sen-
tence nor a ⌃ formula. Proving this result requires about 600 lines of explicit
reasoning steps in the HF calculus, verifying that substitution over terms or
formulas yields a unique result.

lemma KRP unique: "{KRP v x y, KRP v x y’} ` y’ EQ y"

The diagonal lemma is now reached by the standard argument. The obtains

syntax represents a form of existential quantification, and is equivalent to 9 �....

lemma diagonal:
obtains � where "{} ` � IFF ↵(i::=p�q)" "supp � = supp ↵ - {atom i}"

The second part of the conclusion, namely supp � = supp ↵ - {atom i}, states
that the free variables of the formula � are those of ↵ with the exception of i ; it
is necessary in order to show that the undecidable formula is actually a sentence.

4 Issues involving the second incompleteness the-
orem.

My object in writing this paper is not to discuss the formalisation in general,
but to examine the specific consequences of basing the development on HF set
theory rather than Peano arithmetic. A further aim is to look at a crucial
step in the proof of the second incompleteness theorem that has been described
misleadingly, and arguably incorrectly, in other presentations.

It is well-known that the theorem follows easily from the Hilbert-Bernays
derivability conditions (?, p. 15), one of which is ` Pf (p�q) ! Pf (pPf (p�q)q).
This result is a consequence of the theorem

if ↵ is a ⌃ sentence, then ` ↵! Pf (p↵q), (3)

which can be proved by a tricky induction on the construction of ↵ as a strict
⌃ formula.

For this proof, the system of coding is extended to allow variables in codes.
If we regard variables as indexed by positive integers, then the variable x

i

is
normally coded by the term SUCCi(0), where SUCC(x) = x C x is the usual
successor function. Similarly, the formula x1 = x2 is normally coded by the

4

As we saw above in the definition of Subset, constraints are required on all
quantified variables. Here there are only two, but to define AbstForm requires
12 bound variables. The necessary declarations are lengthy and messy, and
put a heavy burden on the nominal package (proofs run very slowly), but the
alternative of having to rename explicit bound variables is also unattractive.

3 The Isabelle/HOL proof development: first
incompleteness theorem.

` K(p�q) = p�(p�q)q

lemma prove KRP: "{} ` KRP pVar iq pAq pA(i::=pAq)q"

The property of being single-valued is easily stated, but it is neither a sen-
tence nor a ⌃ formula. Proving this result requires about 600 lines of explicit
reasoning steps in the HF calculus, verifying that substitution over terms or
formulas yields a unique result.

lemma KRP unique: "{KRP v x y, KRP v x y’} ` y’ EQ y"

The diagonal lemma is now reached by the standard argument. The obtains

syntax represents a form of existential quantification, and is equivalent to 9 �....

lemma diagonal:
obtains � where "{} ` � IFF ↵(i::=p�q)" "supp � = supp ↵ - {atom i}"

The second part of the conclusion, namely supp � = supp ↵ - {atom i}, states
that the free variables of the formula � are those of ↵ with the exception of i ; it
is necessary in order to show that the undecidable formula is actually a sentence.

4 Issues involving the second incompleteness the-
orem.

My object in writing this paper is not to discuss the formalisation in general,
but to examine the specific consequences of basing the development on HF set
theory rather than Peano arithmetic. A further aim is to look at a crucial
step in the proof of the second incompleteness theorem that has been described
misleadingly, and arguably incorrectly, in other presentations.

It is well-known that the theorem follows easily from the Hilbert-Bernays
derivability conditions (?, p. 15), one of which is ` Pf (p�q) ! Pf (pPf (p�q)q).
This result is a consequence of the theorem

if ↵ is a ⌃ sentence, then ` ↵! Pf (p↵q), (3)

which can be proved by a tricky induction on the construction of ↵ as a strict
⌃ formula.

For this proof, the system of coding is extended to allow variables in codes.
If we regard variables as indexed by positive integers, then the variable x

i

is
normally coded by the term SUCCi(0), where SUCC(x) = x C x is the usual
successor function. Similarly, the formula x1 = x2 is normally coded by the

4

As we saw above in the definition of Subset, constraints are required on all
quantified variables. Here there are only two, but to define AbstForm requires
12 bound variables. The necessary declarations are lengthy and messy, and
put a heavy burden on the nominal package (proofs run very slowly), but the
alternative of having to rename explicit bound variables is also unattractive.

3 The Isabelle/HOL proof development: first
incompleteness theorem.

` K(p�q) = p�(p�q)q

lemma prove KRP: "{} ` KRP pVar iq pAq pA(i::=pAq)q"

The property of being single-valued is easily stated, but it is neither a sen-
tence nor a ⌃ formula. Proving this result requires about 600 lines of explicit
reasoning steps in the HF calculus, verifying that substitution over terms or
formulas yields a unique result.

lemma KRP unique: "{KRP v x y, KRP v x y’} ` y’ EQ y"

The diagonal lemma is now reached by the standard argument. The obtains

syntax represents a form of existential quantification, and is equivalent to 9 �....

lemma diagonal:
obtains � where "{} ` � IFF ↵(i::=p�q)" "supp � = supp ↵ - {atom i}"

The second part of the conclusion, namely supp � = supp ↵ - {atom i}, states
that the free variables of the formula � are those of ↵ with the exception of i ; it
is necessary in order to show that the undecidable formula is actually a sentence.

4 Issues involving the second incompleteness the-
orem.

My object in writing this paper is not to discuss the formalisation in general,
but to examine the specific consequences of basing the development on HF set
theory rather than Peano arithmetic. A further aim is to look at a crucial
step in the proof of the second incompleteness theorem that has been described
misleadingly, and arguably incorrectly, in other presentations.

It is well-known that the theorem follows easily from the Hilbert-Bernays
derivability conditions (?, p. 15), one of which is ` Pf (p�q) ! Pf (pPf (p�q)q).
This result is a consequence of the theorem

if ↵ is a ⌃ sentence, then ` ↵! Pf (p↵q), (3)

which can be proved by a tricky induction on the construction of ↵ as a strict
⌃ formula.

For this proof, the system of coding is extended to allow variables in codes.
If we regard variables as indexed by positive integers, then the variable x

i

is
normally coded by the term SUCCi(0), where SUCC(x) = x C x is the usual
successor function. Similarly, the formula x1 = x2 is normally coded by the

4

As we saw above in the definition of Subset, constraints are required on all
quantified variables. Here there are only two, but to define AbstForm requires
12 bound variables. The necessary declarations are lengthy and messy, and
put a heavy burden on the nominal package (proofs run very slowly), but the
alternative of having to rename explicit bound variables is also unattractive.

3 The Isabelle/HOL proof development: first
incompleteness theorem.

` K(p�q) = p�(p�q)q

lemma prove KRP: "{} ` KRP pVar iq pAq pA(i::=pAq)q"

The property of being single-valued is easily stated, but it is neither a sen-
tence nor a ⌃ formula. Proving this result requires about 600 lines of explicit
reasoning steps in the HF calculus, verifying that substitution over terms or
formulas yields a unique result.

lemma KRP unique: "{KRP v x y, KRP v x y’} ` y’ EQ y"

The diagonal lemma is now reached by the standard argument. The obtains

syntax represents a form of existential quantification, and is equivalent to 9 �....

lemma diagonal:
obtains � where "{} ` � IFF ↵(i::=p�q)" "supp � = supp ↵ - {atom i}"

The second part of the conclusion, namely supp � = supp ↵ - {atom i}, states
that the free variables of the formula � are those of ↵ with the exception of i ; it
is necessary in order to show that the undecidable formula is actually a sentence.

4 Issues involving the second incompleteness the-
orem.

My object in writing this paper is not to discuss the formalisation in general,
but to examine the specific consequences of basing the development on HF set
theory rather than Peano arithmetic. A further aim is to look at a crucial
step in the proof of the second incompleteness theorem that has been described
misleadingly, and arguably incorrectly, in other presentations.

It is well-known that the theorem follows easily from the Hilbert-Bernays
derivability conditions (?, p. 15), one of which is ` Pf (p�q) ! Pf (pPf (p�q)q).
This result is a consequence of the theorem

if ↵ is a ⌃ sentence, then ` ↵! Pf (p↵q), (3)

which can be proved by a tricky induction on the construction of ↵ as a strict
⌃ formula.

For this proof, the system of coding is extended to allow variables in codes.
If we regard variables as indexed by positive integers, then the variable x

i

is
normally coded by the term SUCCi(0), where SUCC(x) = x C x is the usual
successor function. Similarly, the formula x1 = x2 is normally coded by the

4

theorem Goedel I:
assumes Con: "¬ {} ` Fls"
obtains � where "{} ` � IFF Neg (PfP p�q)"

"¬ {} ` �" "¬ {} ` Neg �"
"eval fm e �" "ground fm �"

proof -
obtain � where "{} ` � IFF Neg ((PfP (Var i))(i::=p�q))"

and [simp]: "supp � = supp (Neg (PfP (Var i))) - {atom i}"
by (metis SyntaxN.Neg diagonal)

hence diag: "{} ` � IFF Neg (PfP p�q)"
by simp

hence np: "¬ {} ` �"
by (metis Con Iff MP same Neg D proved iff proved Pf)

hence npn: "¬ {} ` Neg �" using diag
by (metis Iff MP same NegNeg D Neg cong proved iff proved Pf)

moreover have "eval fm e �" using hfthm sound [where e=e, OF diag]
by simp (metis Pf quot imp is proved np)

moreover have "ground fm �"
by (auto simp: ground fm aux def)

ultimately show ?thesis
by (metis diag np npn that)

qed

Figure 1: Proof of the first incompleteness theorem

term hp=q, px1q, px2qi. If variables are preserved rather than coded, we instead
get the term hp=q, x1, x2i. In general, b↵c

V

designates the coding of ↵ where
all variables from the set V are preserved as variables in the result, while all
other variables are coded by constant terms. ?) calls this pseudo-coding.

Suppose that we can define in HF a function Q such that

Q(0) = p0q = 0 (4)
Q(x C y) = hpCq, Q(x), Q(y)i (5)

Therefore, Q(x) = ptq, where t is some canonical term denoting the set x.1
Suppose that ↵ is a formula whose set of free variables is V = {x1, . . . , xn

}.
Given the theorem ` ↵, obtain ` Pf (p↵q) by the proof formalisation condition,
then successively replace x

i

by Q(x
i

), for i = 1, . . . , n. The replacements are
possible because the HF calculus includes a rule to substitute a term t for a
variable x in the formula �:

H ` �

H ` �(x/t)

Performing the replacements requires the analogue of this substitution rule as
encoded in the provability predicate, Pf . For example, we can obtain the fol-

1?) introduces a total ordering on HF to make this possible, as discussed below.

5

Steps to the Second Theorem

✤ Coding must be generalised to allow variables in codes.

✤ ⌜x ◁ y⌝ = 〈⌜◁⌝, ⌜x⌝, ⌜y⌝〉

✤ ⎣x ◁ y⎦V = 〈⌜◁⌝, x, y〉

✤ Variables must be renamed, with the intent of creating “pseudo-
terms” like 〈⌜◁⌝, Q x, Q y〉.

✤ Q is a magic function: Q x = ⌜t⌝ where t is some canonical term
denoting the set x.

codes of variables
are integers

Complications

✤ Q must be a relation.

✤ Function symbols cannot be added…

✤ Sets do not have an easily defined canonical ordering.

✤ QR(0,0)

✤ QR(x,x’), QR(y,y’) ⟹ QR(x ◁ y, 〈⌜◁⌝, x’, y’〉)

One of the Final Lemmas

assumption QR(x, x0)) it can be shown to contain no variables. This reasoning
is straightforward enough to conduct formally in the HF calculus.

This may seem to be a small detail, but as can be seen, it is not di�cult to
explain correctly. One could argue that the correct version is actually simpler
to explain than the traditional version involving the pseudo-function Q: the
notation b↵c

V

(Q) is no longer necessary. Eliminating the pseudo-functions
from the presentation actually simplifies it.

This is not the place to describe in detail how the proofs outlined above
were mechanised using Isabelle/HOL. Briefly, the nominal package was used to
manage the task of generating new variable names, but the details were very
intricate.

5 Issues connected with the use of HF sets.

The motivation for using hereditarily finite sets rather than Peano arithmetic
is that it allows more natural and simpler proofs. But it appears to complicate
the definition of the function Q(x) mentioned above, which is needed to prove
both incompleteness theorems. In PA, the analogous function is trivial to define:
there is only one way to write a natural number in the form SUCCi(0).

?) eliminates the ambiguity implicit in (5) above by appealing to a total
ordering, <, on the HF universe. The di�culty is how to define this ordering
within the HF calculus. Świerczkowski develops the theory, including a defini-
tion by recursion on the rank of a set, but it does not look easy to formalise
in HF. Another approach is to define the function f : HA ! N such that
f(x) =

P
{2f(y) | y 2 x}. Then we can define x < y () f(x) < f(y). Again,

the e↵ort to formalise this theory in HF may be simpler than that needed to
formalise the Chinese remainder theorem, but it is still considerable.

QR(x, x0),QR(y, y0) ` x 2 y ! Pf bx0 2 y0c{x

0
,y

0}

QR(x, x0),QR(y, y0) ` x ✓ y ! Pf bx0 ✓ y0c{x

0
,y

0}

QR(x, x0),QR(y, y0) ` x = y ! Pf bx0 = y0c{x

0
,y

0}

z 2 ; () ?
z 2 x C y () z 2 x _ z = y

; ✓ z () >
x C y ✓ z () x ✓ z ^ y 2 z

x = y () x ✓ y ^ y ✓ x

The point of all this is that (??) and (??) can be proved by a simultaneous
induction:

QR(x, x0),QR(y, y0) ` (x 2 y ! Pf bx0 2 y0c{x

0
,y

0}) ^ (x ✓ y ! Pf bx0 ✓ y0c{x

0
,y

0})

The induction is on the sum of the lengths of the derivations of QR(x, x0) and
QR(y, y0). Like most of the syntactic predicates used in the incompleteness
theorems, QR(x, x0) is defined to hold provided there exist k and s such that s

7

✤ The first two require simultaneous induction, yielding the third.

✤ Similar proofs for the symbols % & ∃ and bounded ∀.

✤ The proof in the HF calculus needs under 450 lines.

✤ Fills a major gap in various presentations, including S!wierczkowski’s.

is a k-element sequence representing the conditions (4) and (5). Induction on
the sum of the lengths allows us to prove

x 2 y ! Pf bx0 2 y0c{x

0
,y

0}

by case analysis on the form of y, while proving

x ✓ y ! Pf bx0 ✓ y0c{x

0
,y

0}

by case analysis on the form of x. One case of the reasoning is as follows:

x1 C x2 ✓ y () x1 ✓ y ^ x2 2 y

=) Pf bx0
1 ✓ y0c{x

0
1,y

0} ^ Pf bx0
2 2 y0c{x

0
2,y

0}

() Pf bx0
1 C x0

2 ✓ y0c{x

0
1,x

0
2,y

0}

theorem Goedel II:
assumes Con: "¬ {} ` Fls"

shows "¬ {} ` Neg (PfP pFlsq)"
proof -

from Con Goedel I obtain �
where diag: "{} ` � IFF Neg (PfP p�q)" "¬ {} ` �"

and gnd: "ground fm �"
by metis

have "{PfP p�q} ` PfP pPfP p�qq"
by (auto simp: Provability ground fm aux def supp conv fresh)

moreover have "{PfP p�q} ` PfP pNeg (PfP p�q)q"
apply (rule MonPon PfP implies PfP [OF gnd])
apply (auto simp: ground fm aux def supp conv fresh) using diag
by (metis Assume ContraProve Iff MP left Iff MP left’ Neg Neg iff)

moreover have "ground fm (PfP p�q)"
by (auto simp: ground fm aux def supp conv fresh)

ultimately have "{PfP p�q} ` PfP pFlsq" using PfP quot contra
by (metis (no types) anti deduction cut2)

thus "¬ {} ` Neg (PfP pFlsq)"
by (metis Iff MP2 same Neg mono cut1 diag)

qed

8

What Did We Learn?

✤ Some highly compressed proofs were finally made explicit.

✤ The entire proof development can be examined interactively.

✤ The nominal package can cope with very large developments…

(BUT: performance issues, some repetitive notation, complications in
accepting function definitions)

✤ <9 months for the first theorem, a further 4 for the second

✤ Under 16 000 lines of proof script in all.

Conclusions

✤ the first-ever machine formalisation of Gödel’s second incompleteness
theorem

✤ using both nominal and de Bruijn syntax for bound variables

✤ within an axiom system for hereditarily finite set theory

✤ conducted using Isabelle/HOL.

Many thanks to Christian Urban for help at critical points!

Also Jesse Alama, Dana Scott.

