Machine Learning and the Formalisation

Of Mathematics: Research Challenges

Lawrence C Paulson FRS

AITP, Aussois 2020 Supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).

. Introducing ALEXANDRIA

777@/7% oL, ff(@,

Mathematicians are fallible

Look at the footnotes on a single page
(118) of Jech's The Axiom of Choice

! The result of Problem 11 contradicts the results announced by Levy [1963b]. Un-
fortunately, the construction presented there cannot be completed.

2 The transfer to ZF was also claimed by Marek [1966] but the outlined method appears
to be unsatisfactory and has not been published.

3 A contradicting result was announced and later withdrawn by Truss [1970].

4 The example in Problem 22 is a counterexample to another condition of Mostowski,
who conjectured its sufficiency and singled out this example as a test case.

5 The independence result contradicts the claim of Felgner [1969] that the Cofinality
Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner’s

corrections to [1969]).

We aim to link people, formal
proofs and traditional mathematics

'\(E\:|

Funded by the European Research Council (2017-22)
Four postdoctoral researchers:
one Isabelle engineer (Wenda Li)

two professional mathematicians (Angeliki
Koutsoukou-Arqyraki and Anthony Bordg)

an expert on natural language /machine learning/
information retrieval (Yiannos Stathopoulos)

What have we been up to?

Building libraries of
advanced mathematics: Writing verified
algebra, analysis, computer algebra tools

probability theory...

Conject thesis via ML
Natural language search

for library theorems

Aiming to support the
re-use of proof fragments

2. Structured Proofs

Tactic proofs: fit only for machines

Interredicte valete Zheorer

let IVT = prove(
wiEsa b oyscasc="bi/\
(FCa) <=y [\ Y <= F(b)) /\
Gl al <=0 [N X <= b ==> f contlx)
50 LT Xerig el lMDi(SéFT_PA((\‘ .(f.(xf)(a= ¥YIioo/\ x <= b /\ (f(x) = (y:real)))" THEN
REPEAT GEN_TAC' THEN DISCH THEN(MP TAC o SPEC “x:real>) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
DISCH_THEN(CONJUNCTS_THENg- i shaEl ke s adiitees

! = x /\
(CONJUNCTS_THEN2 MP_TAC) dR}PrAeNMEA T84)), THERST ASSUM(MP_TAC o MATCH_MP th)) THEN
(o I SO, OO REGRTTE TAG contl; LTM] THEN
?PI,"EC_T_KEHENéAgiggEEgﬁgAﬁoggngRﬁgN —FAE AR &‘V‘>aE§E'E§>‘ - f(x:real))) THEN
e _I IﬁIEwRITE_TAC (funpow 2 LAND_CONV) [GSYM]
\(U,v). @ <= u /\ U <geaR{peVTAC QEKE>sU§féP)RéKLXS@é;RZéﬁoT(¥Qéﬁ§§E§§L&g§E¥L%ﬁTXEEﬁ;s SUB] THEN
CONV._TAC(ONCE_DEPTH_CONASSH Bt For £ AN YN, RewR1TE_TAC(map Gy tL&§ﬂ AHERITE TAC[real abs; REAL SUB LE; REAL SUB_LT] THEN

W(C SUBGOAL_THEN (fun t 5pc REWRHG(TAGI3dIEOTHEN “d:real” STRIP_ASSUM
funpow 2 (fst o dest_impdypcsad) EﬁEHL s : e ksMARBWREFE TAC[REAL_LT LE] THEN DISCH_THEN SUBST ALL_TAC THEN
XISTSZTAC ™dreal” THEN ASM_REWRITE_TAC[] THENnTscH TAC 'y < f(x:real)’ THEN ASM_REWRITE_TAC[GSYM REAL_NOT_LE];

[ALL_TAC; MAP_EVERY X_GEN_TAC [lu:real ; “v:real] THE
e s el SRR GEN TG o uered e 0 NONCE_REWRITE_TAC[ABS_SUB] THEN ASM_REWRITE_TAC[real_abs; REAL_SUB_LE] THEN
i REPEAT2CTREE 7acOriiER” 1) MATCH_MP_TAC REAL LET_TRANS THEN EXISTS_TAC "v - u’ THEN

ASM_REWRITE_TAC[REAL_LGoREREAPEBEN] - (f:real->real) x7; “y:ireal'] RESH_AEWA PTALPAGHENal sub; REAL_LE_LADD; REAL_LE_NEG; REAL_LE_RADD];

CONJ_TAC THENL
- ASM_REWRITE_TAC[] THEN DISCH_THEN DISJ_CASES T
[MAP_EVERY X_GEN_TAC [283 1nde /Y208 ;éH‘ﬂdfegléﬁgEbEﬂs e EJ@EE RENRITE_TAC[REAL_ADD_SYM] THEN REWRITE_TAC[REAL_SUB_ADD] THEN
Eﬁ RITEPFNE[REAL NOT LT; real abs; REAL_SUB_LE] THEN

§$§¥ET$§CC?ﬂEzAzga—ggm¥&Sf§FhRFM &ﬁpTﬁﬁéDg—ypﬁéANVTHM*‘yOFHENPdEW BeOACTNAENIMPAL THEN) ¢ £(x)° ASSUME_TAC THENL
MAP EVERY ASM CASES TAC QEPERE[dQﬁﬁ*NKC_THENL HEN. AS E. TAC H_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC “y:real THEN
DISJ_CASES_TAC(SPECL ['y:rgal RewafTECPACPRERLILY ﬂE?EfﬁENEDI§%ﬁE?w§ TPt LA G&%ENREA[NOT LT] THEN

ASM_REWRITE_TAC[] THENL [DISfcdACGAPTSAR JALITYHEN " THEN ASM_REWRITE TAC[GSYM REAL NOT LEJ3

MATCH_MP_TAC REAL_LE_TRANS\JHENL RTTE TAC[real abs; REAL SUB LE] THEN

[EXISTS_TAC “w:real”; EXIgfeciAtp HiFeRdal [HENTARNS REWBLTEXTARE [iac “v - u™ THEN

O IER e ASM_REWRITE TAC[real sub; REAL LE LADD; REAL LE NEG; REAL_LE_RADD];
X_GEN_TAC “x:real’ THEN ASM GROESpAfif1TE fACIREAL XABD_Svm]™HYEN REWRITE_TAC[REAL_SUB_ADD] THEN
[ALL_TAC; REWRITE_TAC[REAL NOT LT; real abs; REAL_SUB_LE] THEN

EXISTS_TAC "&1 THEN REWRIJEpIARIRRALNLTEBLINJFEN <= y* "asSUME_TAC THENL

MAP_EVERY X _GEN_TAC [u:readysircNig3¢ad REAN LT IMP_LE THEN FIRST ASSUM ACCEPT TAC; ALL_TAC] THEN

REFEAT STRIE. 1S L UNDISORGARE i <F(%:K§af)<?=Ba%vJHENSSUME_TAC THENL

REWRITE_TAC[] THEN CONJ_TAC JREN.MAJ CHAMPRAAC REAtpAfs TRAMY EREMS TAC “y:real>; ALL TAC] THEN
[EXISTS_TAC “u:real ; EXIRdp JAGRTYE "PRE[AedTENUb; REAL LE RADD]];

ASM_REWRITE_TAC[]] THEN nrocy THEN(MP_TAC o SPEC “u - x) THEN REWRITE TAC[NOT_IMP] THEN
ASM_REWRITE_TAC[REAL_NOT LT; REAL LE_NEG; real sub; REAL_LE_RADD]]]);3

W here’s the mtuition?

T————-=

) Bt SRR A SR R ST

— X

By Kpengboy (Own work, based off Intermediatevaluetheorem.png), via Wikimedia Commons

Or again: a HOL lLight tactic proof

let SIMPLE PATH_SHIFTPATH = prove
("!g a. simple _path g /\ pathfinish g = pathstart g /\
a IN interval[vec 0,vec 1]
==> simple path(shiftpath a g)°,
REPEAT GEN_TAC THEN REWRITE_TAC[simple path] THEN
MATCH_MP_TAC(TAUT
Ay e yvd == e) /N IbyNoe /Nd == [}
== (a- /N by /\ € /[\N.d==>e /\ B) THEN
CONJ TAC THENL [MESON TAC[PATH SHIFTPATH]; ALL TAC] THEN
REWRITE TAC[simple path; shiftpath; IN INTERVAL_ 1; DROP_VEC;
DROP_ADD; DROP_SUB] THEN
REPEAT GEN_TAC THEN DISCH THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ONCE_REWRITE_TAC[TAUT “a /\ b /\ ¢ ==> d <=> ¢ ==> a /\ b ==> d~] THEN
STRIP_TAC THEN REPEAT GEN_TAC THEN
REPEAT (COND_CASES TAC THEN ASM REWRITE TAC[]) THEN
DISCH_THEN(fun th -> FIRST X _ASSUM(MP_TAC o C MATCH MP th)) THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[DROP_ADD; DROP_SUB; DROP_VEC; GSYM DROP_EQ] THEN
REAL_ARITH TAC);;

The same, as a structured proof

lemma simple path shiftpath:
assumes "simple path g" "pathfinish g = pathstart g" and a: "0 < a" "a < 1"
shows "simple path (shiftpath a g)"
unfolding simple path def
proof (intro conjI impI balll)
show "path (shiftpath a g)"
by (simp add: assms path shiftpath simple path imp path)
have *: @ie g ilg x = gove oo e dg 1 - voe l@ 3] —— x =y i = Gy
using assms by (simp add: simple path def)
show "x = V =0 A =1V =1 A = O"
iy "x c {01} 'y c 40 1}" “shiftpath a g.x = shiftpath a gy . for x YV
using that a unfolding shiftpath def
by (force split: if split asm dest!: *)

Ty X 0%

LAY

ged

Proofs with gaps

a chain of “stepping stones”
from the assumptions to
conclusion

Users can fill these gaps

in any order

Structured proofs are necessary!

+ Because formal proofs should make sense to users
... reducing the need to trust our verification tools
+ For reuse and eventual translation to other systems

+ For maintenance (easily fix proofs that break due to changes to
definitions... or automation)

With some other Systems,

wsers avoird awloriction for AL reasont!

3. Implications for M1.

New possibilities for ML, with

structured proofs

+ Working locally within a large proof
+ Looking for just the next step (not the whole proof)
+ Proof by analogy

+ Identitying idioms

|.ots of data

+ About 230K proof lines in Isabelle’s maths libraries:
Analysis, Complex Analysis, Number Theory, Algebra

+ Nearly 2.6M proof lines in the Archive of Formal Proofs
(not all mathematics though)

+ Hundreds of different authors: diverse styles and
topics

l.ots of structured “chunks”

+ Structured proof fragments contain explicit assertions
and context elements that could drive learning

+ These might relate to natural mathematical steps
+ Proving a function to be continuous
+ Getting a ball around a point within an open set

+ Covering a compact set with finitely many balls

Where does prior work fit in?

+ TacticToe, etc., aim to prove theorems automatically
within the tactic paradigm, also predicting (just) the next
tactic

+ Gauthier et al. work on statistical conjecturing attempts
term and formula synthesis

7 here . a/reao/y a rend Zocoards incresental

proorp cConstruction (aS oppo\fea/ o Ffu// proof & >

It is essential to synthesise terms and formulas

Even tactics take arguments

Structured proofs mostly consist of explicit formulas

4. A Few'lypical Proof Idioms

Inequality chains

have " Xm*Ym-Xn*Yn!l=IXm*((Ym-Yn)+ (Xm-Xn) *Ynl"
unfolding mult diff mult ..

also have "... < I Xm* (Ym-Yn)!l + !1(Xm-Xn) *Yn}"
by (rule abs triangle ineq)

also have "... = X m! * !'Ym-Yn}] + ! Xm-Xn] *1Ynl"
unfolding abs mult ..

also have "... <a * t + s * b"

by (simp all add: add strict mono mult strict mono' a b 1 j *)
finally show “!Xm * Y m - Xn *Y n! < r"

by (simp only: r)

typically by the triangle inequality

with simple algebraic manipulations

there are hundreds of examples

Simple topological steps

have "open (interior I)" by auto
from openE[OF this <«x € interior I>]
obtain e where e: "0 < e" "ball x e C interior I" .

define U where "U = (MAw. (w - &) * g w) = T"
have "open U" by (metis oimT U def)
moreover have "0 € U"
using <¢£ € T> by (auto simp: U def intro: image eql [where x = £])
ultimately obtain = where "=>0" and ¢: "cball 0 = C U"
using <open U> open contains cball by blast

a neighbourhood around a point within an open set

many similar but not identical instances

Summations

have "real (Suc n) * S (x + y) (Suc n) = (x +y) * (DJi<n. S x 1 *Sy (n - 1i))"
by (metis Suc.hyps times S)

also have "... = x * (D>Ji<n. S x 1 *Svy (n -1)) +y * (OJi<n. Sx i *Sy (n - 1i))"
by (rule distrib right)

also have "... = (DJi<n. x * S x i *Svy (n - 1)) + (ODi<n. S x i *y *Sy (n - i))"
by (simp add: sum distrib left ac simps S comm)

also have "... = (DJi<n. x * S x i *Svy (n - 1)) + (OJi<n. S x i * (y *S vy (n - i)))"
by (simp add: ac simps)

also have "... = (> i<n. real (Suc i) *r (S x (Suc i) * Sy (n - i)))

+ (>.i<n. real (Suc n - i) *x (S x 1 *S vy (Sucn - 1)))"
by (simp add: times S Suc diff le)
also have "(> i<n. real (Suc i) *r (S x (Suc i) * Sy (n - 1i)))
= (> i<Suc n. real i *g (S x i * Sy (Sucn - 1i)))"
by (subst sum.atMost Suc shift) simp
also have " (> i<n. real (Suc n - i) * (S x i *S vy (Sucn - 1i)))
= (> i<Suc n. real (Suc n - i) *s (S x 1 *Sy (Sucn - i)))"
by simp
also have "(> i<Suc n. real i * (S x 1 * Sy (Sucn - 1i)))
+ (>, i<Suc n. real (Suc n - i) *x (S x 1 *S vy (Sucn - 1)))
= (>.i<Suc n. real (Suc n) *: (S x i *Sy (Sucn - 1i)))"
by (simp flip: sum.distrib scaleR add left of nat add)
also have "... = real (Suc n) *gr (> i<Suc n. S x i * Sy (Sucn - i))"
by (simp only: scaleR right.sum)
finally show "S (x + y) (Suc n) = (>_i<Suc n. S x i *Sy (Sucn - 1i))"
by (simp del: sum.cl ivl Suc)

Painful, yet the steps of that proof are routine!
the distributive law (x + y)z = xz2 + yz

i<n N

the distributivelaw x } . a, = 2. _ xa,
the distributive law >, _ (a,+b,) = 2. _ a,+ 2. _ b,
Shifting the index of summation and deleting a zero term

Change-of-variables is also common in such proofs

Can’t at least some of these steps be
learned from similar previous proofs?

So, an idea: link common “utility lemmas”

to natural language concepts?

... then let users supply natural language hints?

This shouldn’t require too much laborious
lemma tagging: just a few dozen lemmas
would cover many techniques

But for which sort of user?

For mathematicians, who need help
to use the proof assistant
to navigate its library

to locate missing material in the mathematical
literature and eventually to formalise it

Or verification engineers
who need mathematics for an application
but lack expert knowledge

and again need help finding relevant library items?

Some work of ours

+ SErAPIS : A Concept-Oriented Search Engine (next talk!)

+ IsarStep: a dataset for conjecture synthesis (Wenda Li)
+ to propose intermediate propositions within structured proofs
+ via neural sequence-to-sequence models.

+ Close to 20% accuracy when synthesising intermediate
propositions.

+ Can also capture the relationships between concepts, e.g. sets vs.
their members.

Conclusions

the formalisation of mathematics, especially into
structured proofs, requires a different approach to ML

synthesis of terms and assertions to continue (not
necessarily complete) a proof

linking between informal proof ideas and their
formal equivalents

brainstorming backed by the system’s full knowledge

