Using Isabelle to Prove Properties of the
Kerberos Authentication System*

Giampaolo Bella Lawrence C Paulson

{Giampaolo.Bella, Larry.Paulson}@cl.cam.ac.uk
Computer Laboratory — University of Cambridge
New Museums Site, Pembroke Street
Cambridge CB2 3QG (UK)

Abstract

The Inductive method, previously used to analyse classical, nonce-
based cryptographic protocols, is here tailored to formalise Kerberos, a
real-world, timestamp-based protocol. A complete formalisation of the
whole protocol is achieved, and several guarantees about its entangled
operation are proved using the theorem prover Isabelle.

1 Introduction

Since Needham and Schroeder pioneered in [6] that protocol errors are unlikely
to be detected in normal operations and that the need for techniques to verify the
correctness of such protocols is great, a number of methods have been developed
to analyse cryptographic protocols. However, none of these methods can claim
that a protocol is mathematically secure.

A combination of different methods might yield the best results. For in-
stance, the use of a belief logic [3] during the design phase might help ensure
freshness properties, and the use of a state enumeration method [4] might pin-
point simple flaws quickly. Deeper structural properties might be proved by
way of the inductive method.

Using such a method, some famous cryptographic protocols of the literature
have been analysed with the support of the generic theorem prover Isabelle.
Several guarantees (nearly two hundred theorems in all) have been established
about the following protocols: Needham-Schroeder (both shared-key and public-
key), Otway-Rees, Yahalom [8, 9, 10]. A new attack has been discovered in a
variant of the Otway-Rees protocol.

*In H. Orman and C. Meadows, editors, DIMACS Workshop on Design and Formal Ver-
ification of Security Protocols, Rutgers University — New Jersey (USA), September 1997.

The inductive approach has also been tailored to analyse real-world proto-
cols. The first one tackled in this field is Kerberos [5, 1], whose analysis has
required some effort for the mechanism of broadcast of a session key to the
intended recipients which relies on the presence of two different trusted third
parties. Kerberos is the first protocol relying on the use of timestamps (instead
of nonces) to prevent the replay of messages. This has caused the introduction
in the framework of a function yielding the current time and has brought the
case for the definition of a new class of theorems stating temporal properties.

Assuming that the reader is familiar with Kerberos, Section 2 sketches the
basic operation of the protocol. It also gives the motivations for the choice
of Kerberos by going through the little related work. Section 3 then gives a
feel about the inductive method, and Section 4 presents the actual analysis of
the protocol. Finally, Section 5 sums up the paper. The complete Isabelle
specification of Kerberos is given in Appendix.

2 Kerberos

Developed a decade ago as part of the project Athena at MIT [5], Kerberos has
gone through many updates aimed at improving its security.

Kerberos relies on the use of timestamps to assure freshness of precious pieces
of information as session keys. Kerberos checks twice the identity of Alice before
she can get access to the network resource Bob, first by means of Kas (Kerberos
Authentication Server) and then by means of Tgs (Ticket Granting Server).
Alice receives by Kas a session key to be used for the communication with Tgs.
Then, each time Alice wants to reach Bob, Tgs issues her with another session
key which is to be used only for the communication between Alice and Bob.

Although the use of Kerberos as an authentication system for LANs is today
widespread, the literature contains little work about the application of formal
methods to it. This was the main motivation to our choice. Until a short time
ago, the work of Burrows et al. [3] was the only significant attempt, but showed
very few properties and has been widely criticised. A complete formalisation
pointing out rigorously all the numerous details of the operation of Kerberos
has been only recently achieved by means of the Gurevich’s Abstract State Ma-
chine [1], but lacks automation. That work has been the basis to ours, which
is, to our knowledge, the first attempt to mechanise such a complex protocol.

3 The Inductive Method

For the entire treatment of the method, we refer to [8]. Only some guidelines
are given here.

3.1 Overview

The inductive method rests on the notion of event. Each time an agent A sends
an agent B a message X, the event

Says A B X

occurs in our model. This event suffices to describe all traffic over the network
and is the only one envisaged so far.

Cryptographic protocols are formalised as the set of all possible traces, which
are lists of events. Our specification defines this set inductively, i.e. it describes
how to extend a trace of the set with a new event, according to the protocol
operation.

Proving properties on the set formalising a protocol follows the classical
induction principle. Once shown that the property holds on the empty set, we
simply have to show that, if the property holds on a trace evs of the set, it still
holds on the traces that extend evs by means of the rules for defining the set.
Proofs would be too long to carry out on paper. This is where the theorem
prover Isabelle comes into help.

The framework for shared-key protocols existing before the analysis of Ker-
beros relied on a trusted party, a special agent which has knowledge of all agents’
secret keys. An eavesdropper, which attempts to get network resources by faking
messages and exploiting accidental key losses, was impersonated by the agent
Spy. Nonces were explicitly formalised as legitimate parts of messages. Tackling
Kerberos has brought up the need for a few extensions (see Section 4).

3.2 Operators

The model makes use of three main operators that extend a given set of messages
H. They are defined inductively, and enjoy several laws.

parts H is built from H by repeatedly adding the components of compound
messages and the bodies of encrypted messages. Intuitively, it formalises
all the knowledge that can be obtained from H, except for the keys that
encrypt messages in H.

analz H is built from H by repeatedly adding the components of compound
messages and the bodies of messages encrypted under keys already in
analz H. It is a subset of parts H because it doesn’t break ciphers.

synth H models the messages that the spy can built up from elements of H,
including agent names, timestamps, compound messages, and messages
encrypted with keys in H. Agent names are included because they are
publicly known, timestamps because they can sometimes be guessed

Another operator models the set of messages an agent A receives from a trace
evs:

sees A evs.

It is inductively defined assuming that honest agents see only the messages
intended for themselves, while the spy sees all traffic. Therefore, the set

synth(analz(sees Spy ews))

denotes all the fraudulent messages the spy can send by observing the trace
evs. A spy able to send such a large number of messages has a potentially
infinite behaviour [8] which goes beyond the limits of formalisations by state-
enumeration methods.

3.3 Guarantees

Guarantees about the protocol operation are established in terms of theorems
proved by Isabelle. When such proofs fail, they help to point out weaknesses of
the protocol and even possible bugs. This is how a new bug in a variant of the
Otway-Rees protocol has been discovered in [8].

The guarantees mentioned in [8] belong to five families.

Possibility properties are usually the first to be dealt with. The most im-
portant one consists in showing that there are traces that reach the end
of the protocol. Although the model does not force agents to act, the lack
of a trace proceeding from the first message to the last would indicate the
protocol to have been transcribed incorrectly.

Forwarding lemmas are stated each time an agent forwards an item that
it can not decrypt. They formally express that the spy will not learn
anything new by seeing that item. Their proofs are trivial.

Regularity lemmas state that a certain item X does not belong to the set of
messages available to the spy, which means that the spy can not ever get
hold of X. They are usually easy to prove because stated in terms of the
parts operator.

Authenticity theorems state that some valuable pieces of information as ses-
sion keys and timestamps uniquely identify their message of origin. They
provide guarantees about messages encrypted by keys believed to be secret
(in general an encrypted message might have been faked if the key had
been lost to the spy).

Secrecy theorems are the most difficult to prove, as they are stated in terms
of the analz operator. An important one states that no session key is
used to encrypt other session keys, so that the spy can not use a stolen
session key to learn others. A crucial one states that if the trusted party
distributes a session key to two agents which have not lost their secret
keys, and if this session key is not lost to the spy, then no other agent can
get hold of it.

4 The Analysis of Kerberos

Modelling Kerberos required the definition of two trusted parties Kas and Tgs,
and of timestamps as parts of the messages. These main modifications were
quickly applied to the existing framework based on one trusted party and on

nonces, thus proving that it easily adapts to different protocol structures. Since
Kas and Tgs are the foundation of the entire authentication procedure, our
model assumes their private keys to be secure.

The Isabelle specification of Kerberos is presented in Appendix, where some
mathematical symbols have taken the place of their ASCII equivalents to im-
prove readability. The base of the induction is achieved by the Nil rule, while
the power of the spy is formalised by the Fake rule. There are two Oops rules
to model respectively the accidental loss of an authentication key (the session
key used for the communication between Alice and Tgs) and of a service key
(the session key used for the communication between Alice and Bob). They are
currently omitted to simplify some proofs.

Each timestamp is obviously taken as the current time, which is formalised
by the function CT mapping the current trace into an integer. Four lifetimes are
defined as global constants, since sending the lifetimes inside the messages is a
redundancy already addressed in [2].

AuthLife is the lifetime of the authentication key and usually lasts several
hours; each authentication key can be used within this lifetime between
Alice and Tgs.

ServLife is the lifetime of the service key and usually lasts a few minutes; each
service key can be used within this lifetime between Alice and Bob. It is
so short to prevent the re-use of a service key.

RecentAuth is the lifetime within which an authenticator is considered accept-
able (Each time Alice sends a message to anybody, she builds an authen-
ticator containing a timestamp and sends it inside the message).

RecentResp is the lifetime within which Alice considers acceptable a server’s
reply.

The need for the first two is straightforward. The reason for the last two is that,
if an authenticator or a server’s reply are “old” (i.e. they contain a timestamp
older than RecentAuth or RecentResp respectively), then they are very likely
to have been faked.

The timestamps Ta, Tal, Ta2 mark the moments that Alice sends a message
to Kas, Tgs, and Bob respectively. Similarly, Tk marks the moment of the Kas’s
reply and Tt the moment of the Tgs’s reply.

Each rule consists of some assumptions (which are enclosed between [| and
|1) and a conclusion (which appears after the =). If the assumptions hold,
then the event mentioned in the conclusion may occur. Then, the gist of the
protocol should arise easily.

4.1 Guarantees about Kerberos

Proving for Kerberos the possibility properties and the regularity lemmas al-
ready established for other protocols in [8] has not required much effort.

New forwarding lemmas have been established. One is proved for the ticket'
that Alice receives from Kas (and then forwards to Tgs):

Says Kas’ A (Crypt Key.A {|AuthKey, Agent Tgs, Tk, AuthTicket|})
€ set_of_list evs
— AuthTicket € parts(sees Spy evs)

being Key_A Alice’s secret key, and one is proved for the ticket that Alice gets
from Tgs (and then forwards to Bob):

Says Tgs’ A (Crypt AuthKey {|ServKey, Agent B, Tt, ServTicket|})
€ set_of_list evs
— ServTicket € parts(sees Spy evs)

In the real world, Alice does not know who the true senders of the messages she
gets are. This is why Kas and Tgs are primed.

The proof of such theorems is now down to one Isabelle command thanks to
the development of suitable proof tactics.

A crucial authenticity theorem formally states that if a certain encrypted mes-
sage appears, then it originated with Kas:

[ICrypt Key-A {|Key AuthKey, Agent Tgs, Tk, AuthTicket|}
€ parts(sees Spy evs);
A ¢ lost; evs € kerberos|]
= AuthTicket = Crypt Key_Tgs
{lAgent A, Agent Tgs, Key AuthKey, Tk|} &
Says Kas A (Crypt Key_A {|Key AuthKey, Agent Tgs, Tk,
(Crypt Key_Tgs
{|Agent A, Agent Tgs, Key AuthKey, Tkl|})
I

€ set_of_list evs

Note the assumption that A has not lost her key to the spy. Similar is the
counterpart for Tgs:

[ICrypt AuthKey {|Key ServKey, Agent B, Tt, ServTicket|}
€ parts(sees Spy evs);
Key AuthKey ¢ analz(sees Spy evs);
B ¢ lost; evs € kerberos|]
— ServTicket = Crypt Key B
{|Agent A, Agent B, Key ServKey, Ttl} &
Says Tgs A (Crypt AuthKey {|Key ServKey, Agent B, Tt,
(Crypt Key.B
{lAgent A, Agent B, Key ServKey, Ttl})
I

€ set_of_list evs

LFor the reader unfamiliar with Kerberos, a ticket is an encrypted message that Alice uses
as a credential with the next interlocutor, although ignoring its content. She receives the
authentication ticket from Kas, and the service ticket from Tgs.

Also this second theorem relies on the encryption keys being secure. This is for-
malised by B ¢ lost for B’s private key, and by Key AuthKey ¢ analz(sees
Spy evs) for the session key AuthKey.

As for the secrecy theorems, not surprisingly the proof that no session key is
used to encrypt other session keys failed. The reason is that the authentication
key encrypts the service key; therefore, the theorem could be proved only for
service keys. Proof methods recently applied to Yahalom [11] may yield results
for Kerberos also.

Since the authentication key has a long lifetime, it is used to encrypt many
service keys, so, from learning one authentication key, the spy could obtain a
considerable number of other session keys. This addresses a protocol weakness
already mentioned in [1].

The temporality of Kerberos suggested the definition of a new class of the-
orems, called temporal properties, expressing relations about the timestamps.
They emphasise the key role played by the lifetimes, and can suggest the right
values for them. This is of crucial importance since many replay attacks success
because of too long lifetimes. For these reasons, more and more theorems of
this class are being investigated.

For instance, the following is a theorem expressing that a service key is issued
not later than the authentication key has expired:

[ISays Kas’ A (Crypt Key_ A {|AuthKey, Agent Tgs, Tk, AuthTicket|})
€ set_of_list evs;
Says Tgs’ A (Crypt AuthKey {|ServKey, Agent B, Tt, ServTicketl|})
€ set_of_list evsl]
—> Tt < Tk + AuthLife

5 Conclusion

A framework for the analysis of cryptographic protocols based on the inductive
method has been developed within Isabelle and applied to some case studies [8].

This paper has discussed the analysis of Kerberos by means of that frame-
work. Kerberos was chosen because it is a popular authentication system which
was still lacking a mechanised analysis. Hence, while Kerberos has met its first
mechanisation, the Isabelle framework has been, in turn, extended to deal with
two trusted parties and with timestamps.

This analysis has shown that the method scales up to real-world protocols,
and has founded a new class of guarantees, the temporal properties, only partially
investigated so far, which will be the field for the future research.

References

[1]

G. Bella, E. Riccobene. Formal Analysis of the Kerberos Authentication
System. Journal of Universal Computer Science: Special Issue on Gurevich’s
Abstract State Machine, Springer, 1997.

S. M. Bellovin, M. Meritt. Limitations of the Kerberos authentication sys-
tem. Computer Comm. Review, 20(5) 119-132, 1990.

M. Burrows, M. Abadi, R. M. Needham. A logic of authentication. Proceed-
ings of the Royal Society of London, 426:233-271, 1989.

G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol
using FDR. In Tools and Algorithms for the Construction and Analysis
of Systems, Margaria and Steffen (eds.), volume 1055 of Lecture Notes in
Computer Science, Springer Verlag, 147-166, 1996.

S. P. Miller, J. I. Neuman, J. I. Schiller, J. H. Saltzer. Kerberos authentica-
tion and authorisation system. Project Athena Technical Plan, Sec. E.2.1,
1-36, MIT, 1989.

R. M. Needham, M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12), 993-999, 1978.

L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994. LNCS
828.

L. C. Paulson. Proving properties of security protocols by induction. Cam-
bridge University, Computer Laboratory, Technical Report No. 409, 1996.

L. C. Paulson. Mechanized proofs of security protocols: Needham-Schroeder
with public keys. Cambridge University, Computer Laboratory, Technical
Report No. 413, 1997.

[10] L. C. Paulson. Mechanized proofs for a recursive authentication proto-

col. Cambridge University, Computer Laboratory, Technical Report No.
418, 1997.

[11] L. C. Paulson. On Two Formal Analyses of the Yahalom Protocol. Cam-

bridge University, Computer Laboratory, Technical Report No. 432, 1997.

Appendix: Specifying Kerberos in Isabelle

kerberos :: event list set
inductive kerberos

Nil [] € kerberos

Fake [| evs € kerberos; B#Spy; X € synth(analz(sees Spy evs)) |]
—> Says Spy B X # evs € kerberos

K1 [| evs € kerberos; A#Kas |]
—> Says A Kas {|Agent A, Agent Tgs, Timestamp (CT evs)|}
evs € kerberos

K2 [| evs € kerberos; A#Kas; Key AuthKey ¢ used evs;
Says A’ Kas {|Agent A, Agent Tgs, Timestamp Tal}
€ set_of_list evs |[]
— Says Kas A (Crypt (shrK A)

{|Key AuthKey, Agent Tgs, Timestamp (CT evs),
(Crypt (shrK Tgs)
{|Agent A, Agent Tgs, Key AuthKey,

Timestamp (CT evs)|})
I

evs € kerberos

K3 [| evs € kerberos; A#Tgs;
Says A Kas {|Agent A, Agent Tgs, Timestamp Tal}
€ set_of_list evs;
Says Kas’ A (Crypt (shrK A) {|Key AuthKey, Agent Tgs,
Timestamp Tk, AuthTicket]|})
€ set_of_list evs;
Tk < Ta + RecentResp |]
—> Says A Tgs {|AuthTicket, (Crypt AuthKey
{IAgent A, Timestamp (CT evs)|}),
Agent B |}
evs € kerberos

K4 [| evs € kerberos; A#Tgs; Key ServKey ¢ used evs;

Says A’ Tgs {|(Crypt (shrK Tgs)

{lAgent A, Agent Tgs, Key AuthKey,
Timestamp Tk|}),
(Crypt AuthKey
{|Agent A, Timestamp Tal)|}),
Agent B |}
€ set_of_list evs;
(CT evs) < Tk + AuthLife;

(CT evs) < Tal + RecentAuth |]
—> Says Tgs A (Crypt AuthKey
{|Key ServKey, Agent B, Timestamp (CT evs),
(Crypt (shrK B)
{|Agent A, Agent B, Key ServKey,
Timestamp (CT evs)|})
'H

evs € kerberos

K5 [l evs € kerberos; A#B;
Says A Tgs {l|AuthTicket,
(Crypt AuthKey {|Agent A, Timestamp Tall}),
Agent B|}
€ set_of_list evs;
Says Tgs’ A (Crypt AuthKey {|Key ServKey, Agent B,
Timestamp Tt, ServTicket|})
€ set_of_list evs;
Tt < Tal + RecentResp |]
— Says A B {|ServTicket, (Crypt ServKey
{lAgent A, Timestamp (CT evs)|}),
I}

evs € kerberos

K6 [| evs € kerberos; A+#B;
Says A’ B {|(Crypt (shrK B)
{lAgent A, Agent B, Key ServKey,
Timestamp Ttl}),
(Crypt ServKey
{|Agent A, Timestamp Ta2|}),
I}
€ set_of_list evs;
(CT evs) < Tt + ServlLife;
(CT evs) < Ta2 + RecentAuth |]
= Says B A (Crypt ServKey (Timestamp Ta2))
evs € kerberos

Oopsl [| evs € kerberos; A#Spy;
Says Kas’ A (Crypt (shrK A) {|Key AuthKey, Agent Tgs,
Timestamp Tk, AuthTicket]|})
€ set_of_list evs |[]
— Says A Spy {l|Agent A, Agent Tgs,
Timestamp Tk, Key AuthKeyl}
evs € kerberos

10

Oops2 [| evs € kerberos; A#Spy;
Says Tgs’ A (Crypt AuthKey {|Key ServKey, Agent B,
Timestamp Tt, ServTicket]|})
€ set_of list evs |]
= Says A Spy {l|Agent A, Agent B,
Timestamp Tt, Key ServKeyl|}
evs € kerberos

11

