Source-lLevel Proof
Reconstruction for
Interactive Proving

Lawrence C. Paulson and Kong Woei Susanto
Computer Laboratory, University of Cambridge

Motivation

Interactive provers are good for specifying complex systems,
but proving theorems requires too much work.

Linking them to automatic provers can reduce the cost of
using them.

Trusting the output of a big system (including the linkup
code) goes against the LCF tradition and is unsafe.

Reconstruction lets us use techniques that are efficient but
unsound.

Source-Level Proof
Reconstruction

« The LCF architecture provides a kernel of inference rules,
which is the basis of all proofs.

< Automatic tools may include a proof reconstruction phase,
where they justify their reasoning to the proof kernel.

Why not instead deliver proofs in source form? Then users
could znspect and edit them.

\C

Isabelle Overview eé;'.‘

« Generic proof assistant, supporting higher-order logic, ZF
set theory, etc.

* Axiomatic type classes to express concepts such as /znear
order and ring through polymorphism.

% Extensive lemma libraries: real numbers (including non-
standard analysis), number theory, hardware, ...

* Automation: decision procedures, simplifier and prover,
automatically referring to 2000 lemmas.

Automatic Provers

« Resolution is a general, powerful technique with full support
for quantifiers and equations.

< The provers we use are Vampire, E and SPASS.

+ Arithmetic is not built-in; however, Isabelle already provides
support for the main decidable theories.

+ Decision procedures have too narrow a focus. We seek
automation that can be tried on @ny problem.

Overview of the Linkup

When the user invokes the \
R

“sledgehammer” command...

The problem is Skolemized and converted to clause form,
with higher-order features removed (all by inference).

A simple relevance filter chooses a few hundred lemmas to
include with the problem.

Further clauses convey limited information about #ypes and
type classes.

A resolution prover starts up (in the background).

Obstacles to Reconstruction
with Automatic Provers

* Ambiguities: their output typically omits crucial information,
such as which term is affected by rewriting.

« Lack of standards: automatic provers generate different
output formats and employ a variety of inference systems.

< Complexity: a single automatic prover may use numerous
inference rules with complicated behaviours.

* Problem transformations: ATPs re-order literals and make
other changes to the clauses they are given.

Joe Hurd’s Metis Prover

+ Metis is a clean implementation of resolution, with an ML
interface for LCF-style provers, originally HOL4.

<+ We provide mzetzs as an Isabelle command, with internal
proof reconstruction.

<+ We translate ATP output into a series of mzetzs calls.

% Metis cannot replace leading provers such as Vampire, but it
can usually re-run their proofs.

Porting Metis to Isabelle

< Conversion to clauses: use Isabelle’s existing code for this task.

« The § Metis inference rules: implement using Isabelle’s proof
kernel.

< During type inference, recover type class information from

the proof.

< Ignore clauses and literals that encode type classes.

Approaches to Proof
Reconstruction via Metis

1. A single call to metis, with just the needed lemmas
e The ATP merely serves as a relevance filter.

* Parsing is trivial: we merely look for axiom numbers to
see which lemmas were used.

2. A line-by-line reconstruction of the resolution proof

 We translate the ATP proof into an ugly Isabelle proof.

Sutcliffe’s TSTP Format

% Thousands of Solutions from Theorem Provers
% A standard for returning outcomes of ATP calls
% Proof lines have the form

cnf(<name> <formula_role> <cnf_formula><annotations>).

+ +

axiom, referenced proof
conjecture, etc. lines

ATSTP Axiom Line

« This line expresses the equation

xR =)

cnf(216,axiom,
(c_minus(X,X,X3)=c_HOL_Ozero(X3) |
~class_OrderedGroup_Oab__group__add(X3)),
file('B1g0__bigo_bounded2_1"', cls_right__minus__eq_1)).

A'TSTP Conjecture Line

« This line expresses type information about the given
problem. (The type variable ‘b is in class ordered_idom.)

< Proof reconstruction must ignore it.

cnf(335,negated_conjecture,
(class_Ring__and__Field_Oordered__idom(t_b)),
file('Bi1g0__bigo_boundedZ2_1', tfree_tcs)).

A'TSTP Proof Step

+ The E prover’s inferences look like this.

+ It conveys more information about the type variable ‘b, so
it too must be ignored.

cnf(366,negated_conjecture,
(class_OrderedGroup_Opordered__ab__group__add(t_b)),
inference(spm, [status(thm)],
[343,335, theory(equality)])).

What to Do with Various
Proof Lines

“ Axiom reference: delete, using instead the lemma name.

< Type class inclusion: delete entirely.

< Conjecture clause: copy it into the Isabelle proof, as an
assumption.

% Inference: copy it into the Isabelle proof, justified by a call to
metis.

Turning TSTP into Isabelle

Parse TSTP format, recovering proof structure.

Use type literals in clauses to recover class constraints on type
variables.

Use Isabelle’s type inference to recover terms.
Use Isabelle’s pretty printer to generate strzngs.

Combine strings to yield an Isar structured proof.

Collapsing ot Proot Steps

We can shorten the proof by combining adjacent steps,
giving metis more work to do!

< Some assertions aren’t expressible in Isabelle:
quantifications over types, type class inclusions.

% Some inferences are trivial (instantiating variables in
another line) or become trivial once type literals are ignored.

% Some proofs are just intolerably long (a hundred lines).

ATypical Structured Proot

proof (neg_clausify)
a0
assume 0: "Ay. 1by < f y"
asSlmerslen =t (0ue b e s b L Do X!
have72 2 a N KBt (O b =) Bia= X3!

by (metis diff_eq_eq right_minus_eq)
haye el (Qs2b) <S frx v bax!

by (metis 1 compare_rls(1))
ha e ralenas QDY) kel bt e

by (metis 3 le_diff_eq)
show "False"

by (metis 4 2 0)
ged

Future Ideas and Conclusions

< ATPs can help generate their own proof scripts!

+ Scripts may need type annotations, which at present are
highly repetitions.

+ Redundant material, such as proofs of known facts, could be

deleted.

+ Can we produce scripts that look natural?

Acknowlegements

< Postdocs: Claire Qulgley

< PhD student: Jia Meng ;-“

+ Funding: EPSRC project GR/S57198/01 Automation for
Interactive Proof

EPS RC Engineering and Physical Sciences
Research Council

