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Abstract. Hoare logic is widely used for software specification and verification. Fre-

quently we need to prove the total correctness of a program: to prove that the program

not only satisfies its pre- and post-conditions but also terminates. We have implemented

a termination checker for Isabelle’s Hoare logic. The tool can be used as an oracle, where

Isabelle accepts its claim of termination. The tool can also be used as an Isabelle method

for proving the entire total correctness specification. For many loop structures, verifying

the tool’s termination claim within Isabelle is essentially automatic.

1 Introduction

For many critical systems, such as operating systems kernels, testing is not ad-

equate to ensure correctness. Formal methods have become popular in research

as well as industry. There are several approaches to verifying program correct-

ness. For example, Hoare logic has been used to specify a program’s pre- and

post-conditions; using logical deduction, one can prove the program meets its

specification. A program that fails to terminate satisfies its post-condition by

default, so total correctness requires a proof that the program terminates.

Total correctness proofs are complicated and require a lot of human effort.

A different approach is to focus on the termination property of a program,

which can usually be automated with some human assistance. An example is

the Terminator program developed at Microsoft Research [3, 8], which checks

whether a C program terminates.

A proof of termination is useful, but it does not guarantee that a program

does what it is supposed to do. Full specification and verification is still what we

are aiming at, and the most important formalism for that purpose is Hoare logic.

Our current work is part of a larger project to verify the functional correctness

of the L4 operating system micro kernel. An automatic termination checker can

reduce manual work. Since Terminator is not publicly available, we have imple-

mented a termination checker in the spirit of Terminator and have integrated

this tool into Isabelle [6]. The tool can be used by Isabelle’s Hoare logic to prove

total correctness specifications. In this paper, we concentrate on termination of

WHILE constructs.

Although our termination checker and Terminator are based on the same

technology, we have a different emphasis. In addition to implementing the ter-

mination tool, we also investigate how we can have the tool’s results used by
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Isabelle’s Hoare logic. The termination tool is based on model checking and it

returns a set of well-founded (WF) relations for each cyclic path. However, a

total correctness specification in Hoare logic requires one single WF relation

(the variant) for each looping construct. An explicit variant represents evidence

of termination, but this variant is not given as a result by either Terminator

or our tool, which are both based on the model checking technology. Much of

our investigations concern how to make the results from the termination tool

usable to Isabelle. As far as we know, our tool is the first integration of a model-

checking-based termination tool with an interactive prover, and our work is the

first integration of the terminator technology to Hoare logic.

In addition, we invented an optimization for our termination checker (§4.3)

to meet our particular requirements on the generated WF relations. Finally,

Podelski and Rybalchenko [8] have proved the mathematical theory behind

Terminator. In order that we can use the tool in Isabelle, we have had to

formalize their proofs in Isabelle, and this is the first formalization of the proofs

in any interactive prover.

Another method for termination analysis is to translate imperative programs

into functional programs so that one can prove the termination property of

an imperative program by proving its functional counterpart terminates [1].

However, we decided to adopt another approach, which is based on disjunctively

well-founded relations. This approach is comparatively novel and is a promising

method that has been applied to full C programs.

Paper outline. We first present background information on Isabelle’s Hoare

logic and termination requirements of programs (§2). We then describe how we

have implemented our termination checker (§3). Subsequently, we illustrate the

two approaches we have used to integrate the termination checker into Isabelle

(§4 and §5). In order to show how we can use our termination checker with

Isabelle, we give some examples (§6). Finally, we conclude the paper (§7).

2 Isabelle and Termination Properties

2.1 Hoare logic in Isabelle

We base our work on Norbert Schirmer’s implementation of Hoare logic in Isa-

belle/HOL [9]. Schirmer has designed a small but expressive imperative lan-

guage, called SIMPL, with recursive procedures. He defines an operational se-

mantics for SIMPL and derives a sound and complete Hoare logic. The Hoare

logic implementation includes an automated verification condition generator

(vcg). In other work [10], we have provided an Isabelle front-end for mapping C

into SIMPL.

Since SIMPL treats procedures, the Hoare triple format that we show in

examples later also mentions procedure environments, Γ . Partial correctness
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is written Γ ⊢ {|P |}C{|Q|}; total correctness is written with subscript t, as

Γ ⊢t {|P |}C{|Q|}. Partial correctness means if C is executed in a state where

P is true, and if C terminates, then it will end in a state where Q is true.

Total correctness includes a termination requirement: if C is executed in a state

satisfying P , then it will terminate in a state satisfying Q.

For proving total correctness, there are two approaches. One approach is to

separate partial correctness from termination, as with the following rule

Γ ⊢ {|P |} C {|Q|} Γ ⊢t {|P |} C {|⊤|}

Γ ⊢t {|P |} C {|Q|}

where ⊤ is logical truth. The second premise says that the program C started in

a state satisfying P will terminate. If we assert it without giving any evidence,

we have implemented an oracle that accepts an external claim of termination.

Here we follow the convention that unmentioned variables do not change their

values.

The second approach is to use Hoare logic rules for total correctness. These

rely on the concept of a well-founded (WF) relation: one that has no infinite

descending chains. In this paper we do not consider the recursive procedure

call of SIMPL, which makes WHILE the only looping construct. Schirmer uses

sets of states to formalize all predicates, such as pre- and post-conditions and

the loop’s boolean expression. For the verification condition generator, a typical

WHILE statement is annotated with an invariant, which is again a set of states,

and a variant, which is some WF relation. This means the WHILE-rule for total

correctness in Schirmer’s Hoare logic is the following:

∀σ. Γ ⊢t {| {σ} ∩ I ∩ b |} C {| {t | (t, σ) ∈ V } ∩ I |}
P ⊆ I I ∩ −b ⊆ Q wf V

Γ ⊢t {|P |} WHILE b INV I VAR V DO C {|Q|}

The first premise fixes the pre-state σ and requires that the loop body C de-

creases the variant while maintaining the invariant I. The set {t | (t, σ) ∈ V }
consists of all post-states t such that (t, σ) are in the variant V . If V is a WF

relation, the loop must terminate. This approach is good for generating full

termination proofs, because the variant gives explicit evidence for termination.

The rest of this paper shows how we can integrate externals tools into Isa-

belle/HOL to produce the variants mentioned above and how to prove them

well-founded. This reduces the manual proof effort for total correctness goals,

either by oracle or by proof fully verified in Isabelle/HOL.
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2.2 Termination Properties

Before we explain the termination properties, it is helpful to have a brief review

of the transition system that is usually used as an abstraction of programming

languages. For more information, we refer readers to the book by Manna [5].

Each program has an associated transition system. A transition system con-

sists of four parts: Π , Σ, R and Θ.

– Π is a finite set of state variables, which consists of program variables that

appear in the program statements and also control variables, such as the

program counter (PC).

– Σ is a set of states. Each state s is an interpretation of Π , which assigns

values to each variable in Π . For example, x s is the value of variable x in

the state s.

– R is a finite set of transitions. For a deterministic program, a transition τ is a

function Σ → Σ. If a transition τ leads a state s to another state s′ (written

as s
τ
−→ s′), then s′ is reachable from s. We say that s and s′ are pre- and

post-states of τ .

– Finally Θ is the initial condition, which is a set of initial states

Each transition τ is characterized by its transition relation ρτ , where (s′, s) ∈
ρτ if and only if s′ is reachable from s by τ . In addition, we can extract one or

more transition relations from each program statement. For example, if we have a

WHILE statement at program location L as WHILE(x > 0){x = x -1;}, then its

transition relations are {(s′, s) | PC s = L∧x s > 0∧x s′ = x s−1∧PC s′ = L}
and {(s′, s) | PC s = L ∧ x s ≤ 0 ∧ x s′ = x s ∧ PC s′ = M}, where M is the

exit location of the WHILE construct.

This set notation for transition relations is sometimes abbreviated by a logical

formula: the value of a variable in the pre-state is represented directly by the

variable name and the value in the post-state is represented by the primed

version of the variable name. When the PC value is understood from the context,

its pre- and post-values are also ignored. For example, the first transition relation

above can be abbreviated to x > 0 ∧ x′
= x − 1.

A computation is a possibly infinite sequence of states s
0
, s

1
. . ., such that s

0

is in an initial state and each si+1
is reachable from si via some transition.

A path in a transition system is a sequence of transitions π = τ
1
. . . τn, such

that the PC’s value in the post-state of τi is the same as the value in the pre-

state of τi+1
. There is a path transition relation for each path, which is just the

relational composition of each consecutive transition relation involved in this

path. The path above is cyclic if the PC value in the pre-state of τ
1

is the same

as the value in the post-state of τn.

A program is terminating if there is no infinite computation. Theoretically,

this can be proved by showing that there is a WF relation T , such that each

consecutive pair of states si and si+1
has (si+1

, si) ∈ T . However, it is often
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too difficult to find one single WF relation T for this purpose. Podelski and

Rybalchenko [8] have proved that it is sufficient to find a finite set of WF relations

T = {T
1
, . . . , Tn} to show the program is terminating, provided we can prove

R+

I
⊆ T

1
∪ . . . ∪ Tn, where R is the program’s transition relation, R+

is the

transitive closure of R and R+

I
is a reachable subset of R+

. This means for each

reachable path, its path transition relation must be a member of some Ti of T .

Since each non-cyclic path induces a WF relation, to show the program is

terminating, we only need to show there is a WF relation Ti for each reachable

cyclic-path. Cook et al. have shown [3] that program termination checking can

be translated into program reachability analysis. For this to work, auxiliary pro-

gram variables are introduced and the relations between them and the original

variables are established to mimic the transition relations of the program. A

designated program location ERROR is used: it is only reachable if there is no

WF relation Tk such that the post-state s′ and pre-state s of a cyclic path’s

transition relation has (s′, s) ∈ Tk. If this happens, one can try to find a WF

relation for that cyclic path. If no WF relation can be found, then the program

is reported as possibily non-terminating. If a WF relation can be generated for

the path, then the process continues with other cyclic paths, until ERROR is really

not reachable, which means all cyclic paths are covered by some WF relations.

2.3 Using a Termination Tool for Generating Variants

Although we can use the termination tool to generate WF relations for all cyclic

paths, these relations cannot be used as variants for Hoare logic.

First, there may be nested WHILE constructs. The variant V for the outer

WHILE has to be one single WF relation so that the pre-state s and the post-

state s′ of the body transition relation satisfy (s′, s) ∈ V , regardless how many

times the inner WHILE are entered and whether they are entered at all. This

means V has to satisfy multiple cyclic paths. We can use the termination tool

to generate WF relations to cover all these cyclic paths, but the variant must be

one single WF relation, and we believe that automatically combining multiple

WF relations into one is impossible in general.

Second, even if a program has no nested WHILEs, there may be more than one

(cyclic) path and hence more than one path transition relation between the start

and the end of the WHILE loop. Each transition relation has to be a conjunction

of positive atomic formulae, and each atomic formula is a mathematical asser-

tion over state variables. This is because we use an external ranking function

generator to synthesis WF relations and the tool only accepts a transition rela-

tion expressed as a conjunctive formula without negations. Consequently, if the

guard of the WHILE has disjunctions or negations or the body has IF constructs,

then we will have multiple path transition relations. We again need to combine

multiple WF relations into one.
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Instead of generating a single WF relation, we could investigate another ap-

proach that tries to construct a termination argument from these WF relations.

However, our work aims to use the termination checker to support proofs per-

formed in Isabelle Hoare logic, and the total correctness rule requires the variant

as the termination argument.

3 Implementing a Termination Checker

We have implemented a termination checker that checks C programs involving

integer variables, in the spirit of Terminator [3], in the sense that we check the

termination of the entire program by generating one or more WF relations for

its cyclic paths. Currently, we only use the tool to check cyclic paths produced

by WHILE constructs and the tool does not handle pointers. Moreover, we use

two external tools: Blast and Rankfinder.

3.1 Using Blast and Rankfinder

Blast [4] is a model checker for C programs. It checks that software behavior

meets its specification using lazy abstraction. For our purpose, we use Blast to

check if a designated location called ERROR is reachable. If ERROR is not reachable,

then Blast reports the program is safe. If ERROR is reachable, then Blast returns

a trace: a sequence of locations from the start of the program to ERROR.

Here, we are using the location ERROR to signal a possibly non-terminating

cyclic path. If ERROR is not reachable, then there is no non-terminating cyclic

path. However, if Blast reports a trace that leads to ERROR, then we can extract

a cyclic path from it, and then we can examine if we can generate a WF relation

to show the path is terminating, using Rankfinder.

Rankfinder [7] is a ranking function (a.k.a. measure function) generator. A

ranking function is a decreasing function, with a lower bound. Given a transition

relation τ , Rankfinder tries to synthesize a decreasing ranking function, with

two parameters: an integer bound b and a positive integer d that is the minimum

decrease of the ranking function during the transition relation. For example, if

the transition relation is x ≥ 0 ∧ x′
= x − 1, then the ranking function from

Rankfinder is x, the bound is 0 and minimum decrease is 1. Each ranking

function F induces the well-founded relation

{(s′, s) | b s ≤ F s ∧ F s′ ≤ F s − d}

where s′ and s are the post- and pre-states of the transition.

3.2 The Termination Checker

Our tool is closely integrated with Isabelle and it is called via an Isabelle invo-

cation. It works as follows.
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1. The C program embedded in SIMPL is extracted to generate a control flow

graph. For better performance, we “compact” the flow graph so that only

WHILE locations and the program entrance point are kept in the graph. All

the remaining program locations are removed from the graph by joining the

path transition relations. If the pre-condition P of the Hoare specification

is non-empty (i.e. there are initial conditions on program variables), then

we modify the flow graph to include the initial conditions. Subsequently, we

examine each WHILE construct in turn, and the order in which we examine

the WHILE constructs does not matter.

2. For each WHILE construct, writing its program location as L, check the ter-

mination of all cyclic paths that start from and finish at L:

(a) Insert the already-generated WF relations for L into the C program and

generate a text file, then call Blast. Initially no WF relation is generated,

so nothing is inserted.

(b) If Blast reports the program is safe, i.e. ERROR is not reachable, then move

to the next WHILE construct. If Blast reports an error trace, then we ex-

tract the cyclic paths from the trace and calculate the reachable transition

relations. We then call Rankfinder to generate a ranking function for each

transition relation. If Rankfinder succeeds, then use the newly generated

WF relations to modify the C program and re-run Blast. If Rankfinder

cannot generate a well-founded relation for a transition relation, then the

program is reported as possibily non-terminating.

3. If ERROR is no longer reachable, Blast will report the program is safe. We

can then move on to the next WHILE construct if available.

4. If for each WHILE construct, its cyclic paths are reported to be terminating,

then the entire program is terminating; the generated WF relations are also

reported. Otherwise, the program is reported as possibly non-terminating.

4 Integrating the Termination Checker into Isabelle

Our termination checker has been used as a tool for Isabelle, both as an oracle

and as a proof method. Isabelle’s oracle mechanism accepts an external tool’s

result without verifying it. When used as a proof method, the result is used to

create an Isabelle proof that is verified through Isabelle’s kernel.

4.1 Integration as an Oracle

Recall that a total correctness goal can be proved separately as a partial cor-

rectness goal and a termination goal (§2.1). When used as an oracle, we only

use the tool to prove the second subgoal, namely the program is terminating,

if started from a state satisfying P . We do not need to generate variants in

this case. Therefore, if the tool reports the program is terminating, the second

subgoal is removed from the proof state.
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4.2 Integration as an Isabelle Proof Method

Using the termination checker as an Isabelle oracle gives us a quick answer to

whether the program is terminating. Of course, using the tool as an Isabelle

proof method would yield greater confidence. This requires us to use the tool to

generate a variant for each WHILE construct. Moreover, we would like the variant

to be as simple as possible. The form of the variant generated depends on the

complexity of the program, as well as the WF relations generated for WHILE

constructs.

For this purpose, we divide the WF relations for each WHILE construct (W )

into two sets: Tin is generated for cyclic paths that do not leave W and Tout is

generated for cyclic paths that leave W and re-enter. This is because a variant

for W is essentially a set of transition relations of paths that do not leave W .

Therefore, if we define a variant using a relation that does not include any path

that leaves W , we only need Tin for WF proofs. Tout is needed when we try to

prove the entire program R is WF, since we need to prove R+

is WF and R+

contains paths that leave W .

In this section, we describe the form of the variants generated and will infor-

mally explain why they are variants and why they are WF. We will show some

formal proofs in the next section.

Programs with No Nested Loops If a program has a single loop, then the

variant generated only depends on the number of WF relations in Tin because

we are not concerned about the paths leaving and re-entering the WHILE (W ).

There are two cases to consider.

First, if there is only one ranking function F generated, then we generate an

Isabelle measure function M from it. The difference between F and M is that F

involves integers whereas M uses natural numbers only, but this is easily dealt

with.

Hoare logic requires us to prove that the loop body decreases the variant.

More formally, V must be a set containing all the post- and pre-states pairs of

the loop. We can indeed prove that the transition relations of each cyclic path

starting and finishing at location W form a subset of V .

Second, if there is more than one ranking function in Tin, then we define

the variant to be the intersection RL ∩ I of the transition relation of the loop

and the invariant of the loop. Frequently we can use RL as the variant, which

is weaker. The use of the invariant
1

is important when reachability becomes

a concern (§4.4). As there is only one WHILE construct, RL does not need to

mention its PC value. As an example, consider the following C program.

WHILE (x > 0 || p > 2){x = x - 1; p = p - 2;}

1
Currently, invariants are generated manually, but we plan to incorporate automatic invariant gen-

eration in the future.
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Its RL is

{(s′, s) | x s > 0 ∧ x s′ = x s − 1 ∧ p s′ = p s − 2 ∨

p s > 2 ∧ x s′ = x s − 1 ∧ p s′ = p s − 2}

Obviously, the transition relation is a variant, and we can prove (see §5) that

RL is well-founded.

Programs with Nested Loops This is the complicated case. We generate the

variant for each WHILE in turn. The form of the generated variant also depends

on the complexity of the WHILE construct.

If there is only one ranking function F in Tin, then we generate its corre-

sponding Isabelle measure function M as above.

If there are multiple ranking functions, then the variants are defined in terms

of transition relations. Since there are multiple WHILE loops, the transition rela-

tion must mention PC values. There are two cases to consider.

First, if the WHILE construct with location L has no nested inner loop, then

we define the variant to be

V = fix pc L (RL ∩ I)

where RL, I are transition relation and invariant of the WHILE construct and the

definition of fix pc is

definition

fix pc :: "int ⇒((α * int) * (α * int)) set ⇒(α * α) set"

where "fix pc pc R = {(s’,s). ((s’,pc),(s,pc)) ∈R}"

The function fix pc removes the dependence on the PC by restricting a relation

to the given PC value. Again, RL can replace RL ∩ I sometimes.

Second, if the loop has inner nested loops, then we define its variant V as

V = fix pc L R+

where R is the transition relation of the entire program. The formula on the right

hand side is indeed a variant, because any path that starts from and finishes at

the WHILE with location L must have its corresponding transition relation ρ as

a subset of R+

, i.e. ρ ⊆ R+

. In addition, ρ must be a set containing tuples

of the form ((s′, pc′), (s, pc)), where pc = L and pc′ = L. We will discuss the

well-foundedness property of V in section 5.

4.3 An Optimization

The complexity of the WF proofs for variants largely depends on the number of

WF relations our tool generates for the WHILE constructs. If a WHILE construct
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is shown terminating using a set of WF relations, then it may also be possible

to find another smaller set of WF relations that does the job. Suppose we have

two WF relations T
1

and T
2
, which show the termination of two cyclic paths π

1

and π
2

using ρ
1
⊆ T

1
∧ρ

2
⊆ T

2
, where ρ

1
and ρ

2
are the path transition relations

for the two paths. Then if we can generate a weaker WF relation S such that

ρ
1
⊆ S ∧ ρ

2
⊆ S, then we can replace T

1
and T

2
by S. Please note, in general we

cannot derive S by simply making a union of the two WF relations, since the

result of the union may not be well-founded.

For each WHILE construct, our tool attempts to generate a WF relation when

a possibly non-terminating cyclic path is found. Therefore, the order in which the

WF relations are generated depends on the order in which these cyclic paths are

detected. Since we use Blast to detect these cyclic paths, we have no control

over its searching strategy and so we cannot ask for any specific paths to be

reported first.

For a WHILE construct W that has one or more inner loops, some of W ’s

cyclic paths (i.e. those start from and finish at W ) enter inner loops (call them

P
1
) while some do not (call them P

2
). It may happen that there is something

decreasing along the execution of W , regardless whether any of W ’s inner loops

are entered. More precisely, there may be a set T with one or more WF relations

that cover paths from both P
1

and P
2
. This means, we may be able to generate

T without entering any of W ’s inner loops. We call this set of WF relations the

global WF relations for W , since it exists regardless of the inner loops’ behaviour.

Suppose there is one inner WHILE U of W , and the path transition relation

from W to U is ρ
1
, the path transition of U loop is ρu and the path transition

relation from U back to W is ¬b∧ρ
2
, where b is the guard of U , i.e. the condition

when U is entered. The path transition relation from W back to W is

ρ = (¬b ∧ ρ
2
) o ρ+

u
o ρ

1
.

To generate the required T , we generate WF relations for ρA = ρ
2

o ρ
1
. This

path corresponds to a program W ′
, which is W with U completely commented

out. We do not generate WF relations for ρB = (¬b ∧ ρ
2
) o ρ

1
. since this path

simulates the effect that the guard of U is not true. Clearly ρA is weaker than ρB

and if a WF relation can be used for ρA, then it can be used for ρB. Nevertheless,

our aim is to have the generated WF relations to work for ρ as well; if the WF

relation for ρB is too strong, then it may not work for ρ.

Of course, a given WHILE construct W may not have this global set T of WF

relations. As a result, we still need to generate WF relations for all cyclic paths

that enter inner loops. The advantage of generating T is that some relations in

T may make it unnecessary to generate new WF relations for some cyclic paths,

thereby reducing the number of relations generated. We have implemented this

optimization in our termination checker.
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4.4 An Issue of Reachability

As we have mentioned, the technique of termination checking works by ensur-

ing all reachable cyclic paths are terminating. When we use Blast to check

the reachability of the ERROR location, the notion of reachable cyclic path is

already present implicitly with Blast. However, sometimes we need to express

reachability explicitly, for two reasons.

The first one is for Rankfinder to generate WF relations. For example, we

may have a program

y = 2; WHILE (x > 0){x = x - y;}

Without knowing y > 0, the transition relation of WHILE’s cyclic path is not

well-founded and so Rankfinder will fail to generate a WF relation for it. To

strengthen the transition relation, we note that y > 0 is an invariant and by

adding it to the transition relation of the path, the new relation is indeed WF.

The second reason for including the reachability condition is to have a strong

enough variant. There may be non-terminating cyclic paths that do not concern

Blast since they are deemed to be unreachable, and so Rankfinder will not

have to generate WF relations for them. However, when defining the variant,

which are effectively the transition relations of paths, we need to incorporate in

it the reachability condition so that unreachable paths are removed from it.

We have tried several ways of expressing this reachability requirement of

loop variants. A simple way is to include the loop’s invariant in the variant. For

single-looped program, we define the variant as RL ∩ I. For an innermost loop,

we define its variant as fix pc L (RL ∩ I). We have used this method to prove

problems that were not provable otherwise.

If the WHILE construct has nested inner loops, its variant can also be strength-

ened by adding invariants. To discover an invariant can require much thought,

and ideally we would use an automatic tool for generating invariants. At present

we are using no such tool and have decided to use fix pc L R+

as the variant.

This heuristic choice does not affect the soundness of our tool and will not affect

the way the tool is used as an oracle. When the tool is used as a proof method, if

a non-reachable non-terminating cyclic path is included, then a user will fail to

prove that a (non-WF!) path transition is well-founded. This is a signal that the

path may be in fact not reachable. The user can then make another attempt: ei-

ther trust the oracle or try to strengthen the variant by finding a strong invariant

of the entire program.

5 Proving Variants being Well-Founded

Having generated the required variants, we need to show their well-foundedness.

Showing that the relation defined for V is a variant is a separate task, which

requires the users to have found the correct invariants.
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When the generated V has the form measure M , we can apply Isabelle’s ex-

isting methods to show it is WF automatically. Otherwise, there are several

possibilities:

– A single-loop program: the variant has the form RL ∩ I or RL.

– A multi-loop program: the variant has the form fix pc L R, where R is either

RL ∩ I or RL.

– In the most complicated case, the variant has the form fix pc L R+

.

The proofs are based on disjunctively well-founded relations of Podelski and

Rybalchenko [8]. A relation is disjunctively well-founded, if it is the union of

finitely many well-founded relations. We need to formalize them for Isabelle

proofs to work.

5.1 Proving that R and fix pc L R are Well-Founded

These are the simpler of the three cases. In order to show that R is WF, we

need to prove R+

is WF. We have proved the following two essential theorems

in Isabelle:

theorem union wf disj wf1:

" [[
V

s. s ∈ R =⇒ wf s; r ⊆
S

R; finite R ]] =⇒ disj wf r"

theorem trans disj wf implies wf:

" [[trans r; disj wf r ]] =⇒ wf r"

The first theorem characterizes what it means for a relation r to be disjunctively

well-founded (disj wf). The second theorem states the crucial result that if a

relation is both transitive and disjunctively WF, then it is WF. The Isabelle

proof follows the informal argument [8] in using Ramsey’s theorem. Using these

two theorems, we can prove that R+

is WF by proving R+ ⊆
⋃

T , where T is

the set of WF relations the tool generates. We can prove that R is well-founded

using another Isabelle lemma:

"wf (r+) =⇒ wf r"

Finally, we have used another theorem to prove variants of the form fix pc L R.

theorem fix pc wf:

"wf R =⇒ wf (fix pc pc R)"

5.2 Proving that fix pc L R
+ is Well-Founded

This is the complicated case and we have tried two approaches.

In the first approach, we tried to prove R+

is WF by restricting attention to

cyclic paths. In order to restrict R+

to the transitions of cyclic paths, we have

defined the constant same pc :
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definition

same pc :: "((α * int) * (α * int)) set"

where "same pc = {((s’,pc’),(s,pc)). pc’ = pc}"

Now R+ ∩ same pc denotes the subset of R+

concerning cyclic paths. We need to

prove that the relation fix pc L R+

is well-founded. It suffices to show

R+ ∩ same pc ⊆
⋃

T,

where T is the set of generated WF relations. We cannot prove this by induction

because the same pc property is not preserved from one transition to the next. To

make this approach work, we need to identify an invariant S of R+

, such that

we can prove R+ ⊆ S by induction and then prove S ∩ same pc ⊆
⋃

T .

In the second approach, we attempted to prove that R+ ⊆
⋃

T directly.

Since R+

includes both cyclic and non-cyclic paths, we tried modifying the

tool to generate WF relations for non-cyclic paths as well. However, we found

that R+ ⊆
⋃

T still could not be proved by induction, apparently because the

induction hypothesis was too weak: the set
⋃

T was too large. We suspect that

it is not practical to generate sufficiently strong WF relations for all non-cyclic

paths because there are simply too many such paths.

5.3 Automation in WF Proofs

We have implemented several Isabelle proof methods to invoke the termination

checker. When the tool generates all the required WF relations and shows the

program is terminating, the goal will be modified with variants inserted. The

generated WF relations are also proved automatically to be WF. There is also

an option to insert the WF relations as theorems to the assumption of the proof

goal for users to inspect.

After this step, we can use vcg followed by auto to finish the proof, if the

variants are measure functions. For the variants of the forms R, R∩ I, fix pc L R

or fix pc L (R∩ I), we have implemented proof methods check wf sw and check wf mw

to prove their well-foundedness automatically.

6 Examples and Experiments

Our termination tool is still in the early stage of development. At the moment,

it does not support pointers or data structures, such as arrays. However, based

on our current development, we can easily add in support for arrays, though

pointers require more effort.

Users invoke the termination tool via Isabelle methods: check termination oracle

uses the tool as an oracle; check termination and check terminationH construct vari-

ants and the latter uses the optimization(§4.3). If variants are generated, users
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will need to apply a a few more Isabelle methods to prove the variants being

WF. For this step to work, users usually also need to construct invariants. For

example, in order to prove the lemma

lemma "Γ⊢t {|True |}
WHILE (x >= 0) INV {|True |}
DO

x :== x + 1;; y :== 1;;

(WHILE (y <= x ∨ p > 0) FIX X. INV {|x = X |}
DO y :== y + 1;; p :== p - 2 OD);;

x :== x - 2

OD

{|True |}"

we first apply check terminationH to generate variants and then finish the proof

with vcg, auto and check wf mw. check wf mw is an Isabelle method that we have

implemented to automatically prove relations WF.

We carried out several experiments on our tool, with the results shown in

Table 1. The experiments we ran mainly involved nested WHILE loops. The last

example is terminating, but because of the lack of invariants, our tool reported

it as non-terminating.

Result Remark

proved by oracle Fibonacci series with two nested WHILEs, no invariants

proved by oracle Factorial with two nested WHILEs, no invariants

proved by oracle Arithmetic exponentiation with two nested WHILEs, no invariants

proved by oracle Example from [2]. Two nested WHILEs, no invariants

proved by method Example lemma shown above

proved by method Artificial example with two nested WHILEs, with invariants

proved by oracle Artificial example with three nested WHILEs, no invariants

Blast failed to terminate Arithmetic exponentiation with three nested WHILEs

Blast failed to terminate Artificial example with three nested WHILEs

reported as non-terminating A non-terminating program

reported as non-terminating A terminating Euclid algorithm, no invariants

Table 1. Termination Tool Experiments

7 Conclusions

Automatic termination checking is too valuable a tool to reserve for the field of

automated program analysis. Interactive program verifiers would like to benefit

from as much automation as possible. We have shown how techniques designed

for automatic termination checking can, in many cases, be incorporated in a

Hoare logic proof, with the termination argument made explicit as variant func-

tions in WHILE loops. The resulting subgoals can often be proved automatically,
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using dedicated proof methods that we have written. In the most complicated

loop structures, the information returned by the automated analysis does not ap-

pear to be detailed enough to allow the proof to be reproduced in Isabelle/HOL.

To handle those cases, we have also implemented an interface to the tool that

accepts the termination as an oracle.

In order to meet our objectives, we have formalized Podelski and Rybal-

chenko’s theory of disjunctive well-foundedness [8] in Isabelle/HOL
2

, and we

have optimized the termination tool to eliminate redundant outputs that would

complicated the proofs.
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