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Abstract. LEO-II is a standalone, resolution-based higher-order theo-
rem prover designed for effective cooperation with specialist provers for
natural fragments of higher-order logic. At present LEO-II can cooperate
with the first-order automated theorem provers E, SPASS, and Vampire.
The improved performance of LEO-II, especially in comparison to its
predecessor LEO, is due to several novel features including the exploita-
tion of term sharing and term indexing techniques, support for primitive
equality reasoning, and improved heuristics at the calculus level. LEO-II
is implemented in Objective Caml and its problem representation lan-
guage is the new TPTP THF language.

1 Introduction and Motivation

Automatic theorem provers (ATPs) based on the resolution principle, such as
Vampire [20], E [21], and SPASS [25], have reached a high degree of sophisti-
cation. They can often find long proofs even for problems having thousands of
axioms. However, they are limited to first-order (FO) logic. Higher-order (HO)
logic extends FO logic with lambda notation for functions and with function and
predicate variables. It supports reasoning in set theory, using the obvious rep-
resentation of sets by predicates. HO logic is a natural language for expressing
mathematics, and it is also ideal for formal verification. Moving from FO to HO
logic requires a more complicated proof calculus, but it often allows much sim-
pler problem statements. HO logic’s built-in support for functions and sets often
leads to shorter proofs. Conversely, elementary identities (such as the distribu-
tive law for union and intersection) turn into difficult problems when expressed
in FO form.

LEO-II is a standalone, resolution-based HO ATP that is designed for fruit-
ful cooperation with specialist provers for fragments of HO logic. The idea is
to combine the strengths of the different systems. On the other hand, LEO-II
itself, as an external reasoner, is designed to support HO proof assistants such
as Isabelle/HOL [18], HOL [13], and Ωmega [22] by efficiently automating sub-
problems and thereby reducing user effort.



1.1 Motivation for LEO-II

LEO-II is the successor of LEO [4], which was implemented in Allegro Common
Lisp as a part of the Ωmega system and which unfortunately was not available
as a standalone reasoner. LEO shared the basic data structures such as terms and
clauses with Ωmega; these shared basic data structures were not designed for
efficiency and their term indexing support was limited [15]. LEO’s performance
strongly improved after coupling it with the FO ATP Otter in the agent based
ΩAnts framework [8]. This integration has subsequently been improved and
Otter has been replaced by Bliksem and Vampire [9]. This cooperative theorem
proving approach outperforms – modulo different problem representations – FO
ATPs such as Vampire on problems about sets, relations, and functions as given
in the TPTP SET domain (see Figure 1). The cooperative approach not only
solves more problems in this domain; it also solves them more efficiently. This
provides evidence for the following working hypothesis:

It is well known in AI that representation matters. Problem representation
particularly matters in automated theorem proving: many proof problems can be
effectively solved when they are initially represented in a natural way in HO
logic and then tackled with a cooperative theorem proving approach in which a
HO reasoner subsequently reduces them to a suitable fragment of HO logic in
which they can be tackled by an effective specialist reasoner.

So far, we consider only FO logic as a target fragment. The general idea,
however, is not limited to this; other fragments will be studied in future work.
Examples include decidable fragments like monadic second-order logic and the
guarded fragment. Decidability can probably produce useful feedback for im-
proved heuristic control in the HO ATP.

2 Overview of LEO-II

The one year project “LEO-II: An Effective Higher-Order Theorem Prover” was
funded by EPSRC at Cambridge University, UK under grant EP/D070511/1. In
this project LEO-II has been (re-)implemented in Objective Caml 3.09 (approx.
12500 lines of code) as a standalone HO ATP. LEO-II can be easily installed,
deployed and integrated with other reasoners and its sources are available from
the LEO-II web-site at: http://www.ags.uni-sb.de/~leo/.

Proof search in LEO-II, which is based on the extensional HO resolution
calculus [3] has been further improved, e.g., it now supports efficient (recursive)
expansion of definitions and primitive equality reasoning (see Section 3). For
cooperation with FO ATPs, LEO-II offers two different HO to FO mappings;
further mappings can easily be added.

LEO-II provides efficient term data structures. It employs perfect term shar-
ing and supports for HO term indexing. LEO-II also provides analysis tools for
exploring its proof object, term graph and term index. This includes statistical
analysis of the term graph (see Section 4).

In addition to a fully automatic mode, LEO-II also provides an interactive
mode [6]. This mode supports debugging and inspection of the search space,
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Fig. 1. The new LEO-II+E cooperation strongly outperforms the old LEO+Vampire
cooperation on HO encodings of proof problems as given in the TPTP SET domain
(these HO encodings are distributed with LEO-II). The worst approach is to tackle
these problems in their original, less elegant FO encoding with Vampire.

but also the tutoring of resolution based HO theorem proving to students. The
interactive mode and the automatic mode can be interleaved.

LEO-II supports prefix-polymorphism; full polymorphism adds many non-
trivial choice points to the already challenging search space of LEO-II [6] and
is therefore future work. Moreover, LEO-II employs the new TPTP THF repre-
sentation language [7].

At present, LEO-II cooperates with FO ATPs only in a sequential mode
and not via the agent based architecture ΩAnts. Figure 1 shows that LEO-II’s
performance has nevertheless strongly improved (in our experiment version 0.95
of LEO-II was cooperating with E 0.99 ”Singtom”).

In the remainder we sketch LEO-II’s cooperative proof search (Section 3) and
its term sharing and term indexing (Section 4).

3 Cooperative Proof Search

... tries to

’first−order like’
clauses in its

and ...
search space

refute these clauses
efficiently

LEO−II detects
... passes them (after syntax

transformation) to a
first−order prover 

which ...LEO-II’s clause set generally consists of HO
clauses (dark-colored area), which are pro-
cessed with LEO-II’s calculus rules. Some
of the clauses in LEO-II’s search space ad-
ditionally attain a special status (the ones
in the light-colored area): they are in the
domain of a transformation function to a particular fragment of HO logic, here
FO logic. Light-colored clauses are available to both LEO-II’s proof search and



to a specialist prover for the target fragment via the transformation function.
Roughly speaking, currently all clauses that do not contain any λ-term and
embedded predicate or proposition are light-colored, and our default FO trans-
formation function employs Kerber’s ideas [14]: it recursively translates every
application (pα→β qα) into a term @(α→β) α(p, q), where @(α→β) α is a new func-
tion or predicate constant that encodes the types of its two arguments. LEO-II’s
extensional HO resolution approach, which enhances standard resolution proof
search with specific extensionality rules, is explained in detail in [3] and [6]. It is
well suited to subsequently generate more and more light-colored clauses from
dark colored ones. In some proof problems (such as Examples 1 and 2 below) the
light-colored area quickly collects enough information for constructing a refuta-
tion; however, LEO-II is often too weak to find this refutation on its own. In
other proof problems (see Example 3 below) the refutation can be found only in
the dark-colored area. This observation motivates a distributed architecture in
which LEO-II dynamically cooperates with incremental specialist reasoners. At
present, LEO-II sequentially launches a fresh call of the cooperating specialist
prover every n iterations of its (standard) resolution proof search loop (currently
n = 10).

Next, we discuss three proof problems from the domain of normal multi-
modal logics. For this domain, our cooperative approach yields elegant problem
encodings and efficient solutions [5].

The encoding of multimodal logic in simple type theory is intuitive. Choose
a base type — we choose ι — to denote the set of all possible worlds. Certain
formulas of type ι → o then correspond to multimodal logic expressions. The
modal operators ¬ , ∨ , and �R become λ-terms of types (ι→ o)→ (ι→ o),
(ι→ o)→ (ι→ o)→ (ι→ o), and (ι→ ι→ o)→ (ι→ o)→ (ι→ o) respectively.
Note that ¬ forms the complement of a set of worlds, while ∨ forms the union
of two such sets. �R explicitly abstracts over the accessibility relation R:

¬ (ι→o)→(ι→o) = λAι→o λXι ¬AX

∨ (ι→o)→(ι→o)→(ι→o) = λAι→o λBι→o λXι AX ∨B X

�R (ι→ι→o)→(ι→o)→(ι→o) = λRι→ι→o λAι→o λXι ∀Xι R X Y ⇒ AX

A multimodal logic formula Aι→o is valid iff for all possible worlds Wι we
have W ∈ A, that is, iff AW holds: valid = λAι→o ∀Wι AW . Reflexivity
and transitivity are defined as (we omit types) refl = λR ∀X R X X and
trans = λR ∀X ∀Y ∀Z R X Y ∧ R Y Z ⇒ R X Z. More details on this en-
coding, which models multimodal logic K, can be found in [5].

Example 1 (A simple equation between modal logic formulas).
∀R ∀A ∀B (�R (A∨B)) = (�R (B ∨ A))

Example 2 (The well known multimodal axioms �R A⇒ A and �R A⇒�R �R A

are equivalent to reflexivity and transitivity of the accessibility relation R).
∀R (∀A valid(�R A⇒A)∧valid(�R A⇒ �R �R A))⇔ (refl(R)∧ trans(R))

Example 3 (Axiom T is not valid).
¬∀R ∀A (valid(�R A⇒ A))



After negating the statement in Example 1, recursive expansion of the def-
initions, and exhaustive clause normalization (with integrated functional and
Boolean extensionality treatment), LEO-II generates ten light-colored clauses.
Amongst them are (b V ) ∨ (a V ) ∨ ¬((r w)V ) ∨ ¬((r w)U) ∨ (b U) ∨ (a U) and
¬(a z) ∨ ¬(b v) and ((r w) z) ∨ ((r w) v) where upper case and lower case sym-
bols denote variables and Skolem constants, respectively.1 This light-colored
clause set is immediately refutable by E, so that LEO-II does not even start
its main proof loop. (The total proving time is 0.071s on a Linux notebook
with 1.60GHz, 1GB memory.) Definition expansion and normalization does not
always produce refutable light-colored clauses: When replacing the primitive
equality = in Example 1 by Leibniz equality λX, Y.∀P (P X) ⇒ (P Y ), we
obtain the dark-colored clauses (p (λXι.∀Yι ¬((r X)Y ) ∨ (a Y ) ∨ (b Y ))) and
¬(p (λXι.∀Yι ¬((r X)Y ) ∨ (b Y ) ∨ (a Y ))). LEO-II starts its proof search and
applies resolution and extensional unification [3] to them which subsequently
returns a refutable set of light-colored clauses as above. (The total proving time
is 0.166s.)

Example 2 is more challenging than Example 1. Proof search in LEO-II, how-
ever, is analogous with one crucial difference: definition expansion and normal-
ization generates 70 clauses and E generates more than 20 000 clauses from them
before finding the refutation. (The total proving time is 2.48s.) This example
illustrates the benefit of the cooperation, since LEO-II alone is not able to find
this refutation in its search space: LEO-II generates too many clauses and gets
stuck; moreover, LEO-II is still incomplete even for the FO fragment.

In Example 3, the refutation is found only in the dark-colored area. (The
total proving time is 9.02s.) Definition expansion and normalization generates
the clauses ((R W ) sA,W,R) ∨ (AW ) and ¬(AsA,W,R) ∨ (AW ), where sA,W,R =
(((s A)W )R) is a new Skolem term. The refutation employs only the former
clause. LEO-II applies its primitive substitution rule [3, 6] to guess the instanti-
ations R ← λX, Y.((M X)Y ) 6= ((N X)Y ) and A ← λX.(OX) 6= (PX) where
M, N, O, P are new free variables. (Hence, LEO-II proposes to consider inequal-
ity for the the accessibility relation, which is not reflexive and does not satisfy
axiom T .) Applying this instantiation leads to two unification constraints, i.e.,
negated equation literals in LEO-II, which both have flexible term heads. Proof
search terminates since such flex-flex unification constraints are always solvable.

It is not obvious how the examples in this section can be represented in
first-order logic. Therefore, these examples (and many others we are currently
studying) are not included in the comparison in Figure 1.

LEO-II shows some promising first results on examples as presented in this
paper, though it is not yet complete for simple type theory. Two known sources
of incompleteness are LEO-II’s pruning of unification problems at a preset uni-
fication depth (nested projections and imitations) and its limited support for

1 To illustrate the use of FO TPTP we show how the latter clause is represented
modulo our transformation function in FO TPTP syntax (with T encoding brackets):
fof(leo II clause 177, axiom,

(at io i(at iT ioT i(sk1, sk4), sk13)|at io i(at iT ioT i(sk1, sk4), sk11))).



factorization modulo unification. In simple examples with Church numerals the
former restriction, for example, prevents LEO-II from synthesizing Church nu-
merals beyond this depth and because of the latter restriction LEO-II still cannot
solve the famous Cantor theorem. Future work will address these aspects.

4 Term Sharing and Term Indexing

Term indexing techniques are widely used in major FO ATPs [20, 21, 25]. The
indexing data structures store large numbers of terms and, for a given query term
t, support the fast retrieval of terms from the index that satisfy a certain relation
with t, such as matching, unifiability or syntactic equality [17]. Performance can
be further enhanced by representation of terms in efficient data structures, such
as shared terms, used for instance in E [21].

HO term indexing techniques are rarely addressed in the literature, which
hampers the progress of systems in this field. An exception is Pientka [19].

LEO-II’s implementation at term level is based on a perfectly shared term
graph, i.e., syntactically equal terms are represented by a single instance. Ideas
from FO term sharing are adapted to HO logic by (i) keeping indexed terms in
βη normal form (i.e., η short and β normal) and (ii) using de Bruijn indices [12]
to allow λ-abstracted terms to be shared.

The resulting data structure represents terms in a directed acyclic graph
(DAG). LEO-II supports the visualization of such term graphs.
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The graph to the right shows the
(not heavily shared) term graph af-
ter initialization of Example 3.2

LEO-II also supports statistical
analysis of its term graphs (Fig-
ure 2). Future work will investigate
whether such information can be
exploited for improving heuristic
control.

Representation of terms in a
shared graph naturally advances
the performance of a number of op-
erations, e.g., it allows fast lookup
of all occurrences of syntactically
equal terms or subterms, and it im-
proves the performance of rewrite operations, such as global unfolding of defi-
nitions. Additionally, LEO-II employs a term indexing data structure, which is
based on structural indexing methods from the FO domain [16, 23], as well as
road sign techniques. Road signs are features of the data structure which guide

2 To further visualize the evolution of the term graph during proof search, we modified
LEO-II to output a snapshot of its state after each processing step. This data was
used to create animations of dynamically changing term graphs during proof search.
The video clips can be obtained at http://www.ags.uni-sb.de/~leo/art.html.



------------- The Termset Analysis -------------

[...]

Sharing rate: 17 nodes with 18 bindings

Average sharing rate (bindings per node): 1.05

Average term size: 6.58

Average number of supernodes: 5.47

Average number of supernodes (symbols): 5.80

Average number of supernodes (nonprimitive terms): 4.50

Rate of term occurrences PST size / term size: 0.36

Rate of symbol occurrences PST size / term size: 0.39

Rate of bound occurrences PST size / term size: 0.57

------------- End Termset Analysis -------------

------------- The Termset Analysis -------------

[...]

Sharing rate: 2094 nodes with 3415 bindings

Average sharing rate (bindings per node): 1.63

Average term size: 13.95

Average number of supernodes: 9.47

Average number of supernodes (symbols): 28.83

Average number of supernodes (nonprimitive terms): 5.73

Rate of term occurrences PST size / term size: 0.24

Rate of symbol occurrences PST size / term size: 0.30

Rate of bound occurrences PST size / term size: 0.52

------------- End Termset Analysis -------------

Fig. 2. Statistical analysis of term sharing aspects in LEO-II after initialisation of
Example 3 (left) and after the proof has been found (right).

operations based on graph traversal. They help to cut branches of the subgraph
to be processed early and they are employed, e.g., in the construction of partial
syntax trees [24] in which all branches with no occurrences of a given symbol or
subterm are cut. This enables LEO-II to avoid potentially costly operations, such
as occurs checks, and to speed up basic operations on terms, such as substitution.

Future work includes the development, comparison and evaluation of other
termindexing techniques within LEO-II.

5 Conclusion

LEO-II, which replaces the previous LEO system, realizes a cooperative HO-
FO theorem proving approach that shows some promising results in selected
problem domains. It thus provides an interesting alternative to reasoning solely
in FO logic and it also differs from other HO ATPs such as TPS [1] and OTTER-
λ [2]. TPS is based on the mating method and does not cooperate with specialist
FO ATPs. It is particularly strong in proving theorems which require selective
expansion of definitions and goal directed instantiation of set variables. Examples
of such theorems are presented in Bishop and Andrews [10] and Brown [11]. Many
of these examples will require corresponding mechanisms in LEO-II to be proven
automatically. The formalism of OTTER-λ is not simple type theory but λ-logic,
which is a novel combination of λ-calculus and first-order logic.

Future work includes the experimentation with the LEO-II on case studies
in verification and ontology reasoning.
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