Automated Assistance for Proof Assistants

Lawrence C Paulson

UNIVERSITY OF CAMBRIDGE
Computer Laboratory
Dear Aunt Verity,

I am trying to prove this obvious fact:

\[b < a \implies c < 0 \implies c \times a < c \times b \]

It has been 3 days and I’m getting nowhere. What can I do?

Yours, Confused.
Dear Confused,

That theorem is already in the system. It is called `mult_strict_left_mono_neg`. You must look harder next time.

Yours, Aunt Verity
Dear Aunt Verity,

Now I am trying to prove

\[b < a \implies 0 < c \implies -a \times c < -(c \times b) \]

It’s practically the same as the other one but I still can’t do it.

Yours, Desperate.
Dear Desperate,

Moving symbols in a theorem can be tricky. After a few years’ experience, such tasks should not take more than one hour. Work hard and one day you shall succeed. Meanwhile, try this [horrible code]

Yours, Aunt Verity
Dear Aunt Verity,

Instead of struggling to prove theorems, I have decided to sell buggy C software and charge extra for technical support.

Yours, Joyful At Last.
Rewriters and auto-tactics can be weak.
Decision procedures are powerful, but only for narrow domains.
SMT solvers are best for ground problems.
Can general-purpose automatic theorem provers (ATPs) make a difference?
Advantages of ATPs

- They are fully automatic, even with quantifiers.
- They handle large problems.
- They are clever with equality: not just directed rewriting!
- They find long, obscure proofs.
Drawbacks of ATPs

- They use untyped first-order logic (FOL); we don’t!
- They need to run for a long time.
- They often fail.

Users risk wasting time and effort.
Ideas for a Useful Tool

- One-click invocation
- automatic translation to FOL
- automatic selection of lemmas
- Background execution: we don’t have to wait! (let’s exploit our multi-core machines!)
- Source-level proof reconstruction: we don’t have to call ATPs next time!
Isabelle Overview

- *Generic* proof assistant: extensible to support ZF set theory and other logics.
- (using Huet’s higher-order unification!)
- Isabelle/HOL: classical higher-order logic (simple type theory)
- *Some automation*: rewriting engine, arithmetic solvers, backtracking search, automatically referring to 2000 lemmas.
Encoding Types in FOL

• Isabelle’s type system is order-sorted polymorphism (as in Haskell).

• Type classes, such as partial ordering, are defined by axioms.

• Types can be modelled as first-order terms, type classes as predicates.

• Modelling the types prevents the incorrect use of properties such as transitivity.
Translation to FOL

- Detect whether the problem is already first-order (no function variables...)
- Convert to clause form, eliminating higher-order features if necessary
- Include *some* type information
Effectiveness Issues

• We don’t ask users to select relevant lemmas: that’s too much work.

• The full Isabelle lemma library converts to 8500 clauses!

• ATPs gag if you give them such huge problems.

• We need *automatic relevance filtering*.
Soundness Issues

- Attaching types to all terms and subterms is safe, but quadratic in space.
- Omitting types admits many absurd proofs.
- We include enough types to disambiguate polymorphic constants.
- *This still admits absurd proofs!*
Reconstruction Issues

• Proof reconstruction is essential, since we use unsound translations.

• ATPs use many different inference rules; they are complicated.

• Their output is incomplete and ambiguous.
Related Work

- KIV, integrated with the prover 3TAP
- Coq, integrated with the prover Bliksem
- Omega, integrated with numerous tools
- HOL, integrated with Metis: a prover designed to allow proof reconstruction
The Metis Prover

• Designed by Joe Hurd for use with HOL4
• A complete implementation of the superposition calculus
• ...with an ML interface to support proof reconstruction.
• It’s good enough to prove modest-sized problems.
Fixing Our Issues

- Like KIV, use *relevance filtering* to reduce problem size.
- First, a simple signature-based filter reduces a problem from 8500 clauses to say 300.
- Second, use *the ATP itself* as a giant relevance filter, leaving perhaps 7 clauses.
- For proof reconstruction, let Metis prove it again!
Relevance Filtering

• A clause is relevant if it shares “enough” symbols with the goal being proved.
• The symbols of relevant clauses are used to measure the relevance of other clauses.
• The iteration must be limited, or too many clauses become relevant.
• The algorithm is ad-hoc but effective.
Effect of Relevance Filtering

Filtering gives a higher success rate, esp. for short runtimes. (Figures for E prover.)
Higher-Order Problems

• We cannot hope for full higher-order reasoning from first-order provers.

• We merely remove higher-order features to make the problems look first-order.

• explicit “apply” function and “is true” predicate for booleans

• removal of λ by combinators or λ-lifting
HO Translations

- We tried many treatments of types:
 - full types: sound but too big (quadratic!)
 - reduced types: compact but unsound
- For terms, do we preserve the full apply-structure, or use built-in function application?
- We ran many, many tests!
Effects of Translations

The difference between best and worst is immense. (Figures for E prover.)
Source-Level Proofs
Single-Step Proofs

- The resolution proof can be emulated in Isabelle, line by line or in small chunks.
- Each step is a separate Metis call.
- Such proofs are useful if Metis cannot prove the theorem in a single call.
- This requires an ATP that outputs TSTP format. (Currently, only the E prover)
A Single-Step Proof

[Image of a proof in a proof assistant interface]
Some Findings

- Naive relevance filtering is surprisingly effective (and fast).
- Unsound methods coupled with checking can be better than strictly sound methods.
- There is no substitute for extensive experimentation with real data.
Final Remarks

• The ATP linkup offers one-click assistance.
• It is available at any point in a proof.
• It helps novices by finding easy proofs and many of moderate difficulty.
• It gives multi-core machines a purpose.
• It is not a magic bullet for hard problems.
Dear Aunt Verity,

I have completed a deep and difficult proof, but I just can’t decide which journal to publish it in. Help!!

Yours, Helpless.
Acknowledgements

• Claire Quigley: process management
• Kong Woei Susanto: Metis
• Jia Meng: relevance, HO translations, etc.
• EPSRC project GR/S57198/01
 Automation for Interactive Proof