Automated Assistance
for Proof Assistants

Lawrence C Paulson

UNIVERSITY OF
4P CAMBRIDGE

Computer Laboratory

Tech Support Question

Dear Aunt Verity,
| am trying to prove this obvious fact:
b<a = ¢c<0 = cXa<cxb
It has been 3 days and I'm getting
nowhere.What can | do?

Yours, Confused.

Aunt Verity’'s Reply

Dear Confused,

That theorem is already in the system. It
is called mult_strict _left mono_neg.You
must look harder next time.

Yours, Aunt Verity

Question #2

Dear Aunt Verity,
Now | am trying to prove
b<a = 0<c = —axc< —(cxb)
It’s practically the same as the other one
but | still can’t do it.

Yours, Desperate.

Reply #2

Dear Desperate,

Moving symbols in a theorem can be
tricky. After a few years’ experience, such

tasks should not take more than one
hour. Work hard and one day you shall
succeed. Meanwhile, try this [horrible
code]

Yours, Aunt Verity

Question #3??

Dear Aunt Verity,

Instead of struggling to prove theorems, |
have decided to sell buggy C software
and charge extra for technical support.

Yours, Joyful At Last.

Automation ldeas

Rewriters and auto-tactics can be weak.

Decision procedures are powerful, but only
for narrow domains.

SMT solvers are best for ground problemes.

Can general-purpose automatic theorem
provers (ATPs) make a difference!?

Advantages of ATPs

They are fully automatic, even with
quantifiers.

They handle large problemes.

They are clever with equality: not just
directed rewriting!

They find long, obscure proofs.

Drawbacks of ATPs

® They use untyped first-order logic (FOL);
we don't!

® They need to run for a long time.
® They often fail.

Users risk wasting time and effort.

|deas for a Useful Tool

® (One-click invocation
® automatic translation to FOL
® automatic selection of lemmas

® Background execution: we don’t have to wait!
(let’s exploit our multi-core machines!)

® Source-level proof reconstruction: we don’t
have to call ATPs next time!

|Isabelle Overview

® Generic proof assistant: extensible to

support ZF set t

® (using Huet’s hig

neory and other logics.

ner-order unification!)

® |sabelle/HOL: classical higher-order logic
(simple type theory)

® Some automation: rewriting engine,
arithmetic solvers, backtracking search,
automatically referring to 2000 lemmas.

Encoding Types in FOL

® |sabelle’s type system is order-sorted
polymorphism (as in Haskell).

® [ype classes, such as partial ordering, are
defined by axioms.

® Types can be modelled as first-order
terms, type classes as predicates.

® Modelling the types prevents the incorrect
use of properties such as transitivity.

Translation to FOL

® Detect whether the problem is already
first-order (no function variables...)

® Convert to clause form, eliminating higher-
order features if necessary

® |nclude some type information

Effectiveness Issues

® \We don’t ask users to select relevant
lemmas: that’s too much work.

® The full Isabelle lemma library converts to
8500 clauses!

® ATPs gag if you give them such huge
problems.

® Ve need automatic relevance filtering.

Soundness Issues

® Attaching types to all terms and subterms
is safe, but quadratic in space.

® Omitting types admits many absurd proofs.

® We include enough types to disambiguate
polymorphic constants.

® This still admits absurd proofs!

Reconstruction Issues

® Proof reconstruction is essential, since we
use unsound translations.

® ATPs use many different inference rules;
they are complicated.

® Their output is incomplete and ambiguous.

Related Work

KIV, integrated with the prover 3TAP
Coq, integrated with the prover Bliksem
Omega, integrated with numerous tools

HOL, integrated with Metis: a prover
designed to allow proof reconstruction

The Metis Prover

Designed by Joe Hurd for use with HOL4

A complete implementation of the
superposition calculus

...with an ML interface to support proof
reconstruction.

It's good enough to prove modest-sized
problems.

Fixing Our Issues

Like KIV, use relevance filtering to reduce
problem size.

First, a simple signature-based filter reduces
a problem from 8500 clauses to say 300.

Second, use the ATP itself as a giant
relevance filter, leaving perhaps 7 clauses.

For proof reconstruction, let Metis prove it
again!

Relevance Filtering

A clause is relevant if it shares “enough”
symbols with the goal being proved.

The symbols of relevant clauses are used to
measure the relevance of other clauses.

The iteration must be limited, or too many
clauses become relevant.

The algorithm is ad-hoc but effective.

Effect of Relevance
Filtering

90 —s— filtered

8 —&— [aW
70

60
50
40
30

204 50 100 150 200 250 300
Runtime per problem (seconds)

N®)
)
=
o
9p)
-,
c
)
@)
—
)
o

Filtering gives a higher success rate, esp.
for short runtimes. (Figures for E prover.)

Higher-Order Problems

® Ve cannot hope for full higher-order
reasoning from first-order provers.

® VWe merely remove higher-order features
to make the problems look first-order.

® explicit “apply” function and “is true”

predicate for

® removal of A

booleans

by combinators or A-lifting

HO Translations

® Ve tried many treatments of types:
® full types: sound but too big (quadratic!)
® reduced types: compact but unsound

® For terms, do we preserve the full apply-
structure, or use built-in function application?

® VWe ran many, many tests!

Effects of Translations

—s— constant (FO)
—a— constant
—=— partial

O fU” (FO)
+fU”

e
(D)
=
o
)]
)
C
(D)
@)
—
(D)
o

Runtime per problem (seconds)

The difference between best and worst is
immense. (Figures for E prover.)

Source-Level Proofs

N fMach

Single-Step Proofs

The resolution proof can be emulated in
Isabelle, line by line or in small chunks.

Each step is a separate Metis call.

Such proofs are useful if Metis cannot
prove the theorem in a single call.

This requires an ATP that outputs TSTP
format. (Currently, only the E prover)

A Single-Step Proo

-~ [
e L

Some Findings

Naive relevance filtering is surprisingly
effective (and fast).

Unsound methods coupled with checking
can be better than strictly sound methods.

There is no substitute for extensive
experimentation with real data.

Final Remarks

The ATP linkup offers one-click assistance.
It is available at any point in a proof.

It helps novices by finding easy proofs and
many of moderate difficulty.

It gives multi-core machines a purpose.

It is not a magic bullet for hard problems.

Dear Aunt Verity,

have completed a deep and difficult

broof, but | just can’t decide which
journal to publish it in. Help!!

Yours, Helpless.

Acknowlegements

® Claire Quigley: process ‘
management !

® Kong Woei Susanto: Metis !é

® Jia Meng: relevance, HO ’ ¢
. /
translations, etc. “

® EPSRC project GR/S57198/01
Automation for Interactive Proof

EPS RC Engineering and Physical Sciences
Research Council

