Verifying the SET Protocol

G Bella & L C Paulson Cambridge
F Massacci Siena
P Tramontano Rome
Inductive Protocol Verification

• Define system’s operational semantics
• Include honest parties and an attacker
• Model each protocol step in an inductive definition
• Prove security properties by induction
• Mechanize using Isabelle/HOL
Can Big Protocols Be Verified?

- Can verify some real protocols:
 - Kerberos IV
 - TLS (the new version of SSL)
 - APM’s recursive protocol

- Other verification methods available:
 - Model-checking (Lowe)
 - NRL Protocol Analyzer (Meadows)
Growth in Protocol Complexity

- Needham-Schroeder (1978): 6 pages
- TLS: 80 pages
- SET: 5 main sub-protocols, 3 manuals, nearly 1000 pages

Why so big?
Internet Shopping with SSL

Credit card details

SSL

Curses! Can’t get that number!
Do We Trust the Merchant?

Credit card details??

SSL

Now I can buy that software!
Do We Trust the Customer?

Fake card details

Send MS Office, charge to my card...

SSL
Basic Ideas of SET

- Legitimate Cardholders and Merchants receive electronic credentials
- Merchants don’t see credit card numbers (usually!)
- Payment is made via the parties’ banks
- Both sides are protected from fraud
SET Participants

- **Issuer** = cardholder’s bank
- **Acquirer** = merchant’s bank
- **Payment gateway** pays the merchant
- **Certificate authority (CA)** issues electronic credentials
- **Trust hierarchy**: top CAs certify others
Internet Shopping with SET

Her bank

His bank

purchase details
SET Cryptographic Primitives

- Hashing, to make message digests
- Digital signatures
- Public-key encryption
- Symmetric-key encryption: session keys

- Digital envelopes involving all of these!
- Deep nesting of crypto functions
The 5 Sub-Protocols of SET

- Cardholder registration ✓
- Merchant registration ✓
- Purchase request
- Payment authorization
- Payment capture

✓ verified!
Let’s look at this message
Message 5 in Isabelle

\[\text{evs5} \in \text{set_cr}; \quad C = \text{Cardholder } k; \]
\[\text{Nonce NC3} \notin \text{used evs5}; \]
\[\text{Nonce } \text{CardSecret} \notin \text{used evs5}; \quad \text{NC3} \neq \text{CardSecret}; \]
\[\text{Key } KC2 \notin \text{used evs5}; \quad KC2 \in \text{symKeys}; \]
\[\text{Key } KC3 \notin \text{used evs5}; \quad KC3 \in \text{symKeys}; \quad KC2 \neq KC3; \]
\[\text{Gets } C \ldots \in \text{set evs5}; \quad \text{Says } C \ (\text{CA i}) \ldots \in \text{set evs5} \]
\[\implies \text{Says } C \ (\text{CA i}) \]
\[\{ \text{Crypt } KC3 \ \langle \text{Agent C, Nonce NC3, Key KC2, Key cardSK,} \]
\[\text{Crypt (invKey cardSK)} \]
\[\text{(Hash}\langle \text{Agent C, Nonce NC3, Key KC2,} \]
\[\text{Key cardSK, Pan(pan C),} \]
\[\text{Nonce CardSecret}\rangle\rangle, \]
\[\text{Crypt EKi} \ \langle \text{Key KC3, Pan (pan C), Nonce CardSecret}\rangle\} \]

\# evs5 \in \text{set_cr}
What Did That Mean?

- Cardholder had asked to register a PAN (primary account number)
- Cardholder has received the CA’s reply
- Cardholder sends a digital envelope:
 - A public signing key, cardSK
 - A message, signed using the private key
 - Two session keys (one for the CA’s reply)
 - A secret number, CardSecret
Secrecy of the Card Number

- Intuitively obvious: PAN is always hashed or encrypted
- Huge case-splits caused by nested encryptions
- Two lemmas:
 - Session keys never encrypt PANs
 - Session keys never encrypt private keys
Secrecy of Session Keys

• Three keys, created for digital envelopes

• Dependency: one key protects another

• Main theorem on this dependency relation

• Generalizes an approach used for simpler protocols (Yahalom)
Secrecy of Nonces

- Secret numbers exchanged to generate Cardholder’s password
- Protected using those session keys
- Similar to the proofs for keys
- Main theorem about the Key/Nonce dependency relationship
The Purchase Phase!
Novel Aspects of SET Purchase

3-way agreement: with partial knowledge!

- **Cardholder** shares **Order Information** only with **Merchant**
- **Cardholder** shares **Payment Information** only with **Payment Gateway**
- **Cardholder** signs hashes of **OI, PI**
- **Non-repudiation**: all parties sign messages
Complications in SET Purchase

- Massive redundancy: exponential blow-ups
- Insufficient redundancy (no explicitness), requiring toil to prove trivial facts
- Two message flows: signed and unsigned
- Many digital envelopes
- No clear goals: What should I prove??
Conclusions

- Proofs are big, but not too big!
- Can prove secrecy for several keys and nonces, with dependency chains
- Can handle digital envelopes
- Merchant registration verified similarly—Purchase & Payment phases too!