
Seven Years of Verifying
Security Protocols

Lawrence C Paulson

2

For secure communications on an open
network in the presence of adversaries.

They ...

• authenticate the other party

• protect messages from tampering

• share sensitive information appropriately

• provide credentials that others can verify

Functions of Security Protocols

Is This Communication Secure?

4

Used in model-checking and theorem-proving

• Free algebra of message constructors:
concatenation, encryption, etc.

• “Part-of” and similar relations on messages

• Perfect encryption and hashing

• Semantics based on traces of events

Advantages: Easy to formalize and to explain

Operational Models of Systems

5

• Each protocol specified by an inductive
definition—a sort of logic program

• A common specification of the Dolev-Yao
adversary: controls the network, etc.

• Security properties expressed in higher-
order logic

• Theorems proved interactively by induction
and simplification, using Isabelle

The Inductive Approach

l Æ

"
=Isa

be
lle

b

a

6

A Variant Otway-Rees ProtocolA Bad Variant of the Otway-Rees Protocol

3: Na, {|Na, Kab|}Ka,

{|Nb, Kab|}Kb

1: Na, A, B, {|Na, A, B|}Ka

B

S

A

2: Na, A, B, {|Na, A, B|}Ka,

Nb, {|Na, A, B|}Kb

4: Na, {|Na, Kab|}Ka

9 L. C. Paulson

7

Formalization of Message 2

93

end

8 The Otway-Rees Protocol: The Faulty BAN
Version

theory OtwayRees_Bad = Public:

The FAULTY version omitting encryption of Nonce NB, as suggested on page
247 of Burrows, Abadi and Needham (1988). A Logic of Authentication. Proc.
Royal Soc. 426
This file illustrates the consequences of such errors. We can still prove impressive-
looking properties such as Spy_not_see_encrypted_key, yet the protocol is open
to a middleperson attack. Attempting to prove some key lemmas indicates the
possibility of this attack.

consts otway :: "event list set"
inductive "otway"

intros

Nil: "[] ∈ otway"

Fake: "[| evsf ∈ otway; X ∈ synth (analz (knows Spy evsf)) |]
==> Says Spy B X # evsf ∈ otway"

Reception: "[| evsr ∈ otway; Says A B X ∈set evsr |]
==> Gets B X # evsr ∈ otway"

OR1: "[| evs1 ∈ otway; Nonce NA /∈ used evs1 |]
==> Says A B {|Nonce NA, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA, Agent A, Agent B|} |}
evs1 ∈ otway"

OR2: "[| evs2 ∈ otway; Nonce NB /∈ used evs2;
Gets B {|Nonce NA, Agent A, Agent B, X|} ∈ set evs2 |]

==> Says B Server
{|Nonce NA, Agent A, Agent B, X, Nonce NB,

Crypt (shrK B) {|Nonce NA, Agent A, Agent B|}|}
evs2 ∈ otway"

OR3: "[| evs3 ∈ otway; Key KAB /∈ used evs3;
Gets Server

{|Nonce NA, Agent A, Agent B,
Crypt (shrK A) {|Nonce NA, Agent A, Agent B|},
Nonce NB,
Crypt (shrK B) {|Nonce NA, Agent A, Agent B|}|}

∈ set evs3 |]
==> Says Server B

a fresh nonce reference to the first message

adding the next message to the trace

8

A Secrecy Theorem

We can prove this theorem even
though the protocol is flawed!

If KAB is a session key...

96 8 THE OTWAY-REES PROTOCOL: THE FAULTY BAN VERSION

"evs ∈ otway ==>
∀ K KK. KK <= -(range shrK) -->

(Key K ∈ analz (Key‘KK Un (knows Spy evs))) =
(K ∈ KK | Key K ∈ analz (knows Spy evs))"

apply (erule otway.induct)
apply (frule_tac [8] Says_Server_message_form)
apply (drule_tac [7] OR4_analz_knows_Spy)
apply (drule_tac [5] OR2_analz_knows_Spy, analz_freshK, spy_analz, auto)
done

lemma analz_insert_freshK:
"[| evs ∈ otway; KAB /∈ range shrK |] ==>

(Key K ∈ analz (insert (Key KAB) (knows Spy evs))) =
(K = KAB | Key K ∈ analz (knows Spy evs))"

by (simp only: analz_image_freshK analz_image_freshK_simps)

lemma unique_session_keys:
"[| Says Server B {|NA, X, Crypt (shrK B) {|NB, K|}|} ∈ set evs;

Says Server B’ {|NA’,X’,Crypt (shrK B’) {|NB’,K|}|} ∈ set evs;
evs ∈ otway |] ==> X=X’ & B=B’ & NA=NA’ & NB=NB’"

apply (erule rev_mp)
apply (erule rev_mp)
apply (erule otway.induct, simp_all)

apply blast+
done

lemma secrecy_lemma:
"[| A /∈ bad; B /∈ bad; evs ∈ otway |]
==> Says Server B

{|NA, Crypt (shrK A) {|NA, Key K|},
Crypt (shrK B) {|NB, Key K|}|} ∈ set evs -->

Notes Spy {|NA, NB, Key K|} /∈ set evs -->
Key K /∈ analz (knows Spy evs)"

apply (erule otway.induct, force)
apply (frule_tac [7] Says_Server_message_form)
apply (drule_tac [6] OR4_analz_knows_Spy)
apply (drule_tac [4] OR2_analz_knows_Spy)
apply (simp_all add: analz_insert_eq analz_insert_freshK pushes, spy_analz)

apply (blast dest: unique_session_keys)+
done

lemma Spy_not_see_encrypted_key:
"[| Says Server B

{|NA, Crypt (shrK A) {|NA, Key K|},

...then a key can be broken
with the help of KAB iff it is KAB
or it can be broken anyway.

9

Protocols Analysed Inductively

Classic authentication protocols:
Otway-Rees, etc.

Multi-party protocols:
recursive authentication,
delegation, roving agents

Industrial protocols:
Kerberos, SSL, SET

Smartcard protocols

Non-repudiation protocols:
Zhou-Gollmann, certified e-mail

10

Verifying TLS (or SSL 3.1)

• A detailed model including client
authentication and session resumption.

• Eight messages; two optional paths; no limits
on concurrent sessions.

• Elaborate system for creating session keys.

• From an 80 page official specification

• Proof done over six weeks in 1997

A,Na,Sid,Pa

client server

client hello

Nb,Sid,Pb

server hello

cert(B,Kb)

server certificate

cert(A,Ka)

client certificate

{PMS}Kb

client key exchange

{Hash(Nb,B,PMS)}Ka
-1

certificate verify

{Finished}clientK(Na,Nb,M)

client finished

 M = PRF(PMS,Na,Nb)

Finished = Hash(M,messages)

{Finished}serverK(Na,Nb,M)

server finished

The Message
Flow of TLS

Client Authentication
(Optional)

A session resumption
jumps straight to here

12

• Several sub-protocols

• Complex cryptographic primitives

• Many types of principal: Cardholders,
Merchants, Payment Gateways, CAs

• Dual signatures: partial sharing of secrets

• 1000 pages of specification and description

• The upper limit of realistic verification

Verifying the SET Protocols

13

A Signed SET Purchase

59

{|Number LID_M, Number XID,
Nonce Chall_C, Nonce Chall_M,
cert P (pubEK P) onlyEnc (priSK RCA)|})

evsPIRes ∈ set_pur"

PReqUns:
— UNSIGNED Purchase request (CardSecret = 0). Page 79 of Formal Protocol

Desc. Merchant never sees the amount in clear. This holds of the real protocol, where
XID identifies the transaction. We omit Hash—Number XID, Nonce (CardSecret k)—
from PIHead because the CardSecret is 0 and because AuthReq treated the unsigned
case very differently from the signed one anyway.

"[|evsPReqU ∈ set_pur;
C = Cardholder k; CardSecret k = 0;
Key KC1 /∈ used evsPReqU; KC1 ∈ symKeys;
Transaction = {|Agent M, Agent C, Number OrderDesc, Number PurchAmt|};
HOD = Hash{|Number OrderDesc, Number PurchAmt|};
OIData = {|Number LID_M, Number XID, Nonce Chall_C, HOD,Nonce Chall_M|};
PIHead = {|Number LID_M, Number XID, HOD, Number PurchAmt, Agent M|};
Gets C (sign (priSK M)

{|Number LID_M, Number XID,
Nonce Chall_C, Nonce Chall_M,
cert P EKj onlyEnc (priSK RCA)|})

∈ set evsPReqU;
Says C M {|Number LID_M, Nonce Chall_C|} ∈ set evsPReqU;
Notes C {|Number LID_M, Transaction|} ∈ set evsPReqU |]

==> Says C M
{|EXHcrypt KC1 EKj {|PIHead, Hash OIData|} (Pan (pan C)),

OIData, Hash{|PIHead, Pan (pan C)|} |}
Notes C {|Key KC1, Agent M|}
evsPReqU ∈ set_pur"

PReqS:
— SIGNED Purchase request. Page 77 of Formal Protocol Desc. We could

specify the equation PIReqSigned = {|PIDualSigned, OIDualSigned |}, since the For-
mal Desc. gives PIHead the same format in the unsigned case. However, there’s little
point, as P treats the signed and unsigned cases differently.

"[|evsPReqS ∈ set_pur;
C = Cardholder k;
CardSecret k "= 0; Key KC2 /∈ used evsPReqS; KC2 ∈ symKeys;
Transaction = {|Agent M, Agent C, Number OrderDesc, Number PurchAmt|};
HOD = Hash{|Number OrderDesc, Number PurchAmt|};
OIData = {|Number LID_M, Number XID, Nonce Chall_C, HOD, Nonce Chall_M|};
PIHead = {|Number LID_M, Number XID, HOD, Number PurchAmt, Agent M,

Hash{|Number XID, Nonce (CardSecret k)|}|};
PANData = {|Pan (pan C), Nonce (PANSecret k)|};
PIData = {|PIHead, PANData|};
PIDualSigned = {|sign (priSK C) {|Hash PIData, Hash OIData|},

EXcrypt KC2 EKj {|PIHead, Hash OIData|} PANData|};
OIDualSigned = {|OIData, Hash PIData|};
Gets C (sign (priSK M)

{|Number LID_M, Number XID,
Nonce Chall_C, Nonce Chall_M,
cert P EKj onlyEnc (priSK RCA)|})

∈ set evsPReqS;

60 6 PURCHASE PHASE OF SET

Says C M {|Number LID_M, Nonce Chall_C|} ∈ set evsPReqS;
Notes C {|Number LID_M, Transaction|} ∈ set evsPReqS |]

==> Says C M {|PIDualSigned, OIDualSigned|}
Notes C {|Key KC2, Agent M|}
evsPReqS ∈ set_pur"

— Authorization Request. Page 92 of Formal Protocol Desc. Sent in response to
Purchase Request.
AuthReq:
"[| evsAReq ∈ set_pur;

Key KM /∈ used evsAReq; KM ∈ symKeys;
Transaction = {|Agent M, Agent C, Number OrderDesc, Number PurchAmt|};
HOD = Hash{|Number OrderDesc, Number PurchAmt|};
OIData = {|Number LID_M, Number XID, Nonce Chall_C, HOD,

Nonce Chall_M|};
CardSecret k "= 0 -->

P_I = {|sign (priSK C) {|HPIData, Hash OIData|}, encPANData|};
Gets M {|P_I, OIData, HPIData|} ∈ set evsAReq;
Says M C (sign (priSK M) {|Number LID_M, Number XID,

Nonce Chall_C, Nonce Chall_M,
cert P EKj onlyEnc (priSK RCA)|})

∈ set evsAReq;
Notes M {|Number LID_M, Agent P, Transaction|}

∈ set evsAReq |]
==> Says M P

(EncB (priSK M) KM (pubEK P)
{|Number LID_M, Number XID, Hash OIData, HOD|} P_I)

evsAReq ∈ set_pur"

— Authorization Response has two forms: for UNSIGNED and SIGNED PIs. Page
99 of Formal Protocol Desc. PI is a keyword (product!), so we call it P_I. The hashes
HOD and HOIData occur independently in P_I and in M’s message. The authCode
in AuthRes represents the baggage of EncB, which in the full protocol is [CapToken],
[AcqCardMsg], [AuthToken]: optional items for split shipments, recurring payments,
etc.

AuthResUns:
— Authorization Response, UNSIGNED
"[| evsAResU ∈ set_pur;

C = Cardholder k; M = Merchant i;
Key KP /∈ used evsAResU; KP ∈ symKeys;
CardSecret k = 0; KC1 ∈ symKeys; KM ∈ symKeys;
PIHead = {|Number LID_M, Number XID, HOD, Number PurchAmt, Agent M|};
P_I = EXHcrypt KC1 EKj {|PIHead, HOIData|} (Pan (pan C));
Gets P (EncB (priSK M) KM (pubEK P)

{|Number LID_M, Number XID, HOIData, HOD|} P_I)
∈ set evsAResU |]

==> Says P M
(EncB (priSK P) KP (pubEK M)
{|Number LID_M, Number XID, Number PurchAmt|}
authCode)

evsAResU ∈ set_pur"

AuthResS:

14

A Different Verification Method

15

Yes, proofs are a lot of work, but they give ...

• Flexibility:

• specifying new types of system

• choice in what to prove

• Expressiveness: no need to “program” the
protocol and its desired guarantees

• Proof runs offer justification and insight

Benefits of Theorem Proving

16

• Formalization of large documents, identifying
protocol goals and assumptions

• two weeks for TLS; unending for SET

• no technical solutions

• Relaxing the need for perfect encryption

• Understanding composition of primitives

Open Problems

17

• The basis of many doubtful attacks

• Needham-Schroeder: correct in its threat model

• Viewing mobile phone protocols as network
protocols (many false attacks against TMN)

• Assuming distinct items to have the same length

• Deliberately omitting required checks

• Deliberately discarding essential records

• Modelling requires fair, informed judgement

Protocol Implicit Assumptions

18

• Separation of concerns: protocol flaws
versus crypto flaws

• Provable security: a more detailed model
based on problem reduction

• Abstract Cryptographic Library (Backes et al.): a
provably secure black-box abstraction

• Similar work by Abadi and Rogaway

Beyond Perfect Encryption?

19

• For protocols that assume secure channels
established by another protocol

• For protocols that use digital envelopes and
similar constructions

• Much work in progress, e.g. Datta et al.

Composition of Primitives

20

• Many substantial protocols can be analysed.

• Automatic tools make this almost easy.

• Theorem proving remains useful for
modelling novel systems.

• Open questions are being pursued.

Conclusions

