
Towards Automatic Proofs of Inequalities
Involving Elementary Functions

Behzad Akbarpour and Lawrence C. Paulson

Computer Laboratory, University of Cambridge

Abstract

Inequalities involving functions such as sines, exponentials and loga-
rithms lie outside the scope of decision procedures, and can only be solved
using heuristic methods. Preliminary investigations suggest that many
such problems can be solved by reduction to algebraic inequalities, which
can then be decided by a decision procedure for the theory of real closed
fields (RCF). The reduction involves replacing each occurrence of a func-
tion by a lower or upper bound (as appropriate) typically derived from a
power series expansion. Typically this requires splitting the domain of the
function being replaced, since most bounds are only valid for specific in-
tervals.

1 Introduction

Decision procedures are valuable, but too many problems lie outside of their
scope. Linear arithmetic restricts us to the language of =, <, ≤, + and multi-
plication by integer constants, combined by Boolean connectives. In their for-
malization of the Prime Number Theorem [2], Avigad and his colleagues spent
much time proving simple facts involving logarithms. We would like to be able
to prove inequalities involving any of the so-called elementary functions: sine,
cosine, arctangent, logarithm and exponential. Richardson’s theorem tells us
that this problem is undecidable [11], so we are left with heuristic methods.

In this paper, we outline preliminary work towards such heuristics. We have
no implementation nor even a definite procedure, but we do have methods
that we have tested by hand on about 30 problems. Our starting point is that
the theory of real closed fields—that is, the real numbers with addition and
multiplication—is decidable. Our idea is to replace each occurrence of an el-
ementary function by an algebraic expression that is known to be an upper or
lower bound, as appropriate. If this results in a purely algebraic inequality, then
we supply the problem to a decision procedure for the theory of real closed
fields.

Complications include the need for case analysis on the arguments of ele-
mentary functions, since many bounds are only valid over restricted intervals. If

1

these arguments are complex expressions, then identifying their range requires
something like a recursive application of the method. The resulting algebraic
inequalities may be too difficult to be solved efficiently. Even so, the method
works on many problems.

Paper outline. We begin by reviewing the basis of our work, namely existing
decision procedures for polynomials and prior work on verifying inequalities
involving the elementary functions (Sect. 2). To illustrate the idea, we present
a simple example involving the exponential function (Sect. 3) and then a more
complex example involving the logarithm function (Sect. 4). We conclude by
presenting a list of solved problems and outlining our next steps (Sect. 5).

2 Background

Our work relies on the existence of practical, if not always efficient, decision
procedures for the theory of real closed fields (RCF). According to Dolzmann
et al. [3], Tarski found the first quantifier elimination procedure in the 1930s,
while Collins introduced the first feasible method in 1975. His cylindrical alge-
braic decomposition is still doubly exponential in the worst case. Dolzmann et
al. proceed to survey several quantifier elimination algorithms and their appli-
cations. One freely-available implementation is QEPCAD [5], a decision proce-
dure that performs partial cylindrical algebraic decomposition. The prover HOL
Light provides a simpler quantifier elimination procedure for real closed fields
[8]. Also in HOL Light is an implementation of Parrilo’s method [10] for deciding
polynomials using sum-of-squares decompositions; less general than any quan-
tifier elimination procedure, it is dramatically more efficient.1 Some polynomial
inequalities can also be tackled using heuristic procedures such as those of Hunt
et al. [6] and Tiwari [12].

Our second starting point is the work of Mũnoz and Lester [9], on proving
real number inequalities that may contain the elementary functions, but no
variables. The example they give is

3π

180
≤ g

v
tan

(
35π

180

)
,

where g and v are constants. Their method for proving such ground inequalities
relies on upper and lower bounds for the elementary functions, coupled with
interval arithmetic. The absence of variables makes the problem much simpler;
in particular, if we need to establish the range of the argument x in tan(x), we
simply call the procedure recursively.

These methods might be expected to work for some problems containing
variables. Interval arithmetic should be able to prove some inequalities involv-
ing a variable x say, if we know that 0 ≤ x ≤ 1. However, the method fails on
some easy-looking problems; as Mũnoz and Lester note, interval arithmetic can

1Harrison has mentioned this implementation [4], but as yet no documentation exists.

2

lose information rapidly. For example, if x ∈ [0,1], interval arithmetic cannot
prove the trivial x − x ≥ 0: we get [0,1]− [0,1] = [0,1]+ [−1,0] = [−1,1], and nei-
ther [−1,1] ≤ 0 nor [−1,1] ≥ 0 hold. This is a well-known issue and there are
some techniques that can reduce its impact, such as (obviously) reducing x − x
to 0 before applying interval arithmetic. But, in some cases, when we wanted to
prove E ≤ 0, the best we could do with interval arithmetic was to prove that E ≤ ε

for an arbitrary small, but positive, ε. A method based on a decision procedure
for real closed fields ought to be more general and effective.

3 A Simple Example Concerning Exponentials

Figure 1 presents a family of upper and lower bounds for the exponential func-
tion. Mũnoz and Lester [9] give similar bounds, but we have corrected errors
in the first two and altered the presentation. All conventions are as in the origi-
nal paper. The lower bound is written exp(x, n) and the upper bound is written
exp(x, n), where n is a non-negative integer. For all x and n, they satisfy

exp(x, n) ≤ ex ≤ exp(x, n).

As n increases, the bounds converge monotonically to the target function, here
exp. As n increases, the bounds get tighter and the RCF problems that must
be decided get harder; in return, we should be able to prove harder inequalities
involving exponentials.

Case analysis on the value of x in exp(x) cannot be avoided. Clearly no poly-
nomial could serve as an upper bound, or as an accurate lower bound, of the
exponential function. The role of m in these bounds is to segment the real line
into integers, with separate bounds in each segment. These case analyses will
complicate our proofs. In particular, unless the argument of the exponential
function has a finite range, these bounds are useless, since they would require
the examination of infinitely many cases.

For a simple demonstration of our idea, let us prove the theorem

0 ≤ x ≤ 1 =⇒ ex ≤ 1+x +x2.

Here it suffices to replace the function e by an upper bound:

0 ≤ x ≤ 1 =⇒ exp(x, n) ≤ 1+x +x2.

We have a lower bound if 0 < x ≤ 1, so we need to perform a simple case analysis.

• If x = 0 then exp(0, n) = 1 ≤ 1+0+02 = 1, trivially.

• If 0 < x ≤ 1, then by equations (5) and (1)

exp(x, n) =
(

2(n+1)+1∑
i=0

(−x)i

i !

)−1

3

exp(x, n) =
2(n+1)+1∑

i=0

x i

i !
if −1 ≤ x < 0 (1)

exp(x, n) =
2(n+1)∑

i=0

x i

i !
if −1 ≤ x < 0 (2)

exp(0, n) = exp(0, n) = 1 (3)

exp(x, n) = 1

exp(−x, n)
if 0 < x ≤ 1 (4)

exp(x, n) = 1

exp(−x, n)
if 0 < x ≤ 1 (5)

exp(x, n) = exp(x/m, n)m if x <−1, m =−bxc (6)

exp(x, n) = exp(x/m, n)m if x <−1, m =−bxc (7)

exp(x, n) = exp(x/m, n)m if 1 < x, m = b−xc (8)

exp(x, n) = exp(x/m, n)m if 1 < x, m = b−xc (9)

Figure 1: Bounds for the Exponential Function

and putting n = 0, it suffices to prove(
1+ (−x)+ (−x)2

2
+ (−x)3

6

)−1

≤ 1+x +x2.

This last inequality is non-trivial, but as it falls within RCF, it can be proved au-
tomatically. Existing tools require us first to eliminate the division, reducing the
problem to the two inequalities

0 < 1−x + x2

2
− x3

6
and 1 ≤

(
1+x +x2

)(
1−x + x2

2
− x3

6

)
.

HOL Light has two separate tools that can prove these. Sean McLaughlin’s quan-
tifier elimination package [8] can prove the pair of inequalities in 351 seconds,
while John Harrison’s implementation of the sum-of-squares method [10] needs
only 0.48 seconds.2

Let us check these inequalities ourselves. The first one is clear, since xk+1 ≤
xk for all k. Multiplying out the second inequality reduces it to

0 ≤ x2

2
− 2x3

3
+ x4

3
− x5

6
.

2All timings were done on a dual 3GHz Pentium equipped with 4GB of memory.

4

Multiplying both sides by 6 and factoring reduces this inequality to

0 ≤ x2(1−x)(3−x +x2)

when it is obvious that all of the factors are non-negative.
This proof is not obvious, and its length shows that we have much to gain by

automating the procedure. That involves performing the case analysis, substi-
tuting the appropriate bounds, calling an RCF decision procedure, and in case
of failure, retrying with a larger value of n.

4 An Extended Example Concerning Logarithms

Figure 2 presents the bounds for the logarithm function. They are again taken
from Mũnoz and Lester [9], while correcting several errata. The next example
will demonstrate how a complicated derivation can arise from a simple-looking
inequality:

−1

2
< x ≤ 3 =⇒ ln(1+x) ≤ x.

We re-express the condition on x in terms of 1+ x, which is the argument of ln,
when substituting in the lower bound:

1

2
< 1+x ≤ 4 =⇒ ln(1+x, n) ≤ x

As with the exponential function, to obtain reasonably tight bounds requires
considering rather small intervals. Our problem splits into four cases:

1

2
< 1+x < 1 or 1+x = 1 or 1 < 1+x ≤ 2 or 2 < 1+x ≤ 4

Let us leave the first case for last, as it is the most complicated, and consider the
other three cases.

If 1+x = 1, then x = 0 and trivially ln(1+x, n) = ln(1, n) = 0 ≤ x.
If 1 < 1+x ≤ 2, then

ln(1+x, n) =
2n+1∑
i=1

(−1)i+1 ((1+x)−1)i

i
=

2n+1∑
i=1

(−1)i+1 x i

i

by equation (11). Setting n = 0 yields ln(1+ x, n) = x and reduces our inequality
to the trivial x ≤ x.

If 2 < 1+ x ≤ 4, then we have to apply equation (16). That requires finding
a positive integer m and some y such that 1+ x = 2m y and 1 < y ≤ 2. Clearly
m = 1. In this case, putting n = 0, we have

2n+1∑
i=1

(−1)i+1 (2−1)i

i
+

2n+1∑
i=1

(−1)i+1 (y −1)i

i
= 1+ (y −1)

= y

≤ 2y −1

= x.

5

ln(x, n) =
2n∑
i=1

(−1)i+1 (x −1)i

i
if 1 < x ≤ 2 (10)

ln(x, n) =
2n+1∑
i=1

(−1)i+1 (x −1)i

i
if 1 < x ≤ 2 (11)

ln(1, n) = ln(1, n) = 0 (12)

ln(x, n) =− ln

(
1

x
, n

)
, if 0 < x < 1 (13)

ln(x, n) =− ln

(
1

x
, n

)
, if 0 < x < 1 (14)

ln(x, n) = m ln(2, n) + ln(y, n) if x > 2, x = 2m y, 1 < y ≤ 2 (15)

ln(x, n) = m ln(2, n) + ln(y, n) if x > 2, x = 2m y, 1 < y ≤ 2 (16)

Figure 2: Bounds for the Logarithm Function

Now, let us turn to that postponed first case. If 1
2 < 1+x < 1, then 1 < 1/(1+x) < 2.

Putting n = 1, we have

ln(1+x, n) =− ln
(1

1+x
, n

)
=−

2n∑
i=1

(−1)i+1 (1
1+x −1)

i

i

=
2n∑
i=1

(−1)i

i

(−x

1+x

)i

=
(x

1+x

)
+

(
1

2

)(−x

1+x

)2
.

Now (x

1+x

)
+

(
1

2

)(−x

1+x

)2
≤ x ⇐⇒

x(1+x)+ 1

2
x2 ≤ x(1+x)2 ⇐⇒

x + 3

2
x2 ≤ x +2x2 +x3 ⇐⇒

−1

2
x2 ≤ x3 ⇐⇒

−1

2
≤ x

6

which holds because 1
2 < 1+ x. Note that putting n = 0 would have required us

to prove 0 ≤ x, which fails.
This derivation reveals some limitations. We should have been able to prove

this result with looser bounds on x, since ln(1 + x) ≤ x holds for x > −1. We
could not do this because our upper bound, ln(x, n), introduces the value m in
equation (16). This formulation allows the upper bound to be tight, but for our
purposes we need to seek looser bounds that have less restrictive range condi-
tions.

The bounds for the exponential function have a similar problem. An alter-
native lower bound, valid for all x ≥ 0, comes directly from its Taylor expansion:

exp(x, n) =
n∑

i=0

x i

i !
.

This series for the logarithm [1] also suggests a lower bound, for x ≥ 1:

ln(x, n) =
n∑

i=1

(x −1)i

i x i
.

Finding upper and lower bounds for elementary functions that work well with
RCF decision procedures is one of our first tasks.

5 Conclusions

Our preliminary investigations are promising. We have used the method de-
scribed above to solve the problems shown in Fig. 3. (Note that some of these
split into several problems when the absolute value function is removed and
chains of inequalities are separated.) We manually reduced each problem to al-
gebraic form as described above, then tried to solve the reduced problems using
three different tools.

• QEPCAD solved all of the problems, usually taking less than one second.

• HOL Light’s sum-of-squares tool (REAL_SOS) solved all of the problems
but two, again usually in less than a second.

• HOL Light’s quantifier elimination tool (REAL_QELIM_CONV) solved all of
the problems but three. It seldom required more than five seconds. The
351 seconds we reported above is clearly exceptional.

The simplest bound using n = 0 was sufficient for all but one of the problems,
which required n = 1.

Much work remains to be done before this procedure can be automated. We
need to experiment with a variety of upper and lower bounds. Case analyses will
still be inevitable, so we need techniques to automate them in the most common
situations. We need to tune the procedure by testing on a large suite of problems,
and we have to evaluate different ways of deciding the RCF problems that are
finally generated.

7

−1

2
≤ x ≤ 3 =⇒ x

1+x
≤ ln(1+x) ≤ x

−3 ≤ x ≤ 1

2
=⇒ −x

1−x
≤ ln(1−x) ≤−x

0 ≤ x ≤ 3 =⇒ |ln(1+x)−x| ≤ x2

−3 ≤ x ≤ 0 =⇒ |ln(1−x)+x| ≤ x2

|x| ≤ 1

2
=⇒ |ln(1+x)−x| ≤ 2x2

|x| ≤ 1

2
=⇒ |ln(1−x)+x| ≤ 2x2

0 ≤ x ≤ 0.5828 =⇒ |ln(1−x)| ≤ 3x

2

−0.5828 ≤ x ≤ 0 =⇒ |ln(1+x)| ≤ −3x

2
1

2
≤ x ≤ 4 =⇒ ln x ≤ x −1

0 ≤ x ≤ 1 =⇒ e(x−x2) ≤ 1+x

−1 ≤ x ≤ 1 =⇒ 1+x ≤ ex

−1 ≤ x ≤ 1 =⇒ 1−x ≤ e−x

−1 ≤ x ≤ 1 =⇒ ex ≤ 1

1−x

−1 ≤ x ≤ 1 =⇒ e−x ≤ 1

1+x

x ≤ 1

2
=⇒ e−x/(1−x) ≤ 1−x

−1

2
≤ x =⇒ ex/(1+x) ≤ 1+x

0 ≤ x ≤ 1 =⇒ e−x ≤ 1− x

2

−1 ≤ x ≤ 0 =⇒ ex ≤ 1+ x

2

0 ≤ |x| ≤ 1 =⇒ 1

4
|x| ≤ |ex −1| ≤ 7

4
|x|

Figure 3: Problems Solved

8

Acknowledgements

The research was funded by the EPSRC grant EP/C013409/1, Beyond Linear
Arithmetic: Automatic Proof Procedures for the Reals. R. W. Butler, D. Lester,
J. Harrison and C. Muñoz answered many questions. A. Chaieb commented on
this paper.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Wiley, 1972.

[2] J. Avigad, K. Donnelly, D. Gray, and P. Raff. A formally verified proof of the prime
number theorem. ACM Trans. Comput. Logic, in press.

[3] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in
practice. Technical Report MIP-9720, Universität Passau, D-94030, Germany,
1997.

[4] J. Harrison. A HOL theory of Euclidean space. In Hurd and Melham [7], pages
114–129.

[5] H. Hong. QEPCAD — quantifier elimination by partial cylindrical algebraic
decomposition. On the Internet at
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html. Web site includes
sources and documentation.

[6] W. A. Hunt, Jr., R. B. Krug, and J. Moore. Linear and nonlinear arithmetic in ACL2.
In D. Geist and E. Tronci, editors, Correct Hardware Design and Verification
Methods (CHARME), LNCS 2860, pages 319–333, 2003.

[7] J. Hurd and T. Melham, editors. Theorem Proving in Higher Order Logics: TPHOLs
2005, LNCS 3603. Springer, 2005.

[8] S. McLaughlin and J. Harrison. A proof-producing decision procedure for real
arithmetic. In R. Nieuwenhuis, editor, Automated Deduction — CADE-20
International Conference, LNAI 3632, pages 295–314. Springer, 2005.

[9] C. Muñoz and D. Lester. Real number calculations and theorem proving. In Hurd
and Melham [7], pages 195–210.

[10] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming, 96(2):293–320, 2003.

[11] D. Richardson. Some undecidable problems involving elementary functions of a
real variable. Journal of Symbolic Logic, 33(4):514–520, Dec. 1968.

[12] A. Tiwari. Abstraction based theorem proving: An example from the theory of
reals. In C. Tinelli and S. Ranise, editors, PDPAR: Workshop on Pragmatics of
Decision Procedures in Automated Deduction, pages 40–52. INRIA, Nancy, 2003.

9

