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1 Introduction

MetiTarski is an automatic theorem prover based on a combination of resolution and a
decision procedure for the theory of real closed fields. It is designed to prove theorems
involving real-valued special functions such as log, exp, sin, cos and sqrt. In particular,
it is designed to prove universally quantified inequalities involving such functions. This
problem is undecidable, so MetiTarski is necessarily incomplete. Nevertheless, MetiTarski
is remarkably powerful. Here are a few of the hundreds of theorems that it can prove,
automatically and in seconds.
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∀x ∈ (0, 1.25) =⇒ tan(x)2 ≤ 1.75 10−7 + tan(1) tan(x2)

∀x ∈ (−1, 1), y ∈ (−1, 1) =⇒ cos(x)2 − cos(y)2 ≤ − sin(x + y) sin(x − y) + 0.25

∀x ∈ (−1, 1), y ∈ (−1, 1) =⇒ cos(x)2 − cos(y)2 ≥ − sin(x + y) sin(x − y) − 0.25
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∀x ∈ (−π, π) =⇒ 2 | sin(x)| + | sin(2 x)| ≤ 9
π

Work on MetiTarski started in 2006, jointly with Behzad Akbarpour. The original man-
ual experiments [4] were later automated with the help of a basic decision procedure [1].
Crucial is the use of upper and lower bounds for the special functions of interest. By
2008, MetiTarski had a basic set of such bounds, largely based on Taylor expansions,
and using QEPCAD as its decision procedure [2]. The next major milestone was the in-
troduction of upper and lower bounds based on continued fractions [3]. Until this stage,
MetiTarski’s underlying proof engine was based on standard resolution. The introduction
of case-splitting (originally in simulated form, later superseded by James Bridge’s imple-
mentation of backtracking) provided decisive additional power for many problems [6].
Other work, chiefly by Grant Passmore, extended the range of decision procedures to in-
clude Mathematica and Z3; later, Z3 with a specialised “strategy 1” became the default
configuration [12]. Passmore implemented an interval constraint solver and many other
refinements.

The development of MetiTarski went hand-in-hand with a variety of applications, chiefly
at Concordia University (in Montréal) and Cambridge. These applications chiefly con-
cerned hybrid systems [5] and analogue circuits [8, 11]. William Denman has continued
to explore applications mostly in the aerospace domain [7, 9, 10].

For definitive and comprehensive about MetiTarski, consult the journal articles [6, 3].
For more casual overviews and speculations about future research, some of Paulson’s
invited lectures [14, 15] are worth reading. Links to most of these papers can be found
on the MetiTarski web page, www.cl.cam.ac.uk/~lp15/papers/Arith/.

2 Compiling	and	installing	MetiTarski

Before compiling and installing MetiTarski, first install Poly/ML (from www.polyml.org)
and at least one decision procedure as outlined below.

2.1 Installing	a	decision	procedure

MetiTarski requires an external algebraic decision method (EADM). MetiTarski supports
three such tools. For each, certain environment variables must be set up to locate them.

QEPCAD B version	1.69	or	later is available from www.usna.edu/CS/~qepcad/B/
QEPCAD.html in source form. The environment variable qe must point to the
qesource subdirectory of the QEPCAD B installation, so that $qe/bin/qepcad is
the compiled QEPCAD B binary.

Mathematica	version	8.0	or	later is a commercial product. The environment variable
MATH_KERNEL must point to the binary for the console-mode Mathematica inter-
face. This file is called math on Linux and MathKernel.exe on Windows. On Mac
OS X, it must point into the Mathematica application itself:

/Applications/Mathematica.app/Contents/MacOS/MathKernel
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Remark: we have recently encountered the following error message when
attempting to use Mathematica under Mac OS X:

dlopen(…/SystemFiles, 1): image not found
A workaround is to create the missing file as a symbolic link to

/Applications/Mathematica.app/SystemFiles .

Z3	version	4.0	or	later can be obtained from z3.codeplex.com/. The environment vari-
able Z3_NONLIN must point to the Z3 binary.

The default is Z3, which is available in binary form and is free to non-commercial users.
QEPCAD is also free, but must be built from sources. QEPCAD is best for univariate
problems. Mathematica is available in many institutions under a site license, and is very
good for problems involving three or four variables.

2.2 Building	MetiTarski

To build MetiTarski, first install Poly/ML version 5.5 or later. For improved performance,
you can build Poly/ML using the GMP multiple-precision arithmetic package: first install
GMP (from gmplib.org) and then build Poly/ML including the line

./configure --with-gmp=yes

You may need to set the variables LDFLAGS, CFLAGS and CXXFLAGS to locate gmp.
To compile and install MetiTarski in its default location of /usr/local/bin, enter the

following three commands:

./configure
make
sudo make install

To install MetiTarski in a different directory, use the --prefix option with the configure
command. For example, to install it in subdirectory bin of your home directory, use

./configure --prefix=$HOME

NB the prefix should not end with “bin”, as this will be added automatically.

3 Axiom	and	problem	files

Before preparing your own problems, please look at our many examples. They will give
you an impression of the sort of problem MetiTarski can solve. MetiTarski can include
relevant axiom files automatically (using the option --autoInclude). Better results can be
obtained if you select the axiom files yourself, omitting those that aren’t strictly necessary.
But this requires some experience and skill.

Directory tptp contains many axiom and problem files. The problem files use the
include directive to insert axioms relevant to the functions mentioned in those problems.
Here is an example:
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include('Axioms/general.ax').

The pathname mentioned by such a directive is looked up relative to a base directory,
which can be specified to MetiTarski using the --tptp command line option. If that
option is not used, the base directory is obtained from the current setting of the TPTP
environment variable. However, if a pathname starts with the “/” character, then it is
regarded as absolute and no base directory is used. If an included file is not found, then
MetiTarski will terminate with an error message.

To run MetiTarski on an individual problem, use the binary executable, metit. here is
an example:

metit --verbose 0 --show proof --tptp .. atan-problem-15.tptp

Here we see three options being given. The first suppresses all prover output apart from
the final result. The second requests the prover to display the final proof. The default
verbosity is 1, whilst 2 and 3 present more detail. The third option specifies the TPTP
directory. The last item on the command line is the filename containing the problem; you
may put a series of file names here and the problems will be attempted sequentially.

Version 1.4 introduced experimental, limited support for problems involving existential
quantification. In the supplied set of problems, the existential ones have names beginning
with the letter X. Suggestions for more interesting problems are welcome! These cannot
be solved using Z3 as the EADM.

4 Defining	your	own	functions

Non-recursive functions (effectively, abbreviations) can be defined using axioms such as
the following:

cnf(f, axiom, (f(X) = 2*(X - X^3))).

An example of using such functions is the problem ellipse-check-2-fun.tptp. More
examples are available, in files with names matching the pattern *-fun.tptp. Functions
may refer to one another, but it is the user’s responsibility to avoid recursive definitions,
which are not checked for termination.

5 Command	line	options

5.1 Options	to	specify	the	EADM

The default algebraic decision method is Z3 with “Strategy 1” [12].
To specify a different decision method, use one of the following options:

--z3 Use plain Z3 (instead of the default Strategy 1)

-m or --mathematica Use Mathematica as the external algebraic decision method.
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--qepcad Use QEPCAD as the external algebraic decision method.

--nsatz_eadm Use MetiTarski’s built-in decision method (combining ICP with a search
for real nullstellensatz witnesses) before calling the external one.

One of the options --z3, --mathematica or --qepcad must be given. A good combina-
tion is --nsatz_eadm -m. This is an implementation of Passmore’s ICP-enhanced Tiwari
calculus [13, §6.3.3]

Other command-line options control MetiTarski’s operation and heuristics. The fol-
lowing options are the most important. The backtracking and case-splitting settings can
make the difference between success and failure, and unfortunately there is no obvious
way to choose the best ones for a given problem. Most of the numerical parameters be-
low are only for advanced users.

5.2 Basic	options

-p or --show proof A proof (if found) will be produced on the standard output.

--time ⟨float⟩ limits the processor time used in the proof attempt (default 600 seconds);
decimals are allowed, e.g., 0.1 for 100 milliseconds

--autoInclude, --autoIncludeExtended, --autoIncludeSuperExtended includes ax-
iom files automatically (with extended or extra extended accuracy, respectively)

-t or --verbose ⟨0 . . . 4⟩ specifies the degree of verbosity for the proof search The de-
fault is 1, which displays information about CPU usage: a full stop (.) for every 10
seconds of Metis time and a (+) for every 10 secs of RCF time.

5.3 More	advanced	heuristic	settings

* Indicates the default alternative.

--backtracking off / on* disables/enables backtracking.

--cases off switches off case splitting.

--cases m If backtracking is on, then m is the maximum size of the split stack (default
100); if backtracking is off, then m is the maximum number of splits (default 3000).

--cases m+n m is as above, while n sets the weight factor for non-SOS clauses in tenths.
Thus a value of n of 10 is neutral (the factor is 1.0 and the weight is unchanged).

--proj_ord off / on* enables/disables automatic selection of a projection ordering for
QEPCAD, which can have a great impact on multivariate problems.

--maxalg ⟨n⟩ sets the maximum size of an algebraic clause to be retained as part of the
context in QEPCAD calls. A value of 50 or 75 may benefit some problems that
have two or three variables, while a few problems require at least 500. The default
is 100.
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--rerun off / on* controls whether to try again (with maxalg = 1001) after running out
of clauses, instead of just giving up.

--paramodulation off / on* disables/enables the paramodulation rule.

--maxweight ⟨w⟩ sets the maximum weight of a retained clause, default 1000 * (.5 +
.5 * SOS_factor). Smaller values save memory but may cause MetiTarski to quit
prematurely because it has run out of clauses. The maximum weight observed in
any proof is 1007.

--tptp ⟨d⟩ specifies the TPTP installation directory

--tstp generates standard TSTP proofs (no infixes, etc.), for use with TSTP analysis tools

--full includes variable instantiations in proofs

-q or --quiet no output: indicates provability with return value

6 Perl	scripts

Directory scripts contains Perl scripts that are useful for generating and running problem
sets: runmetit and addaxioms.

MetiTarski can be given a list of problem files on the command line, but the Perl script
runmetit.pl provides more flexibility. It is especially useful when many problems are
to be attempted, each for a limited time. A log file summarising the outcomes for all
the problems will be stored in a file entitled STATUS-Metit-yyyy-mm-dd. Here, we use
runmetit to run MetiTarski on a directory of problems.

runmetit.pl --time 10 --proofs --tptp $HOME/metit-2.4/tptp

Here is a summary of the main options. Others are documented in the script itself.

--time limits the processor time in seconds. It is not especially accurate.

--proofs produces proofs as new files, in a directory entitled Proofs-Metit-yyyy-mm-dd.

--threads (default	2) specifies the maximum number of threads to be used in parallel.
(Too many threads may crash your machine! Your Mathematica licence may forbid
multiple threads.)

--options "opts" passes the given option string opts to MetiTarski.

The script addaxioms.pl expands include directives at the source level in a set of
problem files, creating a directory of problem files in which each occurrence of include
has been replaced by the corresponding axioms. It can be useful for debugging, perhaps
to eliminate axioms that you believe to be irrelevant in the hope of obtaining proof. The
TPTP base directory is identified, as usual, by the --tptp option if it is provided and
otherwise by the TPTP environment variable.
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For example, one way to generate a directory of expanded problems is to visit the tptp
directory and type the command

addaxioms.pl --in Problems --outdir TestDir --tptp .

You can add further axiom files to all problems by naming them in this command.

7 Input	syntax	and	problem	preparation

Problem syntax uses TPTP format extended with infix notation for arithmetic formulas.
Decimal notation is accepted: a decimal such as .23 abbreviates the fraction 23/100. To
express a floating point number, write an expression such as 1.04e-18 or 4E5. Parsing is
done using ML-YACC. Please note some quirks of the grammar:

1. A cnf line introduces a clause, which must be enclosed within a pair of parentheses
even if it consists of a single literal. Example:

cnf(sqrt_squared, axiom, (X < 0 | sqrt(X)*sqrt(X) = X)).

2. The syntax for formulas only allows parentheses around a non-trivial formula. In
particular, (p(x)) and ((x=y)) are forbidden by the parser. But to allow for com-
puter generated files in particular that have such redundant brackets, MetiTarski
now has a preprocessor that specifically removes them. It is still better to avoid
creating such files in the first place.

3. Free variables are forbidden in first-order formulas, that is, fof lines. All variables
must be quantified.

7.1 Interval	syntax

A special syntax for intervals is available.

t : (a,b)

This formula is logically equivalent to the conjunction a < t ∧ t < b. Here, t, a and b
are all terms. Membership in a closed interval is written

t : (=a,b=)

The open and closed brackets can be mixed. Thus X : (=0,1) means 0 ≤ X ∧ X < 1.
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7.2 The	sine	and	cosine	functions

The approximations for the sine and cosine functions become extremely inaccurate once
their argument exceeds 6 in absolute value. Proofs concerning those functions outside
of this range will almost certainly fail. For many applications, a proof can be obtained
by generalising the problem to replace sin t and cos t by new variables X and Y subject
to the constraint X2 + Y 2 = 1. Note that a separate pair of variables is necessary for
each different argument, t. The Chua problems are available both with and without this
transformation.

We provide extended approximations for sin and cos as well, but the arguments must
still be strictly limited. The comments in the axiom files give specific information con-
cerning accuracy.

7.3 Miscellaneous	remarks

The natural logarithm is written as ln. In contrast, the common logarithm (base 10) is
written as log. It is defined in the axiom file log.ax. Note that many problem files with
log in their name refer to the natural logarithm.

Unfortunately, the decision procedure is hyper-exponential in the number of variables,
and MetiTarski is unlikely to be useful for problems containing more than five variables.
A few nine-variable theorems have been proved.

MetiTarski can seldom prove equalities. Inequalities can only be exact at the point
around which the power series of the relevant function has been expanded, typically 0
or 1.

8 Interpreting	the	output

By default, MetiTarski produces very little output, only a ticker indication of processor
time used. You can suppress even this output, or produce traces in various levels of detail,
using the --verbose option mentioned above. Detailed traces are not easy to interpret,
even by experts.

When it terminates, MetiTarski prints a few statistics, including the processor time used.
The proof is displayed if you requested this. There should also be a status line summaris-
ing the outcome. Naturally you want status Theorem, but other possibilities are Timeout
and GaveUp, the latter meaning that MetiTarski ran out of clauses to process. Because
MetiTarski is incomplete, we cannot conclude anything from its failure to prove a the-
orem. This can happen because you have not included necessary axioms, because the
theorem is too difficult to prove, or because it is simply not amenable to the methods used
by MetiTarski.

You can improve MetiTarski’s performance by including only necessary axiom files (for
example, don’t include upper bounds if they aren’t needed, which often is clear by inspec-
tion). Also, if you are trying to solve an engineering problem, writing decimal numbers to
10 significant figures will create extra work for MetiTarski to deliver an accuracy that can
have no practical use. The necessary tolerances should be determined by your application,
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and in most cases you should not need more than three significant figures. (Note that a
standard resistor is only accurate to 10%.)

You will naturally want to try MetiTarski on your own problems, after converting them
to MetiTarski syntax and inserting the necessary include directives. Use the supplied
problems as examples. Please share any new problems, whether MetiTarski can solve
them or not.
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