
MetiTarski: An Automatic
Prover for Real-Valued

Special Functions
Behzad Akbarpour and Lawrence C. Paulson

Computer Laboratory, Cambridge

special functions

Many application domains concern statements
involving the functions sin, cos, ln, exp, etc.

We prove them by combining a resolution theorem
prover (Metis) with a decision procedure for real
closed fields (QEPCAD).

MetiTarski works automatically and delivers
machine-readable proofs.

the basic idea

Our approach involves replacing functions by
rational function upper or lower bounds.

The eventual polynomial inequalities belong to a
decidable theory: real closed fields (RCF).

Logical formulae over the reals involving + − × ≤
and quantifiers are decidable (Tarski).

 We call such formulae algebraic.

bounds for exp
Special functions can be approximated, e.g. by
Taylor series or continued fractions.

Typical bounds are only valid (or close) over a
restricted range of arguments.

We need several formulas to cover a range of
intervals. Here are a few of the options.

Bounds and their quirks

Some are extremely
accurate at first, but
veer away drastically.

There is no general
upper bound for the
exponential function.

bounds for ln

based on the continued fraction for ln(x+1)

much more accurate than the Taylor expansion

RCF decision procedure
Quantifier elimination reduces a formula to TRUE
or FALSE, provided it has no free variables.

HOL-Light implements Hörmander’s decision
procedure. It is fairly simple, but it hangs if the
polynomial’s degree exceeds 6.

Cylindrical Algebraic Decomposition (due to
Collins) is still doubly exponential in the number of
variables, but it is polynomial in other parameters.
We use QEPCAD B (Hoon Hong, C. W. Brown).

Metis resolution prover
a full implementation
of the superposition
calculus

integrated with
interactive theorem
provers (HOL4,
Isabelle)

coded in Standard ML

acceptable
performance

easy to modify

due to Joe Hurd

resolution primer

Resolution provers work with clauses: disjunctions
of literals (atoms or their negations).

They seek to contradict the negation of the goal.

Each step combines two clauses and yields new
clauses, which are simplified and perhaps kept.

If the empty clause is produced, we have the
desired contradiction.

a resolution step

resolution data ßow
passive

clause set
selected
clause

active
clause set

simplification
deduced
clauses

new
clauses

inference
rules

empty
clause

contra-
diction!!

modiÞcations to Metis

algebraic literal deletion, via decision procedure

algebraic redundancy test (subsumption)

formula normalization and simplification

modified Knuth-Bendix ordering

“dividing out” products

algebraic literal deletion

Our version of Metis keeps a list of all ground,
algebraic clauses (+ − × ≤, no variables).

Any literal that is inconsistent with those clauses
can be deleted.

Metis simplifies new clauses by calling QEPCAD
to detect inconsistent literals.

Deleting literals brings us closer to the empty
clause!

literal deletion examples

We delete x2+1 < 0, as it has no real solutions.

Knowing xy > 1, we delete the literal x=0.

We take adjacent literals into account: in the
clause x2 > 2 ! x > 3, we delete x > 3.

Specifically, QEPCAD finds
"x [x2 ≤ 2 # x > 3] to be
equivalent to FALSE.

algebraic subsumption

If a new clause is an instance of another, it is
redundant and should be DELETED.

We apply this idea to ground algebraic formulas,
deleting any that follow from existing facts.

Example: knowing x2 > 4 we can delete the clause
x < −1 ! x > 2.

QEPCAD: "x [x2 > 4 # ¬(x < −1 ! x > 2)]
is equivalent to FALSE.

formula normalization

How do we suppress redundant equivalent forms
such as 2x+1, x+1+x, 2(x+1)−1? Horner canonical
form is a recursive representation of polynomials.

The normalised formula is unique and
reasonably compact.

normalization example

The “variables” can be arbitrarily non-algebraic
sub-expressions.

Thus, formulas containing special functions can
also be simplified, and the function isolated.

first variable second variable

formula simpliÞcation

Finally we simplify the output of the Horner
transformation using laws like 0+z=z and 1×z=z.

The maximal function term, say ln E, is isolated (if
possible) on one side of an inequality.

Formulas are converted to rational functions:

This is the critical one:
it is the most difficult!

And then this one
should be tackled next.

choosing the best literal

Knuth-Bendix ordering

Superposition is a refinement of resolution,
selecting the largest literals using an ordering.

Since ln, exp, ... are complex, we give them high
weights. This focuses the search on them.

The Knuth-Bendix ordering (KBO) also counts
occurrences of variables, so t is more complex
than u if it contains more variables.

modiÞed KBO

Our bounds for f(x) contain multiple occurrences of
x, so standard KBO regards the bounds as worse
than the functions themselves!

Ludwig and Waldmann (2007) propose a
modification of KBO that lets us say e.g. “ln(x) is
more complex than 100 occurrences of x.”

This change greatly improves the is performance
for our examples.

dividing out products

The heuristics presented so far only isolate
function occurrences that are additive.

If a function is MULTIPLIED by an expression u, then
we must divide both sides of the inequality by u.

The outcome depends upon the sign of u.

In general, u could be positive, negative or zero; its
sign does not need to be fixed.

dividing out example

Numerous problems can only be solved using
this form of inference.

 Given a clause of the form

(y
x

) 1
(
x + 1

x

) =
x2

y(x2 + 1)

problem seconds

|x| < 1 =⇒ |ln(1 + x)| ≤− ln(1 − |x|) 0.153
|exp(x)−1| ≤ exp(|x|)−1 0.318
−1 < x =⇒ 2|x|/(2 + x) ≤ |ln(1 + x)| 4.266
|x| < 1 =⇒ |ln(1 + x)| ≤| x|(1+ | x|)/ |1+ x| 0.604
0 < x ≤ ! /2 =⇒ 1/sin 2 x < 1/ x2 + 1−4/ ! 2 410

0 < x < 1/2 =⇒ cos(! x) > 1−2x

f (t) áu ≤ v ∨C

f (t) ≤ v/ u ∨u ≤ 0∨C

0≤ v ∨u %= 0∨C

f (t) ≥ v/ u ∨u ≥ 0∨C

2

 deduce the three clauses

(y

x

) 1
(
x + 1

x

) = x2

y(x2 +1)

problem seconds

|x | < 1 =⇒ |ln(1+ x)|≤− ln(1− |x |) 0.153
|exp(x)−1|≤ exp(|x |)−1 0.318
−1 < x =⇒ 2|x |/(2+ x) ≤ |ln(1+ x)| 4.266
|x | < 1 =⇒ |ln(1+ x)|≤| x |(1+|x |)/|1+ x | 0.604
0 < x ≤ ! /2 =⇒ 1/sin2 x < 1/x2 +1−4/! 2 410

0 < x < 1/2 =⇒ cos(! x) > 1−2x

f (t) ·u ≤ v ∨C

f (t) ≤ v/u ∨u ≤ 0∨C

0 ≤ v ∨u %= 0∨C

f (t) ≥ v/u ∨u ≥ 0∨C

2

notes on the axioms

We omit general laws: transitivity is too prolific!

The decision procedure, QEPCAD, catches many
instances of general laws.

We build transitivity into our bounding axioms.

We use lgen(R,X,Y) to express both X≤Y (when
R=0) and X<Y (when R=1).

We identify x<y with ¬(y≤x).

some exp lower bounds

cnf(exp_lower_taylor_1,axiom,
 (~ lgen(R,Y,1+X)
 | lgen(R,Y,exp(X)))).

cnf(exp_lower_bound_cf2,axiom,
 (~ lgen(R, Y, (X^2 + 6*X + 12) /
 (X^2 - 6*X + 12))
 | lgen(R,Y,exp(X)))).

Covers both
< and ≤ Transitivity is

built in: to show
Y<exp(X), show
Y<1+X.

absolute value axioms

Simply |X| = X if X≥0 and |X| = −X otherwise.

It helps to give abs a high weight, discouraging the
introduction of occurrences of abs.

cnf(abs_nonnegative,axiom,
 (~ 0 <= X
 | abs(X) = X)).

cnf(abs_negative,axiom,
 (0 <= X
 | abs(X) = -X)).

a few solved problems
! y

x

" 1
#
x + 1

x

$= x2

y(x2 +1)

problem seconds

|x| < 1 =! |ln(1+x)| "# ln(1 # |x|) 0.153
|exp(x) # 1| " exp(|x|) # 1 0.318
1 < x =! 2|x|/(2+x) " |ln(1+x)| 4.266
|x| < 1 =! |ln(1+x)| " | x|(1+|x|)/|1+x| 0.604
0 < x " π/2 =! 1/sin2 x < 1/x2 +1 # 4/π2 410

0 < x < 1/2 =! cos(πx) > 1 # 2x

2

 hybrid systems

Many hybrid systems can be specified by systems
of linear differential equations. (The HSOLVER
Benchmark Database presents 18 examples.)

We can solve these equations using Maple,
typically yielding a problem involving the
exponential function.

MetiTarski can often solve these problems.

collision avoidance system

1 CONVOI

v̇ = a, ȧ =−3a −3(v − vf)+gap− (v +10), ˙gap = vf − v

x =

!

"
"
#

v
vf
a

gap

$

%
%
& A =

!

"
"
#

0 0 1 0
0 0 0 0
−4 3 −3 1
−1 1 0 0

$

%
%
& B =

!

"
"
#

0
0

−10
0

$

%
%
&

For the given set of initial states as

x0 =

!

"
"
#

2
2

−0.5
1

$

%
%
&

the problem is to verify that rear car would never collide with the car
in front, that is, always gap > 0.

Let X denote the Laplace transform of x (X = $ x), then we have
sX −x0 = AX + B

s , and solving for X we have X = (sI−A)−1(x0+ B
s). Using

Maple we have

X =

!

"
"
"
"
"
"
"
#

2.0 s3+5.500000000 s2−3.0 s+2.0
s(s3+3.0 s2+4.0 s+1.0)

2 s−1

−0.5000000000 s(22.0+s)
s3+3.0 s2+4.0 s+1.0

3.0 s2+4.500000000 s+12.0+1.0 s3

s(s3+3.0 s2+4.0 s+1.0)

$

%
%
%
%
%
%
%
&

Therefore, we have gap = $−1 3.0 s2+4.500000000 s+12.0+1.0 s3

s(s3+3.0 s2+4.0 s+1.0) , and using
Maple for inverse Laplace transform we have

gap = 12.0−14.23903466 exp(−0.3176721962 t)

+3.239034663 exp(−1.341163902 t)cos(1.161541400 t)

−0.1543371972 exp(−1.341163902 t)sin(1.161541400 t)

differential equations for the velocity,
acceleration and gap between two vehicles:

MetiTarski can prove that the gap is positive!

solution for the gap (as a function of t):

some limitations
No range reduction: proofs about exp(20) or
sin(3000) are likely to fail.

Not everything can be proved using upper and
lower bounds. Adding laws like exp(X+Y) =
exp(X)exp(Y) greatly increases the search space.

Problems can have only a few variables or
QEPCAD will never terminate.

example of a limitation

We can prove this theorem if we replace 1/2 by
100/201. Approximating π by a fraction loses
information.

related work?

SPASS+T and SPASS(T) combine the SPASS
prover with various decision procedures.

Ratschan’s RSOLVER solves quantified inequality
constraints over the real numbers using constraint
programming methods.

There are many attempts to add quantification to
SMT solvers, which solve propositional assertions
involving linear arithmetic, etc.

Þnal remarks

By combining a resolution prover with a decision
procedure, we can solve many hard problems.

The system works by deduction and outputs
proofs that could be checked independently.

A similar architecture would probably perform well
using other decision procedures.

acknowledgements

Assistance from C. W. Brown, A. Cuyt, I. Grant, J.
Harrison, J. Hurd, D. Lester, C. Muñoz, U.
Waldmann, etc.

The research was supported by the Engineering
and Physical Sciences Research Council [grant
number EP/C013409/1].

