MetiTarski: An Automatic Prover for Real-Valued Special Functions Behzad Akbarpour and Lawrence C. Paulson Computer Laboratory, Cambridge

#### special functions

- \* Many application domains concern statements involving the functions sin, cos, In, exp, etc.
- \* We prove them by combining a resolution theorem prover (Metis) with a decision procedure for real closed fields (QEPCAD).
- \* MetiTarski works automatically and delivers machine-readable proofs.

#### the basic idea

\* Our approach involves replacing functions by rational function upper or lower bounds.

\* The eventual polynomial inequalities belong to a decidable theory: *real closed fields (RCF).* 

\* Logical formulae over the reals involving  $+ - \times \leq$  and quantifiers are decidable (Tarski).

We call such formulae algebraic.

#### bounds for exp

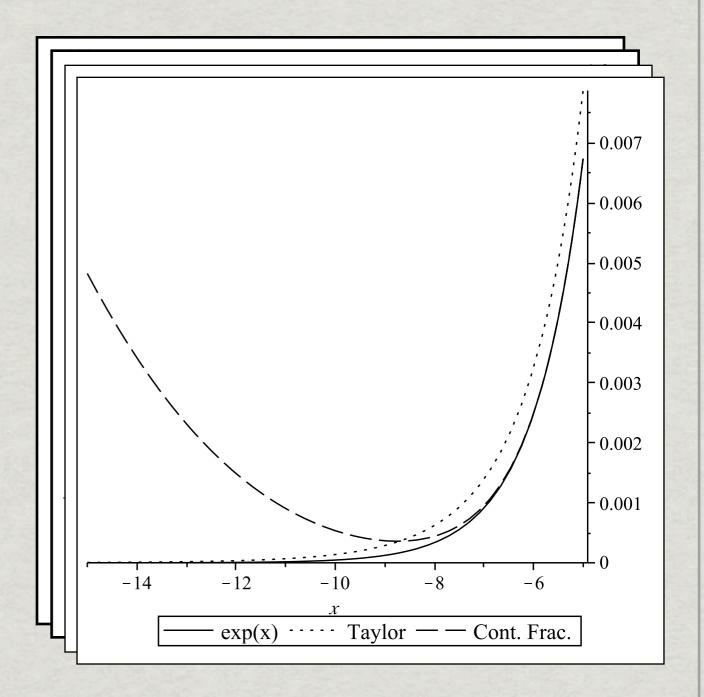
- \* Special functions can be approximated, e.g. by Taylor series or continued fractions.
- \* Typical bounds are only valid (or close) over a restricted range of arguments.
- \* We need several formulas to cover a range of intervals. Here are a few of the options.

 $exp(x) \ge 1 + x + \dots + x^{n} / n! \qquad (n \text{ odd})$   $exp(x) \le 1 + x + \dots + x^{n} / n! \qquad (n \text{ even}, x \le 0)$  $exp(x) \le 1 / (1 - x + x^{2} / 2! - x^{3} / 3!) \qquad (x < 1.596)$ 

## Bounds and their quirks

Some are extremely accurate at first, but veer away drastically.

\* There is no general upper bound for the exponential function.



#### bounds for In

\* based on the continued fraction for ln(x+1)

\* much more accurate than the Taylor expansion

$$\frac{(1+19x+10x^2)(x-1)}{3x(3+6x+x^2)} \le \ln x \le \frac{(x^2+19x+10)(x-1)}{3(3x^2+6x+1)}$$

## RCF decision procedure

- \* Quantifier elimination reduces a formula to TRUE or FALSE, provided it has no free variables.
- \* HOL-Light implements Hörmander's decision procedure. It is fairly simple, but it hangs if the polynomial's degree exceeds 6.
- \* Cylindrical Algebraic Decomposition (due to Collins) is still doubly exponential in the number of variables, but it is polynomial in other parameters. We use QEPCAD B (Hoon Hong, C. W. Brown).

## Metis resolution prover

- \* a full implementation of the superposition calculus
- \* integrated with interactive theorem provers (HOL4, Isabelle)
- \* coded in Standard ML

- \* acceptable
   performance
- \* easy to modify
- # due to Joe Hurd

#### resolution primer

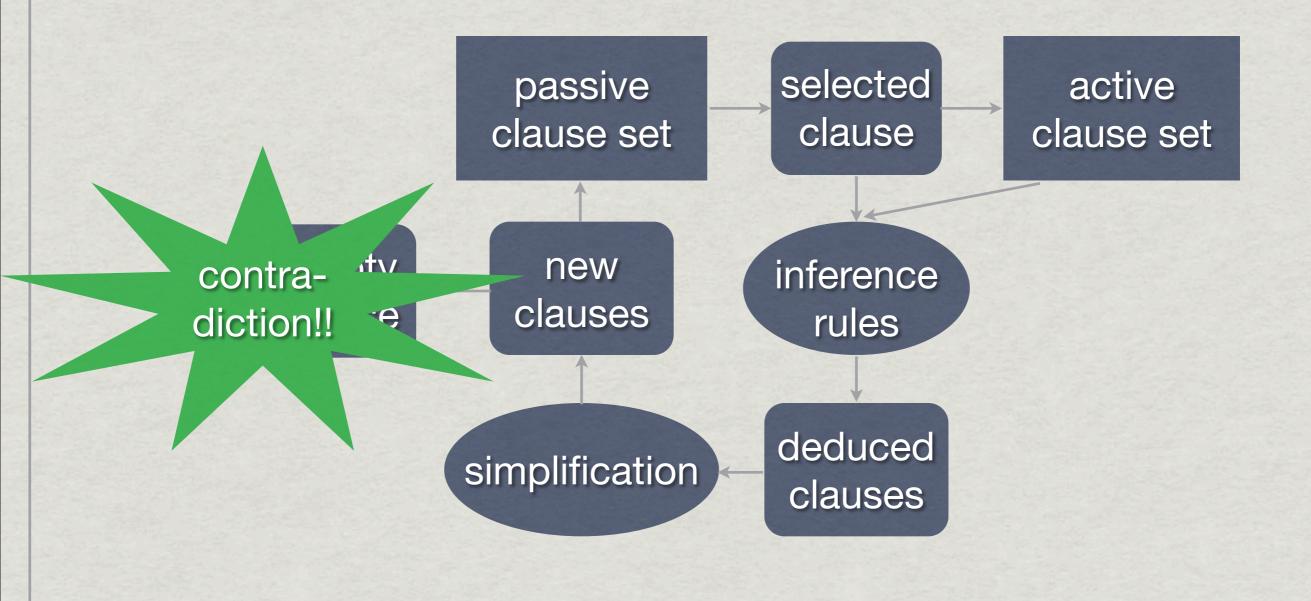
- \* Resolution provers work with clauses: disjunctions of literals (atoms or their negations).
- \* They seek to contradict the negation of the goal.
- \* Each step combines two clauses and yields new clauses, which are simplified and perhaps kept.
- \* If the *empty clause* is produced, we have the desired contradiction.

#### a resolution step

 $R(x,1) \lor P(x)$   $\neg R(0,y) \lor Q(y)$   $R(0,1) \lor P(0) \qquad x \mapsto 0$   $\neg R(0,1) \lor Q(1) \qquad y \mapsto 1$ 

 $P(0) \vee Q(1)$ 

## resolution data flow



#### modifications to Metis

\* algebraic literal deletion, via decision procedure
\* algebraic redundancy test (subsumption)
\* formula normalization and simplification
\* modified Knuth-Bendix ordering
\* "dividing out" products

# algebraic literal deletion

- \* Our version of Metis keeps a list of all ground, algebraic clauses  $(+ \times \leq, no variables)$ .
- \* Any literal that is inconsistent with those clauses can be deleted.
- \* Metis simplifies new clauses by calling QEPCAD to detect inconsistent literals.
- \* Deleting literals brings us closer to the empty clause!

#### literal deletion examples

\* We delete  $x^2+1 < 0$ , as it has no real solutions.

\* Knowing xy > 1, we delete the literal x=0.

\* We take adjacent literals into account: in the clause  $x^2 > 2 \lor x > 3$ , we delete x > 3.

Specifically, QEPCAD finds  $\exists x \ \exists x^2 \le 2 \land x \ge 3 \exists to be$ 

equivalent to FALSE.

#### algebraic subsumption

\* If a new clause is an instance of another, it is redundant and should be DELETED.

- \* We apply this idea to ground algebraic formulas, deleting any that follow from existing facts.
- \* Example: knowing  $x^2 > 4$  we can delete the clause  $x < -1 \lor x > 2$ .

 $QEPCAD: \exists x [x^2 > 4 \land \neg (x < \neg v x > 2)]$ 

is equivalent to FALSE.

#### formula normalization

\* How do we suppress redundant equivalent forms such as 2x+1, x+1+x, 2(x+1)-1? Horner canonical form is a recursive representation of polynomials.

$$a_n x^n + \dots + a_1 x + a_0$$
  
=  $a_0 + x(a_1 + x(a_2 + \dots x(a_{n-1} + xa_n)))$ 

The normalised formula is unique and reasonably compact.

#### normalization example

#### $3xy^{2} + 2x^{2}yz + zx + 3yz$ = [y(z3)] + x([z1 + y(y3)] + x[y(z2)])

first variable

second variable

\* The "variables" can be arbitrarily non-algebraic sub-expressions.

\* Thus, formulas containing special functions can also be simplified, and the function *isolated*.

#### formula simplification

- \* Finally we simplify the output of the Horner transformation using laws like 0+z=z and 1×z=z.
- \* The maximal function term, say In E, is isolated (if possible) on one side of an inequality.

\* Formulas are converted to rational functions:

$$\left(\frac{x}{y}\right)\frac{1}{\left(x+\frac{1}{x}\right)} = \frac{x^2}{y(x^2+1)}$$

# choosing the best literal

 $x \le 2 \lor \exp x \le 2 \lor \frac{1}{x} \le u$ 

This is the critical one:

it is the most difficult!

And then this one

should be tackled next.

## Knuth-Bendix ordering

- \* Superposition is a refinement of resolution, selecting the *largest* literals using an *ordering*.
- \* Since In, exp, ... are complex, we give them high weights. This focuses the search on them.
- \* The Knuth-Bendix ordering (KBO) also counts occurrences of variables, so t is more complex than u if it contains more variables.

## modified KBO

- \* Our bounds for f(x) contain multiple occurrences of x, so standard KBO regards the bounds as worse than the functions themselves!
- \* Ludwig and Waldmann (2007) propose a modification of KBO that lets us say e.g. "In(x) is more complex than 100 occurrences of x."
- \* This change greatly improves the is performance for our examples.

# dividing out products

\* The heuristics presented so far only isolate function occurrences that are *additive*.

- \* If a function is MULTIPLIED by an expression *u*, then we must divide both sides of the inequality by *u*.
- \* The outcome depends upon the sign of *u*.
- \* In general, u could be positive, negative or zero; its sign does not need to be fixed.

## dividing out example

\* Given a clause of the form  $f(t) \cdot u \leq v \vee C$ 

\* deduce the three clauses  $f(t) \le v/u \lor u \le 0 \lor C$  $0 \le v \lor u \ne 0 \lor C$  $f(t) \ge v/u \lor u \ge 0 \lor C$ 

\* Numerous problems can only be solved using this form of inference.

#### notes on the axioms

\* We omit general laws: transitivity is too prolific!

- \* The decision procedure, QEPCAD, catches many instances of general laws.
- \* We build transitivity into our bounding axioms.
- We use Igen(R,X,Y) to express both X≤Y (when R=0) and X<Y (when R=1).</p>

**\*** We identify *x*<*y* with ¬(*y*≤*x*).

#### absolute value axioms

**\*** Simply |X| = X if X≥0 and |X| = -X otherwise.

It helps to give abs a high weight, discouraging the introduction of occurrences of abs.

cnf(abs\_negative,axiom, ( 0 <= X | abs(X) = -X )).

## a few solved problems

#### problem

#### seconds

| $ x  < 1 \Longrightarrow  \ln(1+x)  \le -\ln(1- x )$               | 0.153 |
|--------------------------------------------------------------------|-------|
| $ \exp(x) - 1  \le \exp( x ) - 1$                                  | 0.318 |
| $-1 < x \Longrightarrow 2 x /(2+x) \le  \ln(1+x) $                 | 4.266 |
| $ x  < 1 \Longrightarrow  \ln(1+x)  \le  x (1+ x )/ 1+x $          | 0.604 |
| $0 < x \le \pi/2 \Longrightarrow 1/\sin^2 x < 1/x^2 + 1 - 4/\pi^2$ | 410   |

# hybrid systems

\* Many hybrid systems can be specified by systems of linear differential equations. (The HSOLVER Benchmark Database presents 18 examples.)

\* We can solve these equations using Maple, typically yielding a problem involving the exponential function.

\* MetiTarski can often solve these problems.

#### collision avoidance system

\* differential equations for the velocity, acceleration and gap between two vehicles:

 $\dot{v} = a$ ,  $\dot{a} = -3a - 3(v - v_f) + gap - (v + 10)$ ,  $g\dot{a}p = v_f - v$ 

\* solution for the gap (as a function of *t*):

 $gap = 12 - 14.2e^{-0.318t} + 3.24e^{-1.34t}\cos(1.16t) - 0.154e^{-1.34t}\sin(1.16t)$ 

\* MetiTarski can prove that the gap is positive!

#### some limitations

\* No range reduction: proofs about exp(20) or sin(3000) are likely to fail.

\* Not everything can be proved using upper and lower bounds. Adding laws like exp(X+Y) = exp(X)exp(Y) greatly increases the search space.

\* Problems can have only a few variables or QEPCAD will never terminate.

#### example of a limitation

\* We can prove this theorem if we replace 1/2 by 100/201. Approximating π by a fraction loses information.

#### $0 < x < 1/2 \Longrightarrow \cos(\pi x) > 1 - 2x$

#### related work?

\* SPASS+T and SPASS(T) combine the SPASS prover with various decision procedures.

\* Ratschan's RSOLVER solves quantified inequality constraints over the real numbers using constraint programming methods.

\* There are many attempts to add quantification to SMT solvers, which solve propositional assertions involving linear arithmetic, etc.

#### final remarks

- \* By combining a resolution prover with a decision procedure, we can solve many hard problems.
- \* The system works by *deduction* and outputs *proofs* that could be checked independently.
- \* A similar architecture would probably perform well using other decision procedures.

## acknowledgements

\* Assistance from C. W. Brown, A. Cuyt, I. Grant, J. Harrison, J. Hurd, D. Lester, C. Muñoz, U. Waldmann, etc.

\* The research was supported by the Engineering and Physical Sciences Research Council [grant number EP/C013409/1].