Automated Theorem Proving for Special Functions: The Next Phase

Prof. Lawrence C Paulson, University of Cambridge

1. Resolution Theorem Proving
Automated theorem proving

- combining a **logical calculus** with **syntactic algorithms**
- *Full automation* is convenient, but requires a weak calculus.
 - Booleans + arithmetic (SMT)
 - First-order logic (*resolution*)
 - Good for program analysis.

- An **interactive theorem prover**
 - allows the construction of elaborate specifications
 - and formal mathematical proof developments
 - in an **expressive** logic,
 - but reasoning is **laborious**.
Interactive theorem proving

• Typically based on some form of higher-order logic

• Isabelle, HOL4: classical HOL, with polymorphism

• PVS: a classical but dependently-typed HOL

• Coq: a constructive type theory

• Used for substantial verification projects

• … And to formalise major results in group theory, logic, mathematical analysis, etc.
The resolution proof procedure

- Objective is to **contradict** the *negation* of the statement to be proved.
 - The negated formula is translated to a *conjunction of disjunctions*.
 - A *clause* is a disjunction of literals: atoms or their negations.
- A **resolution step** combines two clauses to yield a new one.
- Producing the **empty clause** terminates the proof: it is the desired contradiction.
A very simple resolution proof

\[\exists x P(x) \lor \exists x Q(x) \land \forall x [P(x) \rightarrow Q(f(x))] \rightarrow \exists x Q(x) \]

\[P(a) \lor Q(b) \]

\[Q(b) \lor Q(f(a)) \]

\[Q(b) \]

\[\neg P(x) \lor Q(f(x)) \]

\[\neg Q(x) \]
Applications of resolution

* Highly syntactic problems:
 * Robbins conjecture
 * Completeness of certain axiom systems
* Also in support of interactive theorem proving (Isabelle’s sledgehammer)

* Mainstream mathematical problems can’t easily be reduced to a few first-order formulas.

However, resolution can be modified to solve a class of problems connected with the real numbers...
2. MetiTarski
Resolution for the real numbers

- *MetiTarski* proves first-order statements involving functions such as \exp, \ln, \sin, \cos, \tan^{-1}
- ... using *axioms* bounding these functions by rational functions
- ... and *heuristics* to isolate and remove function occurrences
- integrated with the RCF* decision procedures QEPCAD, Mathematica, Z3

RCF (real-closed field): a field that’s first-order equivalent to the reals
Some easy MetiTarski problems

\[0 < t \wedge 0 < v_f \implies ((1.565 + .313v_f) \cos(1.16t) \]
\[+ (.01340 + .00268v_f) \sin(1.16t))e^{-1.34t} \]
\[- (6.55 + 1.31v_f)e^{-3.18t} + v_f + 10 \geq 0 \]

\[0 \leq x \wedge x \leq 1.46 \times 10^{-6} \implies \]
\[(64.42 \sin(1.71 \times 10^6x) - 21.08 \cos(1.71 \times 10^6x))e^{9.05 \times 10^5 x} \]
\[+ 24.24e^{-1.86 \times 10^6x} > 0 \]

\[0 \leq x \wedge 0 \leq y \implies y \tanh(x) \leq \sinh(yx) \]

Each proved in a few seconds!
the basic idea

Our approach involves replacing functions by rational function upper or lower bounds.

We end up with polynomial inequalities: in other words, RCF problems... and first-order formulae involving +, −, × and ≤ (on reals) are decidable.

RCF decision procedures and resolution are the core technologies.
A simple proof:

\[\forall x \ |e^x - 1| \leq e^{|x|} - 1 \]

absolute value (pos)
\[e^{|c|} < e^c \lor e^c < 1 \]

absolute value (pos), etc.
\[c < 0 \lor e^c < 1 \]

lower bound: \(l + c \leq e^c \)
\[c < 0 \]

negating the claim
\[e^{|c|} < 1 + |e^c - 1| \]

absolute value (neg)
\[0 \leq c \lor e^{-c} < 1 + |e^c - 1| \]

\[1 \leq e^c \lor 0 \leq c \lor e^{-c} < 2 - e^c \]

lower bound: \(l - c \leq e^{-c} \)
\[1 \leq e^c \lor 0 \leq c \lor e^c < 1 + c \]

lower bound: \(l + c \leq e^c \)
\[1 \leq e^c \lor 0 \leq c \]

“magic”
\[0 \leq c \]

\[\Box \]
What about that Magic Step?

an upper bound for $\exp(x)$, for $x \leq 0$:

$$e^x \leq \frac{2304}{(-x^3 + 6x^2 - 24x + 48)^2}$$

using that upper bound

$$1 \leq \frac{2304}{(-c^3 + 6c^2 - 24c + 48)^2} \vee 0 < c \vee 0 \leq c$$

eliminating the division

$$(-c^3 + 6c^2 - 24c + 48)^2 \leq 2304$$

$$\vee (-c^3 + 6c^2 - 24c + 48)^2 \leq 0 \vee 0 < c \vee 0 \leq c$$

deleting redundant literals

$$0 \leq c$$
The key: *algebraic literal deletion*

- A list of RCF clauses (algebraic, with no variables) is maintained.
- Every literal of each new clause is examined.
- A literal will be *deleted* if—according to the RCF decision procedure—it is *inconsistent* with its context.
- MetiTarski also uses the decision procedure to detect *redundant* clauses (those whose algebraic part is deducible from known facts).
Examples of literal deletion

- Unsatisfiable literals such as $p^2 < 0$ are deleted.

- If $x(y+1) > 1$ has previously been deduced, then $x=0$ will be deleted.

- The context includes the negations of adjacent literals in the clause: $z > 5$ is deleted from $z^2 > 3 \lor z > 5$

- ... because quantifier elimination reduces $\exists z [z^2 \leq 3 \land z > 5]$ to FALSE.

- Or in our example,

 $$\exists x \ [x < 0 \land (\neg x^3 + 6x^2 - 24x + 48)^2) \leq 2304]$$
Architecture

- a superposition theorem prover (Joe Hurd's Metis)
- an RCF decision procedure for nonlinear arithmetic
- Axioms: upper and lower bounds of functions
- Standard ML code for arithmetic simplification
- new inference rules to attack nonlinear terms
Inherent limitations

- Only **non-sharp** inequalities can be proved.
- Not suitable for developing mathematics:
 - ugly, mechanical proofs
 - ... relying on approximations alone, not “insights”
- **Nested** function calls? Difficult.
A few (engineering) applications

- Abstracting non-polynomial *dynamical systems* (Denman)
- KeYmaera linkup: nonlinear *hybrid systems* (Sogokon et al.)
- Collision-avoidance projects for NASA (Muñoz & Denman)

In engineering applications, inequalities typically hold “by accident”
MetiTarski + PVS

- PVS: an interactive theorem prover heavily used by NASA
- ... to verify flight control software, etc
- Now PVS uses MetiTarski as an oracle via a trusted interface
- ... complementing PVS’s branch-and-bound methods for polynomial estimation
- In NASA’s ACCoRD project, MetiTarski has been effective!
3. Upper and Lower Bounds
MetiTarski works for any real-valued function that can be approximated by upper and lower bounds.

Bounds valid over various intervals, of varying accuracy and complexity, are chosen automatically.
Some bounds for ln

* based on the continued fraction for ln(x+1)

* much more accurate than the Taylor expansion

\[
x - \frac{1}{x} \leq \ln x \leq x - 1
\]

\[
\frac{(1 + 5x)(x - 1)}{2x(2 + x)} \leq \ln x \leq \frac{(x + 5)(x - 1)}{2(2x + 1)}
\]

* including inaccurate but very simple bounds
Some bounds for exponentials

\[e^x \geq 1 + x + \cdots + \frac{x^n}{n!} \quad (n \text{ odd}) \]
\[e^x \leq 1 + x + \cdots + \frac{x^n}{n!} \quad (n \text{ even}, x \leq 0) \]
\[e^x \leq \frac{1}{(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!})} \quad (x < 1.596) \]
\[e^x \leq -\frac{x^3 + 12x^2 + 60x + 120}{x^3 - 12x^2 + 60x - 120} \quad (0 \leq x \leq 4.644) \]

From Taylor series, continued fractions, identities.
Bounding e^x from above

\[
\text{cf3 } x \triangleq - \frac{x^3 + 12x^2 + 60x + 120}{x^3 - 12x^2 + 60x - 120}
\]

- Based on a continued fraction
- **Singularity** around 4.644
- All exponential upper bounds must have singularities!
Verifying MetiTarski’s Axioms

- Taylor series expansions: already verified (using Isabelle, PVS, etc.) for the elementary functions \sin, \cos, \tan^{-1}, \exp, \ln.

- continued fractions: more accurate; advanced theory

- The axioms for the five transcendental functions have been verified using Isabelle — using simple methods.

- no formalisations of their general continued fraction expansions
$c f 3 \ x \geq e^x \ (0 \leq x \leq 4.644)$

By the monotonicity of \ln, it’s enough to show

$$\ln(c f 3 \ x) \geq x$$

Take the derivative of the difference:

$$\frac{d}{dx}[\ln(c f 3 \ x) - x] =$$

$$- \frac{x^6}{(x^3 - 12x^2 + 60x - 120)(x^3 + 12x^2 + 60x + 120)}$$
Plotting that derivative…

- Singularities at ±4.644
- *Nonnegative* within that interval
Continuing the proof sketch

That derivative is positive provided

$$x^3 - 12x^2 + 60x - 120 < 0$$

and in particular if $0 < x < 4.644$. And since

$$cf3(0) = 1 = \exp 0$$

The result follows.

Similar techniques justify a lower bound axiom:

$$cf3 \, x \leq e^x \quad (x \leq 0)$$
4. The Next Phase
Correctness concerns

- **floating point arithmetic:**
 - inevitable rounding errors
 - programmers responsible for correctness

- **computer algebra systems:**
 - assumptions are made, and users are responsible

- **automated theorem provers:**
 - the system is responsible for correctness
 - users must be prevented from making errors

How can we know that MetiTarski is sound?
MetiTarski soundness questions

- The axioms have been verified.
- MetiTarski produces proofs detailing all first-order reasoning steps.
- Its arithmetic simplification uses straightforward identities.
- So what is left?

Those decision procedure calls.
Cylindrical algebraic decomposition (CAD)

- Given a logical formula involving a set of polynomials in n variables
- … **partition** R^n into a finite number of cells
- … such that each polynomial has a *constant sign* on each cell.
- Then quantifiers can be eliminated by picking a member of each cell.

The computational effort is hyper-exponential in n!
Simpler: CAD in one variable

Most MT problems are univariate

Hardly any have more than three variables.

In the one-dimensional case, we just need the roots of the polynomials.
CAD within MetiTarski

* An experimental extension to MetiTarski solves RCF problems

* ... while returning detailed proofs. [Univariate problems only]

* To verify these requires a formalisation of the Sturm-Tarski theorem.

* Then MetiTarski could be soundly integrated with interactive theorem provers.
Future aspirations

* MetiTarski works well!

* It will work even better after future improvements to decision procedures.

* Interactive theorem proving is also effective in mathematical analysis.

* It is time to formalise substantial bodies of complex analysis, real algebraic geometry, etc.

* … and integrate algebraic and analytical reasoning into our theorem-proving tools.
the Cambridge team

James Bridge

William Denman

Zongyan Huang

to 2008: Behzad Akbarpour
Acknowledgements

* **Edinburgh Team**: Paul Jackson, Grant Passmore, Andrew Sogokon.

* Assistance from J. H. Davenport, J. Hurd, D. Lester, C. Muñoz, E. Navarro-López, etc.

* Supported by the Engineering and Physical Sciences Research Council [grant numbers EP/C013409/1, EP/I011005/1, EP/I010335/1].

MetiTarski (like Isabelle) is coded in **Standard ML**.