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Real quantifier elimination, first established by Tarski [8] and later refined by Collins
[2] and others, implies the decidability of first-order formulas involving the familiar
arithmetic operations over the real numbers. Giving necessary and sufficient conditions
for the existence of real roots of polynomials amounts to quantifier elimination. A classic
example is the quadratic equation ax? + bx 4 ¢ = 0, which has a real solution subject to
surprisingly complicated conditions:

2 [az?® +bx +c=0] <= b*>4dacA (c=0Va#0Vb® > 4dac).

We are accustomed to simply b? > 4ac as a sufficient condition, but the full formula
covers the degenerate cases a = 0 and b = 0. Even in this trivial example, eliminating
a quantifier greatly increases the formula’s Boolean complexity. Quantifier elimination
is possible regardless of the degrees of the polynomials or the logical complexity of the
formula. Given the tremendous power of this procedure, it is hardly surprising to learn
that its complexity is intractable [4]: the length of the resulting quantifier-free formula
can be doubly exponential in the number of quantified variables.

Researchers have made strenuous efforts to design efficient quantifier elimination pro-
cedures for well-behaved problem classes. Literature surveys include Dolzmann et al. [5]
and Passmore [6]. The decision problem is called RCF, for “real-closed fields”: fields
that are elementarily equivalent to the field of real numbers.

Augmenting the language of polynomials with real-valued functions such as In, exp,
sin, cos, tan~! obviously makes the decision problem even more difficult. Few decision
procedures exist for such extended languages, regardless of complexity. This suggests
the use of heuristic methods.

MetiTarski is an automatic theorem prover for first-order logic including polynomials
and real-valued special functions. It solves problems in this extended language using a
combination of resolution theorem proving and RCF decision procedures [1]. The key
idea is to provide upper and lower bounds for each function of interest. Such bounds will
typically be polynomials or rational functions obtained from power series or continued
fraction expansions [3]. Inevitably, we need families of bounds, valid over various inter-
vals, and trading accuracy against simplicity. Resolution uses these bounds (supplied as
axioms) to reduce a problem involving special functions to problems involving rational
functions, and ultimately to problems in RCF, which can then be solved by a decision
procedure.

Despite the terrible complexity of real quantifier elimination, MetiTarski uses it as a
subroutine. And in many cases, MetiTarski can prove difficult theorems in a couple of
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seconds. Here is an example:

Vt>0,v>0
((1.565 + 0.313 v) cos(1.16¢) + (.0134 + .00268 v) sin(1.16¢)) e~ 134!
— (655 +1.31v) e 38T 14y > —10

MetiTarski actually outputs a proof, not one that a mathematician would want to read,
but a detailed formal deduction in the resolution calculus.

The complexity of real quantifier elimination imposes strict limits on the number of
variables allowed in a problem. This is largely dependent on the choice of RCF decision
procedure. Early work used only QEPCAD, and theorems in more than two variables
could seldom be proved. More recently, we have incorporated Mathematica, and proved
theorems with up to 5 variables. The latest work uses the decision procedure Z3, which
now supports non-linear arithmetic. With the help of heuristics specialised to MetiTarski
[7], theorems with up to 9 variables can be proved.
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