1. Interactive Theorem Proving

A partial, biased history
AUTOMATH

L. S. van Benthem Jutting,
Checking Landau’s “Grundlagen” in the AUTOMATH system (1977)

• constructing the reals from first principles
• the first major case study with type theory

• the first formalised mathematics textbook
 but not at all about verification
The Hiatus, 1977–92

When everybody studied lists, natural numbers, Booleans, …
John Harrison (using HOL)

- a formalisation of the reals including limits of series and the elementary functions (1992)
- quantifier elimination for the reals; integrating HOL with a computer algebra system (with L. Théry) (1993)

 PENTIUM FDIV BUG (1994, $475 MILLION)

- floating point verification of algorithms for the functions sqrt, ln (1995) and exp (1997)
Jacques Fleuriot (Isabelle)

- another formalisation of the reals, and the functions sin, cos, …
- nonstandard analysis: a construction of the hyperreals using ultrafilters
- development of a proof calculus for infinitesimal geometry (1998)
- application: checking the original proofs in Newton’s *Principia*
Assia Mahboubi (Coq)

- a formalisation of *real closed fields*
- real algebraic numbers
- *nonlinear* arithmetic decision procedures
- quantifier elimination based on pseudo-remainder sequences
- theory underlying efficient computer algebra algorithms

(2002–07, later with Cyril Cohen)
PVS (1992–present)

- Created for verification (as opposed to foundations)
- Many early proofs involving the reals
- Reasoning methods for the reals (C. Muñoz et al.)
 - interval arithmetic (for numerical inequalities)
 - Bernstein polynomials (for optimisation)
 - Sturm’s theorem (for polynomial inequalities)
And Many Many More...

- Probability & Measure theory
- Real Algebraic Geometry
- Multivariate analysis
- Complex analysis

by researchers at Concordia, INRIA, Intel, NASA, TU Munich, etc.
2. Automatic Theorem Proving

MetiTarski
MetiTarski = Resolution Theorem Proving + Real-Valued Special Functions
A Few Easy Problems

\[0 < t \land 0 < v_f \implies ((1.565 + .313v_f) \cos(1.16t) + (.01340 + .00268v_f) \sin(1.16t))e^{-1.34t} - (6.55 + 1.31v_f)e^{-318t} + v_f + 10 \geq 0\]

\[0 \leq x \land x \leq 289 \land s^2 + c^2 = 1 \implies 1.51 - .023e^{-0.019x} - (2.35c + .42s)e^{0.00024x} > -2\]

\[0 < x \land 0 < y \implies y \tanh(x) \leq \sinh(yx)\]

All proved in a few seconds!
How Does It Work?

• It’s just *resolution*, augmented with

• **axioms** giving upper/lower bounds for those functions (as polynomials or rational functions)

• **heuristics** to isolate and remove occurrences of those functions

• **decision procedures** to solve the resulting polynomial inequalities
Architecture

- a superposition theorem prover (Joe Hurd's Metis)
- Standard ML code for arithmetic simplification
- New inference rules to attack nonlinear terms
- An external decision procedure for nonlinear arithmetic
Some Upper/Lower Bounds

\[\exp(x) \geq 1 + x + \cdots + \frac{x^n}{n!} \quad (n \text{ odd}) \]
\[\exp(x) \leq 1 + x + \cdots + \frac{x^n}{n!} \quad (n \text{ even, } x \leq 0) \]
\[\exp(x) \leq \frac{1}{(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!})} \quad (x < 1.596) \]

Taylor series, …
continued fractions, …

\[\frac{x - 1}{x} \leq \ln x \leq x - 1 \]
\[\frac{(1 + 5x)(x - 1)}{2x(2 + x)} \leq \ln x \leq \frac{(x + 5)(x - 1)}{2(2x + 1)} \]
Analysing A Simple Problem

\[|\exp x - (1 + x/2)^2| \leq |\exp(|x|) - (1 + |x|/2)^2| \]

- isolate occurrences of functions
- … replace them by their bounds
- replace division by multiplication
- call some external decision procedure

A tweaked resolution loop does all this automatically!
The Decision Procedures

QEPCAD (Hoon Hong, C. W. Brown et al.)

Mathematica (Wolfram research)

Z3 (de Moura et al., Microsoft Research) [now with nonlinear reasoning!]
A Key Heuristic:
Algebraic Literal Deletion

• Resolution works with disjunctions of literals.

• We **delete** any literal inconsistent with known facts, according to the decision procedure.

• It’s a fine-grained integration between resolution and a decision procedure.
A Few Applications

- Abstracting non-polynomial dynamical systems (Denman)
- KeYmaera linkup: nonlinear hybrid systems (Sogokon et al.)
- PVS linkup: NASA collision-avoidance projects (Muñoz & Denman)
MetiTarski + PVS

- **Trusted** interface (MetiTarski as an oracle)
- Complementing the PVS support of branch-and-bound methods for polynomial estimation
- It’s being tried within NASA’s ACCoRD project.
- MetiTarski has been effective in early experiments
- … but there’s much more to do.
3. Is MetiTarski Sound?
What Must We Trust?

- *Arithmetic simplification* and normalisation should be easy
- *Specialised axioms* giving upper or lower bounds of special functions see below!
- The external decision procedure not clear...

But we get machine-readable proofs! (Resolution steps + extensions)
A Machine-Readable Proof

SZS output start CNFRefutation for abs-problem-14.tptp
 cnf(lgen_le_neg, axiom, (X <= Y | ~ lgen(0, X, Y))).
 cnf(leq_left_divide_mul_pos, axiom, (~ X <= Y * Z | X / Z <= Y | Z <= 0)).
 cnf(leq_right_divide_mul_pos, axiom, (~ X * Z <= Y | X <= Y / Z | Z <= 0)).
 cnf(leq_right_divide_mul_neg, axiom, (~ X * Z <= Y | Y / Z <= X | 0 <= Z)).
 cnf(exp_positive, axiom, (~ Y <= 0 | lgen(R, Y, exp(X)))).
 cnf(exp_lower_taylor_1, axiom, (~ -1 <= X | ~ lgen(R, Y, 1 + X))).
 cnf(exp_lower_taylor_5_cubed, axiom, (~ lgen(R, Y, (1 + X / 3 + 1 / 2 * (X / 3) ^ 2 + 1 / 6 * (X / 3) ^ 3 + 1 / 24 * (X / 3) ^ 4 + 1 / 120 * (X / 3) ^ 5))) | lgen(R, Y, exp(X)))).

: nearly 200 steps!
Verifying the Axioms

- *Taylor series expansions* are already verified for the elementary functions (sin, cos, tan⁻¹, exp, ln).

- *Continued fractions* are much more accurate, but rely on advanced theory.

- Many of the axioms have now been verified using Isabelle, PVS, etc.
Bounding $\exp(x)$ Above

$$
\text{cf3 } x \triangleq - \frac{x^3 + 12x^2 + 60x + 120}{x^3 - 12x^2 + 60x - 120}
$$

- Based on a continued fraction
- **Singularity** around 4.644
- Can it be *proved* to be an upper bound in this range?
\(\text{cf}3 \ x \geq \exp x \quad (0 \leq x \leq 4.644) \)

By monotonicity of \(\ln \), enough to show

\[\ln(\text{cf}3 \ x) \geq x \]

Take the derivative of the difference:

\[
\frac{d}{dx}[\ln(\text{cf}3 \ x) - x] = \frac{x^6}{(x^3 - 12x^2 + 60x - 120)(x^3 + 12x^2 + 60x + 120)}
\]
Here’s that Derivative

• Singularities at ±4.644

• Nonnegative within that interval
That derivative is positive provided

\[x^3 - 12x^2 + 60x - 120 < 0 \]

and in particular if \(0 < x < 4.644 \).

The result follows because also \(cf3(0) = 1 = \exp 0 \)

Similar techniques justify a lower bound axiom:

\[cf3 \, x \leq \exp \, x \quad (x \leq 0) \]
So the axioms are okay. What about the *decision procedures*?
• Nonlinear decision procedures rely on complicated computer algebra techniques …

• and real quantifier elimination is *doubly exponential* in the number of variables.

• Can they justify their answers with *evidence*?

 This is a crucial research question!
4. The Way Forward
Goal: to Integrate MetiTarski with Other Tools

Computer algebra proof methods in various ITPs demonstrate the power of integrated tools.

The MetiTarski-PVS linkup is promising, but it’s an oracle …

Integration requires a way to validate nonlinear reasoning … and in turn, a substantial library of formalised mathematics.
Our Disorganised Libraries of Formal Mathematics

- created in bits and pieces by students and postdocs
- spread over many incompatible systems: Coq, HOL4 or HOL Light, Isabelle, Mizar, PVS, ...
- based on a great variety of source texts
Goal: to Formalise a Body of Applied Mathematics

- **complex analysis:** the cornerstone of physics, engineering mathematics, etc.
- **real algebraic geometry:** the foundation of many computer algebra algorithms
- **approximation theory:** the foundation of numerical methods
Remember the QED Project?

- That 1993 proposal to formalise all mathematics was too ambitious, and unconvincing to funders.

- Let's fix a more modest goal:

 to formalise, and organise, the core developments of applied mathematics.

 Can we do this?
The Cambridge Team

James Bridge
William Denman
Zongyan Huang

(to 2008: Behzad Akbarpour)
Acknowledgements

- Edinburgh Team: Paul Jackson, G Passmore, A Sogokon.

- Assistance from J. H. Davenport, J. Hurd, D. Lester, C. Muñoz, E. Navarro-López, etc.

- Supported by the Engineering and Physical Sciences Research Council [grant numbers EP/C013409/1, EP/I011005/1, EP/I010335/1].

MetiTarski (like Isabelle) is coded in Standard ML.