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One of the first achievements in automated theorem proving was Jutting’s
construction of the real numbers using AUTOMATH [14]. But for years after-
wards, formal proofs focused on problems from functional programming and
elementary number theory. In the early 90s, John Harrison revived work on the
reals by formalising their construction using HOL [8] and by undertaking an ex-
tensive programme of research into verifying floating point arithmetic, including
the exponential and trigonometric functions [9-11].

MetiTarski represents a different approach to theorem proving about the
reals. Reducing everything to first principles is rigorous, but makes proofs of the
simplest statements extremely time-consuming. Many other automatic theorem
provers are confined to linear arithmetic, or at best, polynomial comparisons.
MetiTarski can prove complicated assertions involving transcendental functions.
It takes many of their properties as axioms, and reasons from these properties
using sophisticated decision procedures. MetiTarski has recently been integrated
with other powerful reasoning tools, including KeYmaera [19] and PVS [17].
With this power, proofs involving such things as aircraft manoeuvres and the
stability of hybrid systems can be undertaken, even when the dynamics are
described by complicated formulas involving many special functions. Examples
of this research can be found in these proceedings, for example, Denman’s work
on qualitative abstraction of hybrid systems [6].

This very success raises the question of how to recover the rigour of LCF-
style theorem proving without losing the power of MetiTarski. The standard
answer to this question (used by Isabelle’s Sledgehammer for example [18]) is
for the external prover to generate some sort of certificate that can be checked
rigorously. The point is that the expensive proof search does not need to be
checked, but only the proof that was actually found.

Checking a certificate using a separate theorem prover, such as Isabelle, re-
quires machine formalisations of all the underlying mathematics. Since Harri-
son’s work mentioned above, researchers worldwide have formalised substantial
chunks of real analysis, including measure theory and probability theory [12, 16].
Independently, from the 1960s onwards, computer algebra systems enjoyed rapid
development, as did decision procedures for real arithmetic. Much recent work
has focused on formalising computer algebra algorithms within theorem provers,
especially Coq [2, 15]. Investigations into special function inequalities have been
conducted using PVS [5].

Nevertheless, the mathematics needed to certify the sort of proofs found by
MetiTarski does not appear to have been formalised as yet. MetiTarski relies on



an external decision procedure for real-closed fields (RCF) [7] to test the satisfia-
bility of first-order formulas involving polynomials. The underlying algorithm is
called CAD (Cylindrical Algebraic Decomposition) and QEPCAD [3] is a well-
known implementation, although it has also been implemented in Mathematica
and Z3 [13]. Each of these implementations is very complicated, and there is no
obvious way to verify their results.

The underlying mathematics is real algebraic geometry [1]. MetiTarski also
relies upon upper and lower bounds for the fractions it reasons about, given in
the form of truncated power series or rational functions derived from continued
fractions [4]. The necessary mathematics here belongs to approximation theory,
and unusually, we are not concerned with the closeness of the approximations;
the soundness of MetiTarski relies only upon the property that they are indeed
upper or lower bounds. Proving these properties formally appears to require a
substantial effort. And although we are only concerned with the real numbers,
the necessary theory is most easily reached via complex analysis. That branch
of mathematics remains largely unformalised at the moment, so we have much
to do.
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