Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers

Albert Qiaochu Jiang, Wenda Li, Szymon Twarowski, Konrad Czechowski, Tomasz Odrzygóźdź, Piotr Miłos, Yuhuai Wu, Mateja Jamnik

Proof assistant and premise selection

- Proof assistants (e.g., Isabelle) allow mathematical theorems to be proved rigorously.
- We need to select premises (lemmas and definitions) when proving theorems. You don’t want to prove every theorem from scratch.

Premise selection remains a hard retrieval problem for LMs: thousands of lemmas and definitions cannot be crammed into their context windows.

Empirically, when a LM tries to select premises, 98.1% of the time it produces syntax errors.

Sledgehammer: premise selection based on modern automated theorem provers (ATPs)

- Automated theorem provers can solve SAT, SMT, TPTP, etc. problems that contain millions of variables.
- Proof assistants use Sledgehammer to tackle the premise selection problem by delegating it to ATPs.
- But Sledgehammer is not great with problems involving high-level reasoning, e.g., induction.

Thor: Combining language models and ATPs

- Language models are good at high-level steps (e.g., induction), while ATPs excel at ‘low-level’ ones (e.g., premise selection).
- Train language model to decide whether to hammer with ATPs.

Is Thor better at premise selection?

- Premise selection is important and difficult. Vanilla pre-trained language models are no good at it.
- Don’t throw away the symbolic tools when you have a language model! Integrate them together for better performance.

Takeaways

- What’s the next step in machine mathematics?
- How could other symbolic tools be integrated with language models?

Experiments

- Language model: decoder-only transformer with 700M parameters. Pre-trained on the Github+arXiv subsets of the Pile dataset.
- Sledgehammer: default setup in Isabelle2021.
- Data: Isabelle standard library + the Archive of Formal Proofs (200K theorems, 3M LoC).
- Test set: a suite of 1000 problems from the Archive of Formal Proofs.

References