Formalising Erdős and Larson: Ordinal Partition Theory

Lawrence C Paulson FRS
Computer Laboratory

Steps towards the formalisation of mathematics

- * Euclid: unifying Greek geometry under an axiomatic system
- * Cauchy, Weierstrass: removing infinitesimals from analysis (and more)
- * Dedekind, Cantor, Frege, Zermelo: set theory and the axiom of choice
- * Whitehead, Russell, Bourbaki: formal (or super-rigorous) mathematics
- * de Bruijn: AUTOMATH, a type theory for mathematics

Now it's widely accepted that essentially all mathematics is formalisable

The development of simple type theory

- * Whitehead and Russell's ramified types for Principia Mathematica
- * Simplified by Ramsey; formalised by Church
- * First implemented on a computer by Michael JC Gordon
- Sophisticated implementations today include HOL Light and Isabelle/HOL

But is formalised maths possible?

Whitehead and Russell needed 362 pages to prove 1+1=2!

We have better formal systems than theirs.

Gödel proved that all reasonable formal systems must be incomplete!

But mathematicians also work from axioms!

Church proved that first-order logic is undecidable!

We want to assist people, not to replace them.

De Bruijn foresaw difficulties back in 1968!

As to the question what part of mathematics can be written in AUTOMATH, it should first be remarked that we do not possess a workable definition of the word "mathematics".

Quite often a mathematician jumps from his mathematical language into a kind of metalanguage, obtains results there, and uses these results in his original context. It seems to be very hard to create a single language in which such things can be done without any restriction.

And yet, in practice things seem to go okay.

Mathematics in Isabelle/HOL

Jordan curve theorem

Central limit theorem

Residue theorem

Prime number theorem

Gödel's incompleteness theorems

Algebraic closure of a field

Verification of the Kepler conjecture*

Matrix theory, e.g. Perron–Frobenius

Analytic number theory, eg Hermite–Lindemann

Nonstandard analysis

Homology theory

Topology

Complex roots via Sturm sequences

Measure, integration and probability theory

Distinctive features of Isabelle/HOL

- Simple types with axiomatic type classes
- * Powerful automation: proofs and counterexamples
- Structured proof language
- Interactive development environment (PIDE)

- * User-definable mathematical notation
- * "Literate" proof documents can be generated in LATEX
- * An archive of over 600 proof developments; 385 authors and nearly 3 million lines of code

Can we do set theory in higher-order logic?

- * HOL is actually weaker than Zermelo set theory
- ... but we can simply add a type of ZF sets with the usual axioms.
- [our framework presupposes the axiom of choice]
- ... and develop cardinals, ordinal arithmetic, order types and the rest.

Partition notation: $\alpha \longrightarrow (\beta, \gamma)^n$

 $[A]^n$ denotes the set of unordered *n*-element sets of elements of A

if $[\alpha]^n$ is partitioned ("coloured") into two parts (0, 1) then there's either

- * a subset $B \subseteq \alpha$ of order type β whose n-sets are all coloured by 0
- * a subset $C \subseteq \alpha$ of order type γ whose n-sets are all coloured by 1

Infinite Ramsey theorem: $\omega \longrightarrow (\omega, \omega)^n$

Erdős' problem (for 2-element sets)

$$\alpha \longrightarrow (\alpha, 2)$$
 is trivial $\alpha \longrightarrow (|\alpha| + 1, \omega)$ fails for $\alpha > \omega$

So which countable ordinals α satisfy $\alpha \longrightarrow (\alpha,3)$?

It turns out that α must be a power of ω

In 1987, Erdős offered a \$1000 prize for a full solution

Material formalised for this project

$$\omega^2 \longrightarrow (\omega^2, m)$$
 (Specker)
$$\omega^{1+\alpha n} \longrightarrow (\omega^{1+\alpha}, 2^n)$$
 (Erdős and Milner)
$$\omega^\omega \longrightarrow (\omega^\omega, m)$$
 (Milner, Larson)

Plus background theories: Cantor normal form for ordinals; facts about order types; the Nash-Williams partition theorem

Project done with Mirna Džamonja and Angeliki Koutsoukou-Argyraki

Paul Erdős and E. C. Milner, 1972

 $\omega^{1+\alpha n} \longrightarrow (\omega^{1+\alpha}, 2^n)$ for α an ordinal and n a natural number

"We have known this result since 1959" (it's in Milner's 1962 PhD thesis)

It's a five-page paper that needed a full-page correction in 1974.

We now conclude the proof of the theorem.

Since β is denumerable and nonzero, there is a sequence $(\gamma_n: n < \omega)$ which repeats each element of B infinitely often, i.e. such that

$$|\{n:\gamma_n=\nu\}|=\aleph_0 \qquad (\nu\in B).$$

Since tp $S = \alpha \beta$, we may write $S = S^{(0)} = \bigcup (\nu \in B) A_{\nu}^{(0)}(<)$.

Let $n < \omega$ and suppose we have already chosen elements $x_i \in S(i < n)$ and a subset

(12)
$$S^{(n)} = U(v \in B)A_v^{(n)}(<)$$

of S of order type $\alpha\beta$. Since α is right-SI, $A_{\gamma_n}^{(n)}$ contains a final section A' such that $A_{\gamma_n}^{(n)} \cap \{x_0, \ldots, x_{n-1}\} < A'$. By (10), there are $x_n \in A'$, a strictly increasing map $g_n: B \to B$ and sets $A_{\gamma_n}^{(n+1)} (\nu \in B)$ such that

$$g_n(\gamma_i) = \gamma_i \qquad (i \leq n),$$

(14)
$$A_{\nu}^{(n+1)} \subseteq K_{1}(x_{n}) \cap A_{g_{n}(\nu)}^{(n)} \qquad (\nu \in B).$$

From the definition of A', it follows that

$$(15) x_n \in A_{\gamma_n}^{(n)} \subset S^{(n)}$$

and

(16)
$$x_i < x_n \text{ if } i < n \text{ and } x_i \in A_{\gamma_n}^{(n)}.$$

 $S^{(n+1)}$ is defined by equation (12) with n replaced by n+1. It follows by induction that there are x_n , $A_v^{(n)}(v \in B)$, $S^{(n)}$ and g_n such that (12)–(16) hold for $n < \omega$.

Let $Z=\{x_n:n<\omega\}$. If $m< n<\omega$, then by (15), (14), and (12) we have that

Key steps of Erdős and Milner's proof

- * Every ordinal is a "strong type" (about 200 lines of machine proof)
- * A "remark" about indecomposable ordinals (72 lines)
- * A key lemma: $\alpha\beta \longrightarrow (\min(\gamma, \omega\beta), 2k)$ if $\alpha \longrightarrow (\gamma, k)$ for $k \ge 2$ (about 960 lines)
- * The main theorem $\omega^{1+\alpha n} \longrightarrow (\omega^{1+\alpha}, 2^n)$ by induction on n (about 30 lines)
- * Larson's corollary: $\omega^{nk} \longrightarrow (\omega^n, k)$ (about 35 lines)

Every ordinal is a "strong type"

```
We will say that \beta is a strong type if, whenever tp B = \beta and D \subseteq B,
then there are n < \omega and sets D_1, \ldots, D_n \subset D such that
(5) tp D_i is proposition strong_ordertype_eq:
(6) if M \subset I assumes D: "D \subseteq elts \beta" and "Ord \beta"
                 obtains L where "\bigcup(List.set L) = D" "\bigwedgeX. X \in List.set L \Longrightarrow indecomposable (tp X)"
                    and "\bigwedge M. \llbracket M \subseteq D; \bigwedge X. X \in List.set L \Longrightarrow tp (M \cap X) \ge tp X <math>\rrbracket \Longrightarrow tp M = tp D"
               proof -
                 define \varphi where "\varphi = inv into D (ordermap D VWF)"
                 then have bij \varphi: "bij betw \varphi (elts (tp D)) D"
                    using D bij betw inv into down ordermap bij by blast
                 have \varphi cancel left: "\wedged. d \in D \Longrightarrow \varphi (ordermap D VWF d) = d"
                    by (metis D arphi def bij betw inv into left down raw ordermap bij small iff range total on
                 have \varphi_cancel_right: "\wedge \gamma. \gamma \in elts (tp D) \Longrightarrow ordermap D VWF (\varphi \gamma) = \gamma"
                    by (metis \varphi def f inv into f ordermap surj subsetD)
                 have "small D" "D ⊂ ON"
                    using assms down elts subset ON [of \beta] by auto
                 then have \varphi_less_iff: "\bigwedge \gamma \ \delta. [\gamma \in \text{elts} (tp D); \delta \in \text{elts} (tp D)] \Longrightarrow \varphi \ \gamma < \varphi \ \delta \longleftrightarrow \gamma < \delta"
                    using ordermap_mono_less [of _ _ VWF <code>D</code>] bij_betw_apply [OF bij_arphi] VWF_iff_Ord_less arphi_car
                    by (metis ON_imp_Ord Ord_linear2 less_V_def order.asym)
```

A remark about indecomposable ordinals

using Ord in Ord \langle Ord $\alpha\rangle$ by blast

then have "tp (A1 - B) \leq tp A1"

show thesis

have "small A1"

proof

define B where "B $\equiv \varphi$ ` (elts (succ γ))"

by (meson <small A> A1 smaller than small)

```
proposition indecomposable imp Ex less sets:
  assumes indec: "indecomposable \alpha" and "\alpha > 1" and A: "tp A = \alpha" "small A" "A \subseteq ON"
    and "x \in A" and A1: "tp A1 = \alpha" "A1 \subseteq A"
  obtains A2 where "tp A2 = \alpha" "A2 \subseteq A1" "{x} \ll A2"
                                                                     If x \in A and A_1 \subseteq A, with type A, A_1 = \alpha,
proof -
  have "Ord \alpha"
    using indec indecomposable imp Ord by blast
                                                                      then there is A_2 \subseteq A_1 such that \{x\} < A_2.
  have "Limit \alpha"
    by (simp add: assms indecomposable imp Limit)
  define \varphi where "\varphi \equiv inv into A (ordermap A VWF)"
  then have bij \varphi: "bij betw \varphi (elts \alpha) A"
    using A bij betw inv into down ordermap bij by blast
  have bij om: "bij betw (ordermap A VWF) A (elts \alpha)"
    using A down ordermap bij by blast
  define \gamma where "\gamma \equiv ordermap A VWF x"
  have \gamma: "\gamma \in elts \alpha"
    unfolding \gamma def using A \langle x \in A \rangle down by auto
  then have "Ord \gamma"
```

$$\alpha\beta \longrightarrow (\min(\gamma, \omega\beta), 2k) \text{ if } \alpha \longrightarrow (\gamma, k)$$

- * Assume there is no $X \in [\alpha \beta]^{2k}$ such that $[X]^2$ is 1-coloured
- * Assume there is no $C \subseteq \alpha\beta$ of order type γ such that $[C]^2$ is 0-coloured
- * Then show there is a $Z \subseteq \alpha\beta$ of order type $\omega\beta$ such that $[Z]^2$ is 0-coloured

this will require generating an ω -chain of sets of type β

```
theorem Erdos Milner aux:
  assumes part: "partn lst VWF \alpha [ord of nat k, \gamma] 2"
     and indec: "indecomposable lpha" and "k > 1" "Ord \gamma" and eta: "oldsymbol{eta} \in elts \omega1"
  shows "partn lst VWF (\alpha^*\beta) [ord of nat (2^*k), min \gamma (\omega^*\beta)] 2"
proof (cases "\alpha=1 \vee \beta=0")
                                                  \alpha\beta \longrightarrow (\min(\gamma, \omega\beta), 2k)
  case True
  show ?thesis
  proof (cases "\beta=0")
                                                              if \alpha \longrightarrow (\gamma, k)
    case True
    moreover have "min \gamma 0 = 0"
       by (simp add: min def)
    ultimately show ?thesis
       by (simp add: partn lst triv0 [where i=1])
  next
    case False
    then obtain "\alpha=1" "Ord \beta"
       by (meson ON imp Ord Ord \omega 1 True \beta elts subset ON)
    then obtain i where "i < Suc (Suc 0)" "[ord of nat k, \gamma] ! i \leq \alpha"
       using partn lst VWF nontriv [OF part] by auto
     then have "\gamma \leq 1"
       using \langle \alpha=1 \rangle \langle k > 1 \rangle by (fastforce simp: less Suc eq)
    then have "min \gamma (\omega * \beta) \leq 1"
       by (metis 0rd_1 \ 0rd_\omega \ 0rd_linear_le \ 0rd_mult < 0rd \beta> min def order trans)
    moreover have "elts \beta \neq \{\}"
       using False by auto
     ultimately show ?thesis
       by (auto simp: True <0rd \beta> <\beta\neq0> <\alpha=1> intro!: partn_lst_triv1 [where i=1])
  qed
next
  case False
  then have "\alpha \neq 1" "\beta \neq 0"
    by auto
```

Equation (8) with its one-line proof

(8) If $A \subset S$, then there is $X \in [A]$. This follows from the hypothesis

```
have Ak0: "\exists X \in [A] \nearrow k_{\S}. f ` [X] \nearrow 2_{\S} \subseteq \{0\}" — < remark (8) about \{0\} term "\{A \subseteq S^{*}\} >
  if A \alpha\beta: "A \subseteq elts (\alpha*\beta)" and ot: "tp A \geq \alpha" for A
proof -
  let ?g = "inv into A (ordermap A VWF)"
  have "small A"
    using down that by auto
  then have inj g: "inj on ?g (elts \alpha)"
     by (meson inj on inv into less eq V def ordermap surj ot subset trans)
  have Aless: "\land x y. [x \in A; y \in A; x < y] \Longrightarrow (x,y) \in VWF"
     by (meson Ord in Ord VWF iff Ord less \langle Ord(\alpha^*\beta) \rangle subsetD that(1))
  then have om A less: "\bigwedge x y. [x \in A; y \in A; x < y] \Longrightarrow ordermap A VWF x < ordermap A VWF y
     by (auto simp: <small A> ordermap mono less)
  have \alpha sub: "elts \alpha \subseteq \text{ordermap A VWF} ` A"
     by (metis <small A> elts of set less eq V def ordertype def ot replacement)
  have g: "?g \in elts \alpha \rightarrow elts (\alpha * \beta)"
     by (meson A \alpha\beta Pi I' \alpha sub inv into into subset eq)
  then have fg: "f \circ (\lambda X. ?g \dot{} X) \in [elts \alpha] \partial 2 \cdot \partial + \cdots \cdot \partial x
     by (rule nsets compose_image_funcset [OF f _ inj_g])
  have g_less: "?g x < ?g y" if "x < y" "x \in elts \alpha" "y \in elts \alpha" for x y
    using Pi mem [OF g]
     by (meson A\_lphaeta Ord_in_Ord Ord_not_le ord <small A> dual_order.trans elts_subset_ON inv \alpha
  obtain i H where "i < 2" "H \subseteq elts \alpha"
     and ot eq: "tp H = [k,\gamma]!i" "(f \circ (\lambdaX. ?g \dot{} X)) \dot{} (nsets H 2) \subseteq {i}"
     using ii partn_lst_E [OF part fg] by (auto simp: eval nat numeral)
  then consider (0) "i=0" | (1) "i=1"
     by linarith
  then show ?thesis
  proof cases
     case 0
     then have "f ` [inv into A (ordermap A VWF) ` H]_{2}2_{8} \subseteq {0}"
       using of eq \langle H \subseteq elts \alpha \rangle \alpha sub by (auto simp: nsets def [of k] inj on inv into elim
     moreover have "finite H \wedge card H = k"
```

```
theorem Erdos Milner:
  assumes \nu: "\nu \in elts \omega1"
  shows "partn_lst_VWF (\omega\uparrow(1 + \nu * ord_of_nat n)) [ord_of_nat (2^n), \omega\uparrow(1+\nu)] 2"
proof (induction n)
  case 0
  then show ?case
     using partn lst VWF degenerate [of 1 2] by simp
next
  case (Suc n)
  have "Ord \nu"
     using Ord \omega 1 Ord in Ord assms by blast
  have "1+\nu \leq \nu+1"
     by (simp add: \langle 0rd \rangle \rangle one V def plus 0rd le)
  then have [simp]: "min (\omega \uparrow (1 + \nu)) (\omega * \omega \uparrow \nu) = \omega \uparrow (1+\nu)"
     by (simp add: \langle Ord \nu \rangle oexp_add min_def)
  have ind: "indecomposable (\omega \uparrow (1 + \nu * ord_of_nat n))" hy (simp add: <0rd \omega) indecomposable (\omega nower)
     by (simp add: <0rd \nu> indecomposable \omega power)
  show ?case
                                              Suppose (2) holds for some integer h \ge 1. Applying the above theorem with
  proof (cases "n = 0")
                                      k=2^h, \alpha=\omega^{1+\nu h}, \beta=\omega^{\nu}, \gamma=\omega^{1+\nu}, we see that (2) also holds with h replaced by
     case True
       using partn_lst_VWF \omega 2 h+1. Since (2) holds trivially for h=1, it follows that (2) holds for all h<\omega.
     then show ?thesis
  next
     case False
     then have "Suc 0 < 2 ^ n"
       using less 2 cases not less eq by fastforce
     then have "partn lst VWF (\omega \uparrow (1 + \nu * n) * \omega \uparrow \nu) [ord of nat (2 * 2 ^ n), \omega \uparrow (1 + \nu)] 2"
       using Erdos Milner aux [OF Suc ind, where \beta = "\omega \uparrow \nu"] <0rd \nu > \nu
       by (auto simp: countable oexp)
     then show ?thesis
       using \langle 0 \text{ rd} \rangle \rangle by (simp add: mult succ mult.assoc oexp_add)
  qed
qed
```

Jean Larson, 1973

 $\omega^{\omega} \longrightarrow (\omega^{\omega}, m)$ for m a natural number

Proved by CC Chang in a 56-page paper (*J. Combinatorial Theory* A) and generalised by EC Milner

Simplified by Larson to 17 pages, including a new proof of $\omega^2 \longrightarrow (\omega^2, m)$

A few key definitions

Work with finite increasing sequences

- * $W(n) = \{(a_0, a_1, ..., a_{n-1}) : a_0 < a_1 < \cdots < a_{n-1} < \omega\}$ has order type ω^n
- * $W = W(0) \cup W(1) \cup W(2) \cup \cdots$ has order type ω^{ω}

Given $f: [W]^2 \to \{0,1\}$ such that there is no $M \in [W]^m$ s.t. $[M]^2$ is 1-coloured

Show there is a $X \subseteq W$ of order type ω^{ω} such that $[X]^2$ is 0-coloured

Interaction schemes

For
$$x, y \in W$$
, write $x = a_1 * a_2 * \cdots * a_k$ (* a_{k+1}) and $y = b_1 * b_2 * \cdots * b_k$ put $c = (|a_1|, |a_1| + |a_2|, ..., |a_1| + |a_2| + \cdots + |a_k|$ (+ $|a_{k+1}|$)) define $i(\{x, y\}) = c * a_1 * d * b_1 * a_2 * b_2 * \cdots * a_k * b_k$ (* a_{k+1})

(this classifies how consecutive segments in x, y interact)

By Erdős–Milner we can assume |x| < |y|

The Nash-Williams partition theorem

A set $A \subseteq W$ is thin if for all $s, t \in A$, the sequence s is not an initial segment of t.

Given an infinite set $M \subseteq \omega$, a thin set A, a function $h: \{s \in A: s \subseteq M\} \rightarrow \{0,1\}.$

Then there exists an $i \in \{0,1\}$ and an infinite set $N \subseteq M$ so that $h(\{s \in A : s \subseteq N\}) \subseteq \{i\}$.

The three main lemnas

Lemma 3.6. For every function $g: [W]^2 \to \{0, 1\}$, there exists an infinite set $N \subseteq \omega$ and a sequence $\{j_k : k < \omega\}$, so that for any $k < \omega$ with k > 0, and any pair $\{x, y\}$ of form k with $(n_k) < i(\{x, y\}) \subseteq N$, $g(\{x, y\}) = j_k$.

Lemma 3.7. For every infinite set N and every m, $l < \omega$ with l > 0, there is an m element set M, so that for every $\{x, y\} \subseteq M$, $\{x, y\}$ has form l and $i(\{x, y\}) \subseteq N$.

Lemma 3.8. For any infinite set $N \subseteq \omega$ there is a set $X \subseteq W$ of type ω^{ω} so that for any pair $\{x, y\} \subseteq X$, there is an $l < \omega$, so that $\{x, y\}$ is of form l and if l > 0, then $(n_l) < i(\{x, y\}) \subseteq N$.

150 lines, using Nash-Williams

900 lines, including inductive definitions of sequences

1700 lines: more sequences and an order type calculation

... and the main theorem

Now we finish the proof of Theorem 3.1 using these three lemmas. First we apply Lemma 3.6 to f and obtain an infinite set N and a sequence $\{j_k: k < \omega\}$. Then for each $k < \omega$ with k > 0, we apply Lemma 3.7 to k, m and $\{n_l: k < l < \omega\}$ and obtain an m element set M_k , so that for any $\{x, y\} \subset M_k$, $f(\{x, y\}) = j_k$. Thus we may conclude that for any $k < \omega$ with k > 0, $j_k = 0$. Next we apply Lemma 3.8 to N and obtain a set $X \subseteq W$ of type ω^{ω} , so that for any $\{x, y\} \subseteq X$, there is an $l < \omega$ for which $\{x, y\}$ has form l and if l > 0, then $(n_l) < i(\{x, y\}) \subseteq N$. Thus on pairs $\{x, y\} \subseteq X$ which are not of form $0, f(\{x, y\}) = j_1 = 0$ for some l. By assumption, for any pair $\{x, y\}$ of form $0, f(\{x, y\}) = 0$, so $f([X]^2) = \{0\}$, and the theorem follows.

150 lines

Why are these machine proofs so long?

- * The level of detail in published proofs varies immensely
- * ... plus my lack of expertise in the area
- * "Obvious" claims—about order types, cardinality, combinatorial intuitions— don't have obvious proofs
- * And some of the constructions are **gruesome**

This sort of inductive definition is tricky!

Let $d^1 = (n_1, n_2, ..., n_{k+1}) = (d_1^1, d_2^1, ..., d_{k+1}^1)$ and let a_1^1 be the sequence of the first d_1^1 elements of N greater than d_{k+1}^1 . Now suppose we have constructed d^1 , a_1^1 , ..., d^i , a_1^i . Let $d^{i+1} = (d_1^{i+1}, ..., d_{k+1}^{i+1})$ be the first k+1 elements of N greater than the last element of a_1^i , and let a_1^{i+1} be the first d_1^{i+1} elements of N greater than d_{k+1}^{i+1} . This defines d^1 , d^2 , ..., d^m , a_1^1 , a_1^2 , ..., a_1^m . Let the rest of the sequences be defined in the order that follows, so that for any i and j, a_i^i is the sequence of the least $(d_i^i - d_{i-1}^i)$ elements of N all of which are larger than the largest element of the sequence previously defined:

$$(a_1^m)a_2^1, a_2^2, a_2^3, ..., a_2^m, a_3^1, ..., a_3^m, ..., a_k^1, ..., a_k^m, a_{k+1}^m, a_{k+1}^{m-1}, ..., a_{k+1}^1.$$

Other formalisations within ALEXANDRIA

- * Transcendence of Certain Infinite Series (criteria by Hančl and Rucki)
- Irrationality Criteria for Series by Erdős and Straus
- * Irrational Rapidly Convergent Series (a theorem by J. Hančl)
- Counting Complex Roots

- Budan–Fourier Theorem and Counting Real Roots
- Localization of a Commutative Ring
- Projective Geometry
- Quantum Computation and Information
- Grothendieck Schemes

Brief remarks on Grothendieck Schemes

- * Build-up of mainstream structures in algebraic geometry: presheaves and sheaves of rings, locally ringed spaces, affine schemes
- * the *spectrum of a ring* is a locally ringed space, hence an affine scheme
- any affine scheme is a scheme

- * They said it couldn't be done in simple type theory.
- * But we did it faster and with less manpower than the Lean guys.
- * One key technique: a structuring mechanism known as *locales*.*
- * led by Anthony Bordg

What can mathematicians expect from proof technology in the future?

- * Ever-growing libraries of definitions and theorems
- * ... with advanced search
- Verification of dull but necessary facts
- ... and exhibiting counterexamples

- Detection of analogous developments, with hints for proof steps
- * Warnings of simple omissions, e.g. "doesn't *S* need to be compact?"
- * A careful and increasingly intelligent assistant