Formalising Erdős and Larson: Ordinal Partition Theory

Lawrence C Paulson FRS
Computer Laboratory

Steps towards the formalisation of mathematics

* Euclid: unifying Greek geometry under an axiomatic system
* Cauchy, Weierstrass: removing infinitesimals from analysis (and more)
* Dedekind, Cantor, Frege, Zermelo: set theory and the axiom of choice
\therefore Whitehead, Russell, Bourbaki: formal (or super-rigorous) mathematics
* de Bruijn: AUTOMATH, a type theory for mathematics

$$
\begin{aligned}
& \text { Now it's widely accepted that essentially } \\
& \text { all mathematics is formalisable }
\end{aligned}
$$

The development of simple type theory

* Whitehead and Russell's ramified types for Principia Mathematica
* Simplified by Ramsey; formalised by Church
* First implemented on a computer by Michael JC Gordon
* Sophisticated implementations today include HOL Light and Isabelle/HOL

But is formalised maths possible?

> Whitehead and Russell needed 362 pages to prove $1+1=2$!

Gödel proved that all reasonable formal systems must be incomplete!

Church proved that first-order logic is undecidable!

We have better formal systems than theirs.

But mathematicians also work from axioms!

We want to assist people, not to replace them.

De Bruijn foresaw difficulties back in 1968!

As to the question what part of mathematics can be written in AUTOMATH, it should first be remarked that we do not possess a workable definition of the word "mathematics".

Quite often a mathematician jumps from his mathematical language into a kind of metalanguage, obtains results there, and uses these results in his original context. It seems to be very hard to create a single language in which such things can be done without any restriction.

And yet, in practice things seem to go okay.

Mathematics in Isabelle/HOL

Jordan curve theorem
Central limit theorem

Prime number theorem
Gödel's incompleteness theorems
Algebraic closure of a field
Verification of the Kepler conjecture*

Matrix theory, e.g. Perron-Frobenius
Analytic number theory, eg Hermite-Lindemann

Homology theory

Topology

Complex roots via Sturm sequences

Measure, integration and probability theory

Distinctive features of Isabelle/HOL

* Simple types with axiomatic type classes
* Powerful automation: proofs and counterexamples
: Structured proof language
* Interactive development environment (PIDE)
\% User-definable mathematical notation
\because "Literate" proof documents can be generated in $\mathrm{LA}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$
* An archive of over 600 proof developments; 385 authors and nearly 3 million lines of code

Can we do set theory in higher-order logic?

* HOL is actually weaker than Zermelo set theory
\because... but we can simply add a type of ZF sets with the usual axioms.
* [our framework presupposes the axiom of choice]
$\%$... and develop cardinals, ordinal arithmetic, order types and the rest.

Partition notation: $\alpha \longrightarrow(\beta, \gamma)^{n}$

$[A]^{n}$ denotes the set of unordered n-element sets of elements of A
if $[\alpha]^{n}$ is partitioned ("coloured") into two parts $(0,1)$ then there's either
\therefore a subset $B \subseteq \alpha$ of order type β whose n-sets are all coloured by 0
$\%$ a subset $C \subseteq \alpha$ of order type γ whose n-sets are all coloured by 1

Infinite Ramsey theorem: $\omega \longrightarrow(\omega, \omega)^{n}$

Erdős' problem (for 2-element sets)

$\alpha \longrightarrow(\alpha, 2)$ is trivial

$$
\alpha \longrightarrow(|\alpha|+1, \omega) \text { fails for } \alpha>\omega
$$

So which countable ordinals α satisfy $\alpha \longrightarrow(\alpha, 3)$?
It turns out that α must be a power of ω
In 1987, Erdős offered a $\$ 1000$ prize for a full solution

Material formalised for this project

$$
\left.\omega^{2} \longrightarrow\left(\omega^{2}, m\right) \quad \text { (Specker }\right)
$$

$\omega^{1+\alpha n} \longrightarrow\left(\omega^{1+\alpha}, 2^{n}\right) \quad$ (Erdős and Milner)

$$
\omega^{\omega} \longrightarrow\left(\omega^{\omega}, m\right) \quad(\text { Milner, Larson })
$$

Plus background theories: Cantor normal form for ordinals; facts about order types; the Nash-Williams partition theorem

Project done with Mirna Džamonja and
Angeliki Koutsoukou-Argyraki

Paul Erdős and E. C. Milner, 1972

$\omega^{1+\alpha n} \longrightarrow\left(\omega^{1+\alpha}, 2^{n}\right)$ for α an ordinal and n a natural number

> "We have known this result since 1959" (it's in Milner's 1962 PhD thesis)

It's a five-page paper that needed a full-page correction in 1974.

We now conclude the proof of the theorem.
Since β is denumerable and nonzero, there is a sequence ($\gamma_{n}: n<\omega$) which repeats each element of B infinitely often, i.e. such that

$$
\begin{equation*}
\left|\left\{n: \gamma_{n}=\nu\right\}\right|=\aleph_{0} \quad(\nu \in B) . \tag{11}
\end{equation*}
$$

Since $\operatorname{tp} S=\alpha \beta$, we may write $S=S^{(0)}=\bigcup(\nu \in B) A_{v}^{(0)}(<)$.
Let $n<\omega$ and suppose we have already chosen elements $x_{i} \in S(i<n)$ and a subset

$$
\begin{equation*}
S^{(n)}=\bigcup(v \in B) A_{v}^{(n)}(<) \tag{12}
\end{equation*}
$$

of S of order type $\alpha \beta$. Since α is right-SI, $A_{\gamma_{n}}^{(n)}$ contains a final section A^{\prime} such that $A_{\gamma_{n}}^{(n)} \cap\left\{x_{0}, \ldots, x_{n-1}\right\}<A^{\prime}$. By (10), there are $x_{n} \in A^{\prime}$, a strictly increasing map $g_{n}: B \rightarrow B$ and sets $A_{v}^{(n+1)}(\nu \in B)$ such that

$$
\begin{gather*}
g_{n}\left(\gamma_{i}\right)=\gamma_{i} \quad(i \leq n), \tag{13}\\
A_{v}^{(n+1)} \subset K_{1}\left(x_{n}\right) \cap A_{g_{n}(v)}^{(n)} \quad(v \in B) . \tag{14}
\end{gather*}
$$

From the definition of A^{\prime}, it follows that

$$
\begin{equation*}
x_{n} \in A_{\gamma_{n}}^{(n)} \subset S^{(n)} \tag{15}
\end{equation*}
$$

and
(16)

$$
\bar{x}_{i}<\bar{x}_{n} \text { if } i<\bar{n} \text { and } \bar{x}_{i} \in A_{x_{n}}^{(n)} .
$$

$S^{(n+1)}$ is defined by equation (12) with n replaced by $n+1$. It follows by induction that there are $x_{n}, A_{v}^{(n)}(\nu \in B), S^{(n)}$ and g_{n} such that (12)-(16) hold for $n<\omega$.

Let $Z=\left\{x_{n}: n<\omega\right\}$. If $m<n<\omega$, then by (15), (14), and (12) we have that

Key steps of Erdős and Milner's proof

* Every ordinal is a "strong type" (about 200 lines of machine proof)
* A "remark" about indecomposable ordinals (72 lines)
\therefore A key lemma: $\alpha \beta \longrightarrow(\min (\gamma, \omega \beta), 2 k)$ if $\alpha \longrightarrow(\gamma, k)$ for $k \geq 2$ (about 960 lines)
* The main theorem $\omega^{1+\alpha n} \longrightarrow\left(\omega^{1+\alpha}, 2^{n}\right)$ by induction on n (about 30 lines)
* Larson's corollary: $\omega^{n k} \longrightarrow\left(\omega^{n}, k\right)$ (about 35 lines)

Every ordinal is a "strong type"

We will say that β is a strong type if, whenever $\operatorname{tp} B=\beta$ and $D \subset B$, then there are $n<\omega$ and sets $D_{1}, \ldots, D_{n} \subset D$ such that
(5) $\operatorname{tp} D_{i}$ is proposition strong_ordertype_eq:
(6) if $M \subset i$ assumes $\mathrm{D}:$ " $\mathrm{D} \subseteq \mathrm{elts} \beta$ " and "Ord β "
obtains L where $" \bigcup($ List.set $L)=D "$ " $\bigwedge X . X \in$ List.set $L \Longrightarrow$ indecomposable (tp X)"
and " $\wedge M . \llbracket M \subseteq D ; ~ \bigwedge X . X \in$ List.set $L \Longrightarrow \operatorname{tp}(M \cap X) \geq \operatorname{tp} X \rrbracket \Longrightarrow t p M=t p D "$
proof
define φ where " φ ㄹinv_into D (ordermap D VWF)"
then have bij_ φ : "bij_betw φ (elts (tp D)) D"
using D bij_betw_inv_into down ordermap_bij by blast
have φ _cancel_left: " \bigwedge d. $d \in D \Longrightarrow \varphi$ (ordermap $D V W F d)=d "$
by (metis D φ _def bij_betw_inv_into_left down_raw ordermap_bij small_iff_range total_on_
have φ _cancel_right: " $\Lambda \gamma \cdot \gamma \in$ elts (tp D) \Longrightarrow ordermap D VWF ($\varphi \gamma$) = γ "
by (metis φ _def f_inv_into_f ordermap_surj subsetD)
have "small D" "D \subseteq ON"
using assms down elts_subset_ON [of β] by auto
then have φ _less_iff: " $\wedge \gamma \delta . \llbracket \gamma \in \operatorname{elts}(t p \mathrm{D}) ; \delta \in \operatorname{elts}(\mathrm{tp} \mathrm{D}) \rrbracket \Longrightarrow \varphi \gamma<\varphi \delta \longleftrightarrow \gamma<\delta$ " using ordermap_mono_less [of _ _ VWF D] bij_betw_apply [OF bij_ \quad] VWF_iff_Ord_less φ _car by (metis ON_imp_Ord Ord_linear2 less_V_def order.asym)

A remark about indecomposable ordinals

```
proposition indecomposable imp Ex less sets:
    assumes indec: "indecomposab\overline{le }\overline{\alpha" and "\alpha> 1" and A: "tp A = \alpha" "small A" "A \subseteq ON"}
        and "x 
    obtains A2 where "tp A2 = \alpha" "A2 \subseteq A1" "{x}<< A2"
proof -
    have "Ord \alpha"
        using indec indecomposable_imp_Ord by blast
    have "Limit \alpha"
        by (simp add: assms indecomposable_imp_Limit)
    define \varphi where " }\varphi\mathrm{ 三 inv_into A (ordermap A VWF)"
    then have bij_\varphi: "bij_betw \varphi (elts \alpha) A"
        using A bij betw inv into down ordermap bij by blast
    have bij_om: "bij_betw (ordermap A VWF) A (elts \alpha)"
        using A down ordermap bij by blast
    define }\gamma\mathrm{ where " }\gamma\equiv\mathrm{ ordermap A VWF x"
    have }\gamma\mathrm{ : " }\gamma\in\mathrm{ elts }\alpha\mathrm{ "
        unfolding \gamma_def using A}\langlex\inA\rangle\mathrm{ down by auto
    then have "Ord \gamma"
        using Ord_in_Ord <Ord \alpha> by blast
    define B whère "-B \equiv ` (elts (succ \gamma))"
    show thesis
    proof
        have "small A1"
            by (meson <small A> A1 smaller than small)
        then have "tp (A1 - B) \leq tp A1"
```

If $x \in A$ and $A_{1} \subseteq A$, with type $A, A_{1}=\alpha$, then there is $A_{2} \subseteq A_{1}$ such that $\{x\}<A_{2}$.

$\alpha \beta \longrightarrow(\min (\gamma, \omega \beta), 2 k)$ if $\alpha \longrightarrow(\gamma, k)$

\because Assume there is no $X \in[\alpha \beta]^{2 k}$ such that $[X]^{2}$ is 1-coloured

* Assume there is no $C \subseteq \alpha \beta$ of order type γ such that $[C]^{2}$ is 0 -coloured
\% Then show there is a $Z \subseteq \alpha \beta$ of order type $\omega \beta$ such that $[Z]^{2}$ is 0 -coloured this will require generating an ω-chain of sets of type β
theorem Erdos_Milner_aux:
assumes part: "partn_lst_VWF α [ord_of_nat k, γ] 2" and indec: "indecomposable α " and "k > 1" "Ord γ " and β : " $\beta \in$ felts $\omega 1$ "
shows "partn_lst_VWF $\left(\alpha^{*} \beta\right)$ [ord_of_nat (2*k), min $\gamma\left(\omega^{*} \beta\right)$] 2"
proof (cases " $\alpha=1 \vee \beta=0$ ")
case True
show ?thesis
proof (cases " $\beta=0$ ")
case True
moreover have "min $\gamma 0=0$ "
$\alpha \beta \longrightarrow(\min (\gamma, \omega \beta), 2 k)$
by (simp add: min def)
ultimately show ?thesis
by (simp add: partn_lst_triv0 [where i=1])
next
case False
then obtain " $\alpha=1$ " "Ord $\beta^{\prime \prime}$
by (meson ON_imp_Ord Ord_ $\omega 1$ True β elts_subset_ON)
then obtain i where "i < Sur (Such 0)" "[ōrd_of_nāt k, γ] ! i $\leq \alpha$ "
using partn_lst_VWF_nontriv [OF part] by auto
then have " $\gamma \leq 1$ "
using < $\alpha=1\rangle\langle\mathrm{k}>1$ 〉 by (fastforce simp: less_Suc_eq)
then have "min $\gamma\left(\omega^{*} \beta\right) \leq 1 "$
by (metis Ord_1 Ord_ ω Ord_linear_le Ord_mult Ord β 〉 min_def order_trans)
moreover have "ells β - $\neq\{ \}$ "
using False by auto
ultimately show ?thesis
by (auto simp: True <Ord $\beta>\langle\beta \neq 0\rangle\langle\alpha=1\rangle$ intro!: partn_lst_triv1 [where i=1])
qed
next
case False
then have " $\alpha \neq 1$ " " $\beta \neq 0$ "
by auto

Equation (8) with its one-line proof

(8) If $A \subset S$, then there is $X \in[$. This follows from the hypothesi

proof
let ?g = "inv_into A (ordermap A VWF)"
have "small A"
using down that by auto
then have inj_g: "inj_on ?g (elts α)"
by (meson inj_on_inv_into less_eq_V_def ordermap_surj ot subset_trans)
have Aless: " $\wedge x y . \llbracket x \in A ; y \in \bar{A} ; \bar{x}<y \rrbracket \Longrightarrow(x, y) \in V W F "$
by (meson Ord_in_Ord VWF_iff_Ord_less <Ord($\alpha^{*} \beta$) > subsetD that(1))

by (auto simp: <small A> ordermap mono_less)
have α sub: "elts $\alpha \subseteq$ ordermap A VWF `A" by (metis <small A〉 elts_of_set less_eq_V_def ordertype_def ot replacement) have g: "?g \(\in\) elts \(\alpha \rightarrow\) elts (\(\alpha^{*} \beta\))" by (meson \(\mathrm{A} _\alpha \beta\) Pi_I' \(\alpha _\)sub inv_into_into subset_eq) then have fg: "f \(\circ \overline{(\lambda X .} \bar{?} \mathrm{~g} \times \mathrm{X}) \bar{\in}[\mathrm{elt} \mathrm{s} \alpha] \geqslant 2 \pi \rightarrow \overline{\{ } .<2\}\) " by (rule nsets_compose_image_funcset [0F f _ inj_g]) have g_less: "?g \(x<\) ?g y" if " \(x<y " ~ " x \in e l \bar{t} s \alpha " " y \in e l t s \alpha\) " for \(x\) y using Pi mem [OF g] by (meson A_ \(\alpha \beta\) Ord_in_Ord Ord_not_le ord <small A> dual_order.trans elts_subset_ON inv_ obtain i H where "i < 2" "H \(\subseteq\) elts \(\bar{\alpha}\) " and ot_eq: "tp H = [k, \(\gamma]\) !i" "(f o (\(\lambda \mathrm{X}\). ? g` X)) `(nsets H 2) \(\subseteq\) \{i\}" using ii partn_lst_E [OF part fg] by (auto simp: eval_nat_numeral) then consider (0) "i=0" | (1) "i=1" by linarith then show ?thesis proof cases case 0 then have "f` [inv_into A (ordermap A VWF) ` H] $2 \mathbb{\Omega} \subseteq\{0\}$ "
using ot_eq <H \subseteq elts $\alpha>\alpha _$sub by (auto simp: nsets_def [of _ k] inj_on_inv_into elim moreover have "finite $H \wedge$ card $H=k$ "
theorem Erdos_Milner:

```
    assumes \nu: "\nu}\in\mathrm{ elts }\omega1\mathrm{ "
    shows "partn_lst_VWF (\omega\uparrow(1 + \nu* ord_of_nat n)) [ord_of_nat (2^n), \omega\uparrow(1+\nu)] 2"
proof (induction n)
    case 0
    then show ?case
        using partn_lst_VWF_degenerate [of 1 2] by simp
next
    case (Suc n)
    have "Ord \nu"
        using Ord_\omega1 Ord_in_Ord assms by blast
    have "1+\nu \leq \nu+1"
        by (simp add: <Ord \nu> one_V_def plus_Ord_le)
```



```
        by (simp add: <Ord \nu> oexp_add min_def)
    Mave ind: "indecomposable (\omega\uparrow (1 + \nu* ord_of_nat n))" < (simp add: <Ord \nu> indecomposable \omega power) 
```

 show ?case
 proof (cases \(" \mathrm{n}=0\) ") Suppose (2) holds for some integer \(h \geq 1\). Applying the above theorem with
 case True \(\quad k=2^{h}, \alpha=\omega^{1+v h}, \beta=\omega^{v}, \gamma=\omega^{1+v}\), we see that (2) also holds with \(h\) replaced by
 then show ? thesis
 \quad using partn_lst_VWF_ ω_{2}
$h+1$. Since (2) holds trivially for $h=1$, it follows that (2) holds for all $h<\omega$.
next
case False
then have "Suc $0<2 \wedge n "$
using less 2 cases not less eq by fastforce
then have "pārtn_lst_VWF $(\omega \uparrow(1+\nu * n) * \omega \uparrow \nu)$ [ord_of_nat (2*2^n), $\omega \uparrow(1+\nu)] 2 "$
using Erdos_Milner_aux [OF Suc ind, where $\beta=" \omega \uparrow \nu "]<0 r d \nu>\nu$
by (auto simp: countable_oexp)
then show ?thesis
using <Ord $\nu>$ by (simp add: mult_succ mult.assoc oexp_add)
qed
qed

Jean Larson, 1973

$\omega^{\omega} \longrightarrow\left(\omega^{\omega}, m\right)$ for m a natural number

Proved by CC Chang in a 56-page paper (J. Combinatorial Theory A) and generalised by EC Milner

Simplified by Larson to 17 pages, including a new proof of $\omega^{2} \longrightarrow\left(\omega^{2}, m\right)$

A few key definitions

Work with finite increasing sequences
$\therefore W(n)=\left\{\left(a_{0}, a_{1}, \ldots, a_{n-1}\right): a_{0}<a_{1}<\cdots<a_{n-1}<\omega\right\}$ has order type ω^{n}

* $W=W(0) \cup W(1) \cup W(2) \cup \cdots$ has order type ω^{ω}

Given $f:[W]^{2} \rightarrow\{0,1\}$ such that there is no $M \in[W]^{m}$ s.t. $[M]^{2}$ is 1-coloured Show there is a $X \subseteq W$ of order type ω^{ω} such that $[X]^{2}$ is 0 -coloured

Interaction schemes

For $x, y \in W$, write $x=a_{1} * a_{2} * \ldots * a_{k}\left(* a_{k+1}\right)$ and $y=b_{1} * b_{2} * \ldots * b_{k}$ put $c=\left(\left|a_{1}\right|,\left|a_{1}\right|+\left|a_{2}\right|, \ldots,\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{k}\right|\left(+\left|a_{k+1}\right|\right)\right)$ define $i(\{x, y\})=c * a_{1} * d * b_{1} * a_{2} * b_{2} * \ldots * a_{k} * b_{k}\left(* a_{k+1}\right)$
(this classifies how consecutive segments in x, y interact)
By Erdős-Milner we can assume $|x|<|y|$

The Nash-Williams partition theorem

A set $A \subseteq W$ is thin if for all $s, t \in A$, the sequence s is not an initial segment of t.
Given an infinite set $M \subseteq \omega$, a thin set A, a function $h:\{s \in A: s \subseteq M\} \rightarrow\{0,1\}$.

Then there exists an $i \in\{0,1\}$ and an infinite set $N \subseteq M$ so that $h(\{s \in A: s \subseteq N\}) \subseteq\{i\}$.

The three main lemmas

Lemma 3.6. For every function $g:[W]^{2} \rightarrow\{0,1\}$, there exists an infinite set $N \subseteq \omega$ and a sequence $\left\{j_{k}: k<\omega\right\}$, so that for any $k<\omega$ with $k>0$, and any pair $\{x, y\}$ of form k with $\left(n_{k}\right)<i(\{x, y\}) \subseteq N$, $g(\{x, y\})=j_{k}$.

Lemma 3.7. For every infinite set N and every $m, l<\omega$ with $l>0$, there is an m element set M, so that for every $\{x, y\} \subseteq M,\{x, y\}$ has form l and $i(\{x, y\}) \subseteq N$.

Lemma 3.8. For any infinite set $N \subseteq \omega$ there is a set $X \subseteq W$ of type ω^{ω} so that for any pair $\{x, y\} \subseteq X$, there is an $l<\omega$, so that $\{x, y\}$ is of form l and if $l>0$, then $\left(n_{l}\right)<i(\{x, y\}) \subseteq N$.

150 lines, using Nash-Williams

900 lines, including inductive definitions of sequences

1700 lines: more sequences and an order type calculation

... and the main theorem

Now we finish the proof of Theorem 3.1 using these three lemmas. First we apply Lemma 3.6 to f and obtain an infinite set N and a sequence $\left\{j_{k}: k<\omega\right\}$. Then for each $k<\omega$ with $k>0$, we apply Lemma 3.7 to k, m and $\left\{n_{l}: k<l<\omega\right\}$ and obtain an m element set M_{k}, so that for any $\{x, y\} \subset M_{k}, f(\{x, y\})=j_{k}$. Thus we may conclude that for any $k<\omega$ with $k>0, j_{k}=0$. Next we apply Lemma 3.8 to N and obtain a set $X \subseteq W$ of type ω^{ω}, so that for any $\{x, y\} \subseteq X$, there is an $l<\omega$ for which $\{x, y\}$ has form l and if $l>0$, then $\left(n_{l}\right)<i(\{x, y\}) \subseteq N$. Thus on pairs $\{x, y\} \subseteq X$ which are not of form $0, f(\{x, y\})=j_{l}=0$ for some l. By assumption, for any pair $\{x, y\}$ of form $0, f(\{x, y\})=0$, so $f\left([X]^{2}\right)=\{0\}$, and the theorem follows.

Why are these machine proofs so long?

* The level of detail in published proofs varies immensely
\because... plus my lack of expertise in the area
\% "Obvious" claims-about order types, cardinality, combinatorial intuitions- don't have obvious proofs
\because And some of the constructions are gruesome

This sort of inductive definition is tricky!

Let $d^{1}=\left(n_{1}, n_{2}, \ldots, n_{k+1}\right)=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{k+1}^{1}\right)$ and let a_{1}^{1} be the sequence of the first d_{1}^{1} elements of N greater than d_{k+1}^{1}. Now suppose we have constructed $d^{1}, a_{1}^{1}, \ldots, d^{i}, a_{1}^{i}$. Let $d^{i+1}=\left(d_{1}^{i+1}, \ldots, d_{k+1}^{i+1}\right)$ be the first $k+1$ elements of N greater than the last element of a_{1}^{i}, and let a_{1}^{i+1} be the first d_{1}^{i+1} elements of N greater than d_{k+1}^{i+1}. This defines $d^{1}, d^{2}, \ldots, d^{m}, a_{1}^{1}, a_{1}^{2}, \ldots, a_{1}^{m}$. Let the rest of the sequences be defined in the order that follows, so that for any i and j, a_{j}^{i} is the sequence of the least $\left(d_{j}^{i}-d_{j-1}^{i}\right)$ elements of N all of which are larger than the largest element of the sequence previously defined:

$$
\left(a_{1}^{m}\right) a_{2}^{1}, a_{2}^{2}, a_{2}^{3}, \ldots, a_{2}^{m}, a_{3}^{1}, \ldots, a_{3}^{m}, \ldots, a_{k}^{1}, \ldots, a_{k}^{m}, a_{k+1}^{m}, a_{k+1}^{m-1}, \ldots, a_{k+1}^{1} .
$$

Other formalisations within ALEXANDRIA

\% Transcendence of Certain Infinite Series (criteria by Hančl and Rucki)

* Irrationality Criteria for Series by Erdős and Straus
* Irrational Rapidly Convergent Series (a theorem by J. Hančl)
* Counting Complex Roots
\% Budan-Fourier Theorem and Counting Real Roots
* Localization of a Commutative Ring
* Projective Geometry
* Quantum Computation and Information
: Grothendieck Schemes

Brief remarks on Grothendieck Schemes

\% Build-up of mainstream structures in algebraic geometry: presheaves and sheaves of rings, locally ringed spaces, affine schemes

* the spectrum of a ring is a locally ringed space, hence an affine scheme
* any affine scheme is a scheme
* They said it couldn't be done in simple type theory.
\% But we did it faster and with less manpower than the Lean guys.
\% One key technique: a structuring mechanism known as locales.*
- led by Anthony Bordg

What can mathematicians expect from proof technology in the future?

\% Ever-growing libraries of definitions and theorems

* ... with advanced search
\% Verification of dull but necessary facts
\% ... and exhibiting counterexamples
* Detection of analogous developments, with hints for proof steps
* Warnings of simple omissions, e.g. "doesn't S need to be compact?"
* A careful and increasingly intelligent assistant

