Formalising a Number Theory Textbook: Lessons Learnt

Formalising maths - up to 2015

A machine-checked proof of the odd order theorem, using Coq (Gonthier et al.)
... of Gödel's incompleteness theorems, using Isabelle (Paulson)
... of the Kepler conjecture, using HOL Light and Isabelle (Hales et al.)

The Lean phenomenon (2017-)

* Sophisticated definitions: schemes, perfectoid spaces
: Big libraries of advanced mathematics (mathlib)
* Liquid tensor experiment: verifying the brand-new work of a Fields medallist

Experiments to confirm "that a proof assistant can handle complexity ..., which is rather different from formalising a long proof about simple objects." - Kevin Buzzard

ALEXANDRIA

(ERC Project GA 742178)

Aim: to support working mathematicians
... by developing tools and libraries
What sorts of mathematics-and proofs-can we formalise?

Using Isabelle/HOL, by the way

Some of our topics

quantum computation • projective geometry \bullet counting roots • Budan-Fourier theorem • algebraically closed fields
ordinal partition theory
Szemerédi's regularity lemma

Grothendieck schemes

Roth: arithmetic progressions

Balog-Szemerédi-Gowers theorem, Khovanskii's theorem ...
ω-categories

Aiming for variety; trying to test the limits

Number theory (why not?)
\% Elliptic and modular functions
*The Dedekind eta function
\% Approximation theorems (Kronecker's and others)
*The Riemann zeta function
Lots of advanced material

Tom M. Apostol

Modular

 Functions and Dirichlet Series in Number TheorySecond Edition

7.2 Dirichlet's approximation theorem

Theorem 7.1. Given any real θ and any positive integer N, there exist integers h and k with $0<k \leq N$ such that

$$
\begin{equation*}
|k \theta-h|<\frac{1}{N} \tag{1}
\end{equation*}
$$

Proof. Let $\{x\}=x-[x]$ denote the fractional part of x. Consider the $N+1$ real numbers

$$
0,\{\theta\},\{2 \theta\}, \ldots,\{N \theta\} .
$$

All these numbers lie in the half open unit interval $0 \leq\{m \theta\}<1$. Now divide the unit interval into N equal half-open subintervals of length $1 / N$. Then some subinterval must contain at least two of these fractional parts, say $\{a \theta\}$ and $\{b \theta\}$, where $0 \leq a<b \leq N$. Hence we can write

$$
\begin{equation*}
|\{b \theta\}-\{a \theta\}|<\frac{1}{N} \tag{2}
\end{equation*}
$$

But

$$
\{b \theta\}-\{a \theta\}=b \theta-[b \theta]-a \theta+[a \theta]=(b-a) \theta-([b \theta]-[a \theta])
$$

Therefore if we let

$$
k=b-a \quad \text { and } \quad h=[b \theta]-[a \theta]
$$

inequality (2) becomes

$$
|k \theta-h|<\frac{1}{N}, \quad \text { with } 0<k \leq N
$$

This proves the theorem.
\% Unfortunately, the simultaneous version turned out to be necessary: approximate $\theta_{1}, \ldots, \theta_{n}$ as $\left|k \theta_{i}-h_{i}\right|<\frac{1}{N}$ where $k \leq N^{n}$.
\therefore Proof obtained from Hardy and Wright, An Introduction to the Theory of Numbers.
\because Still, an elementary proof by the pigeon hole principle, easily formalised (almost on a single slide!)

theorem Dirichlet approx simult:

fixes ϑ :: "nat \Rightarrow real" and N n :: nat
assumes " N > 0 "
obtains q p where " $0<\mathrm{q}$ " "q \leq int $\left(N^{\wedge} n\right) "$ and " \wedge i. i<n \Longrightarrow iof_int q * ϑ i - of_int(pi)i< $1 / N "$ proof .
have lessN: "nat $\lfloor x *$ real $N\rfloor<N "$ if "0 $\leq x "$ " $\mathrm{x}<1$ " for x
proof
have " $\left\lfloor x^{*}\right.$ real $\left.N\right\rfloor<N$ "
using that by (simp add: assms floor_less_iff)
with assms show ?thesis by linarith
qed
define interv where "interv $\equiv \lambda k$. \{real k/N..< Suc k/N\}"
define fracs where "fracs $\equiv \lambda k$. map (λi. frac (real k * ϑ i)) [0..<n]"
define X where " $\mathrm{X} \equiv$ fracs ` $\left\{. . \mathrm{N}^{\wedge} \mathrm{n}\right\}$ "
define Y where " $Y \equiv$ set (List.n_lists n (map interv [0..<N]))"
have interv iff: "interv $k=i n t e r v ~ k^{\prime} \longleftrightarrow k=k^{\prime \prime}$ for $k k^{\prime}$
using assms by (auto simp: interv_def Ico_eq_Ico divide_strict_right_mono)
have in_interv: " $x \in \operatorname{interv}\left(n a t ~\left\lfloor x^{*}\right.\right.$ real $\left.\bar{N}\right\rfloor$)" if " $x \geq 0$ " for x
using that assms by (simp add: interv_def divide_simps) linarith
have False
if non: " $\forall \mathrm{a} b . \mathrm{b} \leq \mathrm{N}^{\wedge} \mathrm{n} \longrightarrow \mathrm{a}<\mathrm{b} \longrightarrow \neg(\forall \mathrm{i}<\mathrm{n}$. |frac (real b* ϑ i) - frac (real a* ϑ i) | $<1 / \mathrm{N})$ "
proof - [35 lines]
qed
 by blast
let ?k = "b-a"
let $? \mathrm{~h}=$ " $\lambda \mathrm{i} .\left\lfloor\mathrm{b}^{*} \vartheta \mathrm{i}\right\rfloor-\left\lfloor\mathrm{a}^{*} \vartheta \mathrm{i}\right\rfloor "$
show ?thesis
proof
fix i
assume "i<n"
have "frac $(b * \vartheta$ i) - $\operatorname{frac}(a * \vartheta i)=? k * \vartheta$ i $-\quad ? h$ i" using <a < b> by (simp add: frac_def left_diff_distrib' of_nat_diff)
then show "|of int ?k * ϑ i - ?h ī < 1/N" by (metis "*" <i < n> of_int_of_nat_eq)
qed (use <a < b> <b $\leq N^{\wedge} n$ > in auto)

The chapter continues ...

* refinements to Dirichlet's approximation theorem
* Liouville's approximation theorem (done elsewhere)
\% Kronecker's approximation theorem
$\%$... and the simultaneous version of Kronecker
: Advanced examples, e.g. to periodic functions

Theorem 7.13. Iff has three periods $\omega_{1}, \omega_{2}, \omega_{3}$ which are linearly independent over the integers, then f has arbitrarily small nonzero periods.

Proof. Suppose first that ω_{2} / ω_{1} is real. If ω_{2} / ω_{1} is rational then ω_{1} and ω_{2} are linearly dependent over the integers, hence $\omega_{1}, \omega_{2}, \omega_{3}$ are also dependent, contradicting the hypothesis. If ω_{2} / ω_{1} is irrational, then f has arbitrarily small nonzero periods by Theorem 7.12.

Now suppose ω_{2} / ω_{1} is not real. Geometrically, this means that ω_{1} and ω_{2} are not collinear with the origin. Hence ω_{3} can be expressed as a linear combination of ω_{1} and ω_{2} with real coefficients, say

$$
\omega_{3}=\alpha \omega_{1}+\beta \omega_{2}, \quad \text { where } \alpha \text { and } \beta \text { are real. }
$$

Now we consider three cases:
(a) Both α and β rational.
(b) One of α, β rational, the other irrational.
(c) Both α and β irrational.

Case (a) implies $\omega_{1}, \omega_{2}, \omega_{3}$ are dependent over the integers, contradicting the hypothesis.

For case (b), assume α is rational, say $\alpha=a / b$, and β is irrational. Then we have

$$
\omega_{3}=\frac{a}{b} \omega_{1}+\beta \omega_{2}, \quad \text { so } \quad b \omega_{3}-a \omega_{1}=\beta\left(b \omega_{2}\right) .
$$

This gives us two periods $b \omega_{3}-a \omega_{1}$ and $b \omega_{2}$ with irrational ratio, hence f has arbitrarily small periods. The same argument works, of course, if β is rational and α is irrational.

Now consider case (c), both α and β irrational. Here we consider two subcases.

Oops!

\% Unfortunately, Apostol set things up for Kronecker's theorem when actually he needed Dirichlet's

* Despite including a redundant case analysis, he didn't establish the preconditions for Kronecker's theorem
$\therefore \ldots$ and he hadn't bothered to present Dirichlet's in its simultaneous form

```
theorem
    fixes f:: "complex => complex" and \omega1 \omega2 \omega3:: complex
    assumes }\omega\mathrm{ : "is periodic }\omega1\mathrm{ f" "is periodic }\omega2\mathrm{ f" "is periodic }\omega3\mathrm{ f"
        and indp: "module.independent (\lambdar. (*) (complex_of_int r)) {\omega1,\omega2,\omega3}"
        and dist: "distinct [\omega1,\omega2,\omega3]"
        and "\varepsilon > 0"
    obtains \omega where "is_periodic \omega f" "0 < cmod \omega" "cmod \omega< \varepsilon"
proof -
    interpret C: Modules.module "(\lambdar. (*) (complex_of_int r))"
        by (simp add: Modules.module.intro distrib_left mult.commute)
    have nz: " }\omega1\not=0" "\omega2\not=0" " \omega3 f= 0"
        using indp C.dependent zero by force+
    show thesis
    proof (cases " }\omega2/\omega1\in\mathbb{R}") [16 lines
    next
        case False
        then obtain \alpha \beta where \alpha\beta: "\omega3 = of real \alpha * \omega1 + of real \beta * \omega2"
            using complex_is_Real_iff gen_lattice.\omegal\omega2_decompose gen_lattice.intro by blast
        show ?thesis
        proof (cases " }\alpha\in\mathbb{Q}"
            case True
            then obtain m1 n1 where mn1: " }\alpha=0\mathrm{ of_int m1 / of_int n1" and "n1 > 0"
            by (meson Rats_cases')
            show ?thesis
            proof (cases " }\beta\in\mathbb{Q}\mathrm{ ")
            case True
            then obtain m2 n2 where mn2: " }\beta=0\mathrm{ of_int m2 / of_int n2" and "n2 > 0"
                by (meson Rats_cases')
            have "of_int(m1*n2)*\omega1 + of_int(m2*n1)*\omega2 + of_int(-n1*n2)*\omega3 = 0"
                    using \overline{\alpha}\beta<n1 > 0> <n2 > 0>> by (simp add: mn1 mn2 add_frac_eq)
            then have "C.dependent {\omega1,\omega2,\omega3}" [5 lines]
            with indp show ?thesis
                by blast
            next
                case False
            define }\omega\mathrm{ where " }\omega\equiv\textrm{n}1 * \omega3 - m1 * \omega1"
            have "\omega=\beta* (n1 * \omega2)"
                    using <n1 > 0> by (simp add: \omega_def \alpha\beta mn1 algebra_simps)
            moreover have "is_periodic \omega f" "is_periodic (n1 * w}2\mathrm{ ) f"
                by (simp_all add: \omega \omega_def is_periodic_diff is_periodic_times_int)
            ultimately show ?thesis
                    using that <\beta\not\in\mathbb{Q}>nz<0<nl><\varepsilon> 0> small_periods_real_irrational [of "n1*\omega2" f }\omega\mathrm{ | |
                    by auto
        qed
```

\because This first part covers when ω_{2} / ω_{1} is real, and if not obtains real α and β where $\omega_{3}=\alpha \omega_{1}+\beta \omega_{2}$.
\because Then it considers whether α (or β) is rational.
\% In the final case, both are irrational and there is a big calculation using Dirichlet's approximation theorem

```
    case False
    show ?thesis
    proof (cases " }\beta\in\mathbb{Q}\mathrm{ ") [11 lines]
    next
        case False
        show ?thesis
    proof -
        define \vartheta where "\vartheta \equiv case_nat }\alpha(\mp@subsup{\lambda}{_}{\prime}.\beta)
        define }\delta\mathrm{ where " }\delta\equiv\varepsilon/(\overline{1}+\operatorname{cmod}\overline{\omega}1+\operatorname{cmod}\omega2)
        have " }\delta>00
            by (smt (verit, best) \delta_def <\varepsilon > 0> divide_pos_pos norm_not_less_zero)
        obtain N where N: "1 / real N < \delta" and "N>0"
            by (meson <0< < > nat_approx_posE zero_less_Suc)
        then obtain k q where k\overline{h}: "\i. i < 2 \Longrightarrow` |of_int k * \vartheta i - of_int (q i)| < \delta" and "0 < k"
            by (metis Dirichlet_approx_simult[of N 2 v] less_trans)
        define h1 where "h1 \equivq 0" define h2 where "h2 \equivq q 1"
        have "cmod (k* * * \omega1 - h1 * \omega1) = cmod (k * 人 - h1) * cmod \omega1"
            by (metis left_diff_distrib norm_mult of_real_diff of_real_of_int_eq)
        also have "... = abs (k * \alpha - h1) * cmod \omega1"
            by (metis norm_of_real)
        also have "...< < * cmod \omega1"
            using kh [of 0] by (simp add: \vartheta_def nz h1_def)
    finally have 1: "norm (k* \alpha * \omega1 - h1 * \omega1) < < * cmod \omega1".
    have "cmod (k* \beta*\omega2 - h2 * \omega2) = cmod (k*\beta - h2) * cmod \omega2"
            by (metis left_diff_distrib norm_mult of_real_diff of_real_of_int_eq)
        also have "... = \overline{abs (\overline{k}*\beta-h2) *' cmod \omega2"}
            by (metis norm_of_real)
        also have "...< < * cmod \omega2"
            using kh [of 1] by (simp add: \vartheta_def nz h2_def)
        finally have 2: "cmod (k* \beta* \omega2 - h2 * \omega2) < < * cmod \omega2".
        define }\omega\mathrm{ where " }\omega\equiv\textrm{k}*\omega3 - h1 * \omega1 - h2 * \omega2"
        have "\omega=(k*\alpha*\omega1 - h1 *\omega1) + (k* \beta*\omega2 - h2 * \omega2)"
            by (simp add: \omega_def \alpha\beta algebra_simps)
        then have "cmod \omega}\leq\operatorname{cmod}(\textrm{k}*\alpha*\omega1-\textrm{h}1*\omega1)+\operatorname{cmod}(\textrm{k}*\beta*\omega\mp@code{* - h2 * \omega2)"
            using norm triangle ineq by blast
        also have "... < \delta* cmod \omega1 + \delta* cmod \omega2"
            using "1" "2" by linarith
        also have "... < &"
            using < < > 0> nz
            by (simp add: \delta_def divide_simps) (auto simp add: distrib_left pos_add_strict)
        finally have "cmod}\omega<\varepsilon"
        have "is periodic \omega f"
            by (simp add: \omega \omega_def is_periodic_diff is_periodic_times_int)
            moreover have " }\omega\not=\overline{0}\mathrm{ " [9 lines]
            ultimately show ?thesis
                by (simp add: <cmod }\omega<\varepsilon<\mathrm{ that)
            qed
        qed
        qed
    qed
qed
```


Apostol's application to the Riemann zeta function

\because Obtaining the inf and sup of $|\zeta(\sigma+i t)|$ where σ is held constant

* Apostol's proof contains a circularity that I broke with the help of an elaborate argument from MathOverflow
\therefore You also need to understand that s is synonymous with $\sigma+$ it (except when it isn't)

Definition. For fixed σ, we define

$$
m(\sigma)=\inf _{t}|\zeta(\sigma+i t)| \quad \text { and } \quad M(\sigma)=\sup _{t}|\zeta(\sigma+i t)|
$$

where the infimum and supremum are taken over all real t.
Theorem 7.11. For each fixed $\sigma>1$ we have

$$
M(\sigma)=\zeta(\sigma) \quad \text { and } \quad m(\sigma)=\frac{\zeta(2 \sigma)}{\zeta(\sigma)}
$$

Proof. For $\sigma>1$ we have $|\zeta(\sigma+i t)| \leq \zeta(\sigma)$ so $M(\sigma)=\zeta(\sigma)$, the supremum being attained on the real axis. To obtain the result for $m(\sigma)$ we estimate the reciprocal $|1 / \zeta(s)|$. For $\sigma>1$ we have

$$
\begin{equation*}
\left|\frac{1}{\zeta(s)}\right|=\prod_{p}\left|1-p^{-s}\right| \leq \prod_{p}\left(1+p^{-\sigma}\right)=\frac{\zeta(\sigma)}{\zeta(2 \sigma)} . \tag{17}
\end{equation*}
$$

Hence $|\zeta(s)| \geq \zeta(2 \sigma) / \zeta(\sigma)$ so $m(\sigma) \geq \zeta(2 \sigma) / \zeta(\sigma)$.
Now we wish to prove the reverse inequality $m(\sigma) \leq \zeta(2 \sigma) / \zeta(\sigma)$. The idea is to show that the inequality

$$
\left|1-p^{-s}\right| \leq 1+p^{-\sigma}
$$

used in (17) is very nearly an equality for certain values of t. Now

$$
1-p^{-s}=1-p^{-\sigma-i t}=1-p^{-\sigma} e^{-i t \log p}=1+p^{-\sigma} e^{i(-t \log p-\pi)}
$$

so we need to show that $-t \log p-\pi$ is nearly an even multiple of 2π for certain values of t. For this we invoke Kronecker's theorem. Of course, there are infinitely many terms in the Euler product for $1 / \zeta(s)$ and we cannot expect to make $-t \log p-\pi$ nearly an even multiple of 2π for all primes p. But we will be able to do this for enough primes to obtain the desired inequality.

```
\begin{array} { l } { \text { theorem Inf_7_11:} } \\ { \text { fixes } \sigma : \text { : real } } \end{array}
    assumes " }\sigma>1\mathrm{ "
    shows "(INF t. cmod (zeta(Complex \sigma t))) = Re (zeta (2 * \sigma)) / Re (zeta \sigma)" (is "Inf ?F = ?rhs")
proof (intro antisym)
    show rhs_le_INFF: "?rhs \leq Inf ?F"
        by (metis Complex_eq UNIV_I empty_iff norm_zeta_same_Im_ge [OF assms] cINF_greatest)
    interpret Modules.mōdule "(\overline{\lambda}r. (*)
        by (simp add: Modules.module.intro distrib_left mult.commute)
    define pr where "pr \equiv enumerate {p::nat. prime p}"
        - <enumeration of the primes, starting from 0 (not 1 as in the text)>
    have [simp]: "strict_mono pr"
        by (simp add: pr_def primes_infinite strict_mono_enumerate)
    have prime_iff: "prime n \longleftrightarrow (\existsk. n = pr k)" for n
        using enumerate_Ex enumerate_in_set pr_def primes_infinite by blast
    then have pnp: "prime (pr k)" for k
        using prime iff by blast
    then have pr_gt1: "real (pr k) > 1" for k
        by (metis of_nat_1 of_nat_less_iff prime_gt_1_nat)
    have pr_gt: "n < pr n" for n [9 lines]
    define \vartheta where "\vartheta \equiv \k. - ln (pr k) / (2 * pi)"
    have "inj pr"
        by (simp add: strict_mono_imp_inj_on)
    then have inj\vartheta: "inj \vartheta"
        by (auto simp: inj_on_def \vartheta_def pnp prime_gt_0_nat)
    have [simp]: "pr 0 = 2"
    by (simp add: pr_def enumerate.simps Least_equality prime_ge_2_nat)
    have prod_if_prime_eq: "(\prodp\leqpr n. if prime p then w p else 1) = (\prodk\leqn.w (pr k))" (is "?L=?R") [12 lines]
    have prod_if_prime_eq_real: "(\prodp\leqpr n. if prime p then w p else 1) = (\prodk\leqn.w (pr k))" [9 lines]
    have zeta_nz: "zeta` (Complex \sigma t) \not=0" for t
        using assms complex.sel(1) zeta_Re_gt_1_nonzero by presburger
    then obtain zeta pos: "Re (zeta \sigma) > 0"- "Re (zeta (of_real \sigma * 2)) > 0"
    by (smt (verit) Complex_eq Re_complex_of_real assms complex_of_real_def mult_2_right
        norm zeta same Im le of_real_add zero_less_norm_iff zeta_Re_gt_1_nonzero)
    then have rhs_pos: "?rhs > 0"
    by (auto simp: field simps)
    with rhs_le_INFF have INFF_pos: "Inf ?F > 0"
    by linarīth
```

\because Here we see only the boilerplate from the first part of this 400 line proof.
$\%$ The main part is the calculation of the required t, including the removal of the circular dependence

* Apostol is good at conveying general ideas, but terrible with details
$\therefore . .$. let's see some examples from Chapter 1

Three trivial proofs

Theorem 1.5. If an elliptic function f has no zeros in some period parallelogram, then f is constant.

Proof. Apply Theorem 1.4 to the reciprocal $1 / f$.

Over 60 lines of dense calculations

Theorem 1.6. The contour integral of an elliptic function taken along the boundary of any cell is zero.

Proof. The integrals along parallel edges cancel because of periodicity. Over 100 lines

Theorem 1.7. The sum of the residues of an elliptic function at its poles in any period parallelogram is zero.

Proof. Apply Cauchy's residue theorem to a cell and use Theorem 1.6.

Remarks and conclusions

* We did chapters 1-3 and 7.
* The material is straightforward to formalise, once you understand the conventions
\because... but errors and gaps waste lots of time.
\therefore Expertise in the field you're formalising is necessary!

