Formalising a Number T'heory

Textbook: L.essons lL.earnt

Lawrence C Paulson

Pittsposium, 22 August 2023 — work funded by the ERC Advanced Grant ALEXANDRIA (Project GA 742178)

FFormalising maths — up to 2015

* A machine-checked proof of the odd order
theorem, using Coq (Gonthier et al.)

* ... of Godel’s incompleteness theorems, using
[sabelle (Paulson)

“ ... of the Kepler conjecture, using HOL Light
and Isabelle (Hales et al.)

The lL.ean phenomenon (2017

+ Sophisticated definitions: schemes, perfectoid spaces
+ Big libraries of advanced mathematics (mathlib)

+ Liguid tensor experiment: verifying the brand-new work
of a Fields medallist

Experiments to confirm “that a proof assistant can handle
complexity ..., which is rather different from formalising a
long proof about simple objects.” — Kevin Buzzard

ALEXANDRIA ErcProject Ga742178)

Aim: to support working mathematicians

... by developing tools and libraries

What sorts of mathematics—and

proofs—can we formalise?

Using Isabelle/HOL,
by the way

Some of our topics

quantum computation ® projective geometry ® counting
roots ® Budan—Fourier theorem e algebraically closed fields

ordinal partition theory Grothendieck schemes

Szemerédi’s regularity lemma @ Roth: arithmetic progressions

Balog-Szemerédi—-Gowers theorem, .
o w-categories
Khovanskii’s theorem ... 5

Aiming for variety; trying to test the limits

Number theory
‘why not?)

Elliptic and modular functions
The Dedekind eta function

Approximation theorems
(Kronecker’s and others)

The Riemann zeta function

Lots of advanced material

Tom M. Apostol

Modular
Functions

and Dirichlet
Series in
Number Theory

Second Edition

3=
&) Springer

7.2 Dirichlet’s approximation theorem

Theorem 7.1. Given any real 0 and any positive integer N, there exist integers
h and k with 0 < k < N such that
(1) kO — h| < :
N

PROOF. Let {x} = x — [x] denote the fractional part of x. Consider the
N + 1 real numbers

0, {0}, {20}, ..., (NG}

All these numbers lie in the half open unit interval 0 < {mf} < 1. Now
divide the unit interval into N equal half-open subintervals of length 1/N.
Then some subinterval must contain at least two of these fractional parts,
say {af} and {b0}, where 0 < a < b < N. Hence we can write

@) (b6} — {a}] < .

But
{bO} — {a0} = bO — [bO] — ab + [af] = (b — a)f — ([bO] — [ab])).
Therefore if we let
k=b—a and h = [bO] — [af]

inequality (2) becomes
1
|kO — h| <—1_I’ with0 < k < N.

This proves the theorem. H

Unfortunately, the simultaneous version turned out to
be necessary: approximate 0, ...,0, as |kO, — h,| < —

N
where k < N".

Proof obtained from Hardy and Wright, An
Introduction to the Theory of Numbers.

Still, an elementary proof by the pigeon hole principle,
easily formalised (almost on a single slide!)

theorem Dirichlet approx simult:
fixes ¥ :: "nat = real" and N n :: nat
assumes "N > 0"
obtains q p where "0<q" "q < int (N*n)" and "Ai. i<n = !of int q * ¥ i - of int(p i)! < 1/N"
proof -
have lessN: "nat |[x * real N|] < N" if "0 < x" "x < 1" for x
proof -
have "|x * real N|] < N"
using that by (simp add: assms floor less iff)
with assms show ?thesis by linarith
ged
define interv where "interv = Mk. {real k/N..< Suc k/N}"
define fracs where "fracs = Ak. map (Ai. frac (real k * ¢ i)) [0..<n]"
define X where "X = fracs ~ {..N*n}"
define Y where "Y = set (List.n lists n (map interv [0..<N]))"
have interv iff: "interv k = interv k' «— k=k'" for k k'
using assms by (auto simp: interv def Ico eq Ico divide strict right mono)
have in_interv: "x € interv (nat [x * real N|)" if "x>0" for x
using that assms by (simp add: interv def divide simps) linarith
have False
if non: "Va b. b < N n — a < b — —=(Vi<n. !frac (real b * ¥ i) - frac (real a * 9 i)! < 1/N)"
prolfi - [35 lines]
qed
then obtain a b where "a<b" "b < N*n" and *: "Ai. i<n = !frac (real b * ¥ i) - frac (real a * ¢ i)! < 1/N"
by blast
let ?k = "b-a"
let ?h = "Xi. |b * ¢ i] - |a * ¢ i]"
show ?thesis
proof
fix i
assume "i<n
have "frac (b * 9 i) - frac (a * ¢ 1) =?k * ¢ 1 - ?h 1"
using <a < b> by (simp add: frac def left diff distrib' of nat diff)
then show "}of int ?k * 9 1 - ?h i} < 1/N"
by (metis "*" <i < n»> of int of nat eq)
qed (use <a < b> <b < N*n> in auto)
qed

I'he chapter continues ...

+ refinements to Dirichlet’s approximation theorem

+ Liouville's approximation theorem (done elsewhere)
+ Kronecker's approximation theorem

+ ... and the simultaneous version of Kronecker

+ Advanced examples, e.g. to periodic functions

Theorem 7.13. If f has three periods w,, w,, w5 which are linearly independent
over the integers, then f has arbitrarily small nonzero periods.

PROOF. Suppose first that w,/w, is real. If w,/w, is rational then w, and
w, are linearly dependent over the integers, hence w,, w,, w; are also depen-
dent, contradicting the hypothesis. If w, /w, is irrational, then f has arbitrarily
small nonzero periods by Theorem 7.12.

Now suppose w, /w, is not real. Geometrically, this means that w, and
w, are not collinear with the origin. Hence w; can be expressed as a linear
combination of w, and w, with real coefficients, say

w3 = aw,; + Pw,, where « and f are real.
Now we consider three cases:

(a) Both o and p rational.
(b) One of «, B rational, the other irrational.
(c) Both a and p irrational.

Case (a) implies w,, w, , w5 are dependent over the integers, contradicting
the hypothesis.

For case (b), assume « is rational, say o« = a/b, and p 1s irrational. Then
we have

a
W3 = ; w, + Pw,, SO bw, — aw,; = P(bw,).

This gives us two periods bw; — aw; and bw, with irrational ratio, hence f
has arbitrarily small periods. The same argument works, of course, if f§ is
rational and «a is irrational.

Now consider case (c), both o and f irrational. Here we consider two
subcases.

Oops!

Unfortunately, Apostol set things up for Kronecker’s
theorem when actually he needed Dirichlet’s

Despite including a redundant case analysis, he didn't
establish the preconditions for Kronecker’s theorem

... and he hadn’t bothered to present Dirichlet’s in its
simultaneous form

theorem

fixes f:: "complex = complex" and wl w2 w3:: complex

assumes w: "is periodic wl f" "is periodic w2 f" "is periodic w3 f"
and indp: "module.independent (Ar. (*) (complex of int r)) {wl,w2,w3}"
and dist: "distinct [wl,w2,w3]"

and "¢ > 0"
obtains w where "is periodic w f" "0 < cmod w" "cmod w < &"
proof -

interpret C: Modules.module "(Ar. (*) (complex of int r))"
by (simp add: Modules.module.intro distrib left mult.commute)
have nz: "wl # 0" "w2 # 0" "w3 # 0"
using indp C.dependent zero by force+
show thesis
proof (cases "w2/wl € R") [16 lines]
next
case False
then obtain o [where af: "w3 = of real a * wl + of real g * w2"
using complex is Real iff gen lattice.wlw2 decompose gen lattice.intro by blast
show ?thesis
proof (cases "a € Q")
case True
then obtain ml nl where mnl: "o = of int ml / of int nl" and "nl > 0"
by (meson Rats cases')
show ?thesis
proof (cases "/ € Q")
case True
then obtain m2 n2 where mn2: "§ = of int m2 / of int n2" and "n2 > 0"
by (meson Rats cases')
have "of int(ml*n2)*wl + of int(m2*nl)*w2 + of int(-nl*n2)*w3 = 0"
using af <nl > 0> <n2 > 0> by (simp add: mnl mn2 add frac eq)
then have "C.dependent {wl,w2,w3}" [5 lines]
with indp show ?thesis
by blast
next
case False
define w where "w = nl * w3 - ml * W1"
have "w = 3 * (nl1 * w2)"
using <nl > 0> by (simp add: w def «af mnl algebra simps)
moreover have "is periodic w f" "is periodic (nl * w2) f"
by (simp all add: w w def is periodic diff is periodic times int)
ultimately show ?thesis
using that <7 ¢ Q> nz <0 < nl> <¢ > 0> small periods real irrational [of "nl*w2" f w €]
by auto

ged

This first part covers when w,/®, is real, and if not
obtains real @ and where w; = aw, + fw-.

Then it considers whether a (or f) is rational.

In the final case, both are irrational and there is a big
calculation using Dirichlet’s approximation theorem

case False

show ?thesis

proof (cases " € Q") [11 lines]
next

case False
show ?thesis
proof -
define ¢ where "¢ = case nat a (A .)"
define § where "6 = ¢ / (1 + cmod wl + cmod w2)"
have " > 0"
by (smt (verit, best) 6 def < > 0> divide pos pos norm not less zero)
obtain N where N: "1 / real N < ¢" and "N>0"
by (meson <0 < 0> nat approx poskE zero less Suc)
then obtain k g where kh: "Ai. i <2 = !of int k * ¥ i - of int (g i)} < " and "0 < k"
by (metis Dirichlet approx simult[of N 2 /] less trans)
define hl where "hl = q 0" define h2 where "h2 = q 1"

have "cmod (k * o * wl - hl * wl) = cmod (k * o - hl) * cmod wl"

by (metis left diff distrib norm mult of real diff of real of int eq)
also have "... = abs (k * a - hl) * cmod wl"

by (metis norm of real)
also have "... < ¢ * cmod wl"

using kh [of O] by (simp add: ¢ def nz hl def)
finally have 1: "norm (k * o * wl - hl * wl) < ¢ * cmod wl" .
have "cmod (k * g * w2 - h2 * w2) = cmod (k * 3 - h2) * cmod w2"
by (metis left diff distrib norm mult of real diff of real of int eq)

also have "... = abs (k * 5 - h2) * cmod w2"
by (metis norm of real)
also have "... < § * cmod w2"

using kh [of 1] by (simp add: ¢ def nz h2 def)

finally have 2: "cmod (k * 3 * w2 - h2 * w2) < § * cmod w2" .

define w where "w = k * w3 - hl * wl - h2 * 2"

have "w = (k * @ * wl - hl * wl) + (k * 8 * w2 - h2 * wW2)"
by (simp add: w def af algebra simps)

then have "cmod w < cmod(k * o« * wl - hl * wl) + cmod(k * 3 * w2 - h2 * w2)"
using norm triangle ineq by blast

also have "... < § * cmod wl + 4 * cmod w2"
using "1" "2" by linarith
also have "... < &"

using < > 0> nz
by (simp add: § def divide simps) (auto simp add: distrib left pos add strict)
finally have "cmod w < &" .
have "is periodic w f"
by (simp add: w w def is periodic diff is periodic times int)
moreover have "w # 0" [9 lines]
ultimately show ?thesis
by (simp add: <cmod w < &> that)

qed

ged

ged

qedfl
qed

Apostol’s application to the
Riemann zeta function

+ Obtaining the inf and sup of |{(o + if) | where o is
held constant

+ Apostol’s proof contains a circularity that I broke with
the help of an elaborate argument from MathOuverflow

+ You also need to understand that s is synonymous
with o + it (except when it isn't)

Definition. For fixed g, we define

m(o) = inf|{(c + it)| and M(o) = sup|l(o + it)|,
where the infimum and supremum are taken over all real ¢.

Theorem 7.11. For each fixed ¢ > 1 we have

{(20)

M(o) = {(0) and m(o) = ?(;)—.

PROOF. For ¢ > 1 we have |{(o + it)| < {(0) so M(c) = {(0), the supremum
being attained on the real axis. To obtain the result for m(a) we estimate the
reciprocal |1/{(s)|. For ¢ > 1 we have

o)

17) (o)

1 S -0
Zis_)l [T =1 <TI0 +p™) = 55
Hence | ((s)| > {(20)/{(0) s0 m(3) > {(20)/{(0).

Now we wish to prove the reverse inequality m(a) < ((20)/{(0). The idea

is to show that the inequality

11 —-p | <1+p°

used in (17) is very nearly an equality for certain values of t. Now |

1 — p—s — 1 ___ p—a—it — 1 ___ p—-ae—itlogp — 1 + p—aei(-—tlogp—n),

so we need to show that —t log p — = i1s nearly an even multiple of 27 for
certain values of t. For this we invoke Kronecker’s theorem. Of course,
there are infinitely many terms in the Euler product for 1/{(s) and we cannot
expect to make —t log p — 7 nearly an even multiple of 2n for all primes p.
But we will be able to do this for enough primes to obtain the desired
inequality.

theorem Inf 7 11:
fixes o:: real
assumes "o > 1"
shows "(INF t. cmod (zeta(Complex o t))) = Re (zeta (2 * o)) / Re (zeta)" (is "Inf ?F = ?rhs")
proof (intro antisym)
show rhs le INFF: "?rhs < Inf ?F"
by (metis Complex eq UNIV I empty iff norm zeta same Im ge [OF assms] cINF greatest)
interpret Modules.module "(Ar. (*) (real of int r))"
by (simp add: Modules.module.intro distrib left mult.commute)
define pr where "pr = enumerate {p::nat. prime p}"
— <enumeration of the primes, starting from 0 (not 1 as in the text)>
have [simp]: "strict mono pr"
by (simp add: pr def primes infinite strict mono enumerate)
have prime iff: "prime n «—— (3Jk. n = pr k)" for n
using enumerate Ex enumerate in set pr def primes infinite by blast
then have pnp: “prime (pr k)" for k
using prime iff by blast
then have pr gtl: "real (pr k) > 1" for kK
by (metis of nat 1 of nat less iff prime gt 1 nat)
have pr gt: "n < pr n" for n [9 lines]
define ¥ where "Y = Ak. - 1n (pr k) / (2 * pi)"
have "inj pr"
by (simp add: strict mono imp inj on)
then have inj¥: "inj "
by (auto simp: inj on def ¢ def pnp prime gt 0 nat)
have [simp]l: "pr 0 = 2"
by (simp add: pr def enumerate.simps Least equality prime ge 2 nat)
have prod if prime eq: "(J[p<pr n. if prime p then w p else 1) = (J[k<n. w (pr k))" (is "?L=7?R") [12 lines]
have prod if prime eq real: "([[p<pr n. if prime p then w p else 1) = ([[k<n. w (pr k))" [9 lines]
have zeta nz: "zeta (Complex o t) # 0" for t
using assms complex.sel(1l) zeta Re gt 1 nonzero by presburger
then obtain zeta pos: "Re (zeta o) > 0" "Re (zeta (of real o * 2)) > 0"
by (smt (verit) Complex eq Re complex of real assms complex of real def mult 2 right
florm zeta same Im 1 of real add zero less norm iff zeta Re gt 1 nonzero)
then have rhs pos: "?rhs > 0"
by (auto simp: field simps)
with rhs le INFF have INFF pos: "Inf ?F > 0"
by linarith

Here we see only the boilerplate from the first part of
this 400 line proof.

The main part is the calculation of the required ¢,
including the removal of the circular dependence

Apostol is good at conveying general ideas, but
terrible with details

... let’s see some examples from Chapter 1

Three trivial proofs

Theorem 1.5. If an elliptic function f has no zeros in some period parallelogram,
then f is constant.

PROOF. Apply Theorem 1.4 to the reciprocal 1/f.

Over 60 lines of dense calculations

Theorem 1.6. The contour integral of an elliptic function taken along the
boundary of any cell is zero.

PROOF. The integrals along parallel edges cancel because of periodicity.
Over 100 lines

Theorem 1.7. The sum of the residues of an elliptic function at its poles in any
period parallelogram is zero.

PROOF. Apply Cauchy’s residue theorem to a cell and use Theorem 1.6.
Nearly 200 lines

Remarks and conclusions

+ We did chapters 1-3 and 7.

+ The material is straightforward to formalise, once you
understand the conventions

* ... but errors and gaps waste lots ot time.

+ Expertise in the field you're formalising is necessary!

