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Background




The formalisation of maths:
some history

+ Euclid: unitying Greek geometry under an axiomatic system
+ Cauchy, Weierstrass: removing infinitesimals from analysis (and more)
+ Dedekind, Cantor, Frege, Zermelo: set theory and the axiom of choice

+ Whitehead, Russell, Bourbaki: formal (or super-rigorous) mathematics

+ de Bruijn: the AUTOMATH type theory and proof checker; also
Trybulec and Mizar

Now it’s widely accepted that all
mathematics s formalisable



But 1s all maths really formalisable?

As to the question what part of mathematics can be written in
AUTOMATH, it should first be remarked that we do not
possess a workable definition of the word "mathematics".

Quite often a mathematician jumps from his mathematical
language into a kind of metalanguage, obtains results there,
and uses these results in his original context. It seems to be
very hard to create a single language in which such things can
be done without any restriction. — NG de Bruijn, 1968



2017:"Big Proof™ (Newton Institute)

+ bringing proof technology into mathematical practice

+ inspired by past formalisations successes: Kepler
conjecture, four colour theorem, odd order theorem

+ with a focus on homotopy type theory

+ attendees included Jeremy Avigad, Kevin Buzzard,
Tom Hales, Vladimir Voevodsky



Also 2017: ALEXANDRIA

(ERC Project GA 742178)

Aim: to support working mathematicians

... by developing tools and libraries

What areas of mathematics
can we formalise?

What sorts of proofs
can we formalise?




Project plan

+ hire a couple of mathematicians
+ formalise a wide variety of mathematical topics
+ identity and try to remedy obstacles

+ also try Al for search and autoformalisation

All based on Isabelle/ HOL



Formalising Mathematics




Mathematics 1n Isabelle/HOL.

<+ Lots formalised a]ready Matrix theory, e.g. Perron—Frobenius

Analytic number theory, e.g.
Hermite-Lindemann

+ But... was it sophisticated

enough? Modern enough?
Homology theory

+ We had to explore our
boundaries, and compare and probability theory

with dependent type theories D DI mrEm

theorem, prime number theorem



Some warmup formalisations

+ Irrational rapidly convergent series, tormalising a 2002
paper by J. Hancl

* projective geometry and quantum computing

+ counting real and complex roots of polynomials;
Budan-Fourier theorem

Our focus: recent, sophisticated
or potentially problematical material



Another early experiment (2019):
algebraically closed fields

Every field admits an algebraically closed extension

(Example: adjoining a root of x* + 1 to R to get C)

In general, a limit of field extensions
K:EO—)E1—>E2—)°--—)En—)...

obtained by adjoining roots. We can
form this limit using Zorn’s lemma

The work of two summer students, Paulo de
Vilhena and Martin Baillon, and the first
formalisation of this result in any system.



Taking over a special 1ssue of
Faxperimental Mathematics

+ Irrationality and transcendence criteria for infinite series,
incorporating Erdds—-Straus and Hancl-Rucki

* Ordinal partition theory: delicate constructions by Erd6s—
Milner and Larson on set-theoretic combinatorics

+ Grothendieck schemes: answering a challenge by Kevin
Buzzard (and completed on the first attempt)

These formed 3 of the 6 papers in the special issue



Upping our ambitions

+ extremal graph theory

+ additive combinatorics

+ combinatorial block designs

+ graduate-level number theory

* strict w-categories



Szemeredi’s regularity lemma, and
Roth on arithmetic progressions

For every € > 0, there exists a constant M such that every graph has an

e-regular partition of its vertex set into at most M parts.

An e-regular partition is where the edges between different parts
behave almost randomly when considering subsets of those parts

It is the key tool in the study of large graphs, with applications
to algorithm design as well as number theory.

Every subset of the integers with positive upper asymptotic

density contains a 3-term arithmetic progression.



Additive combmatorics

The study of the additive structure of sets, with
numerous applications across mathematics

Additive
Combinatorics

Combinat- Number  Ergodic Graph
orics Theory Theory Theory

Group

Geometry Theory

Probability



We study the sumset A

for a given al

+B={a+b:a€ A be B}
belian group (G, + )

and the iterated sumset: t

Pliinnecke—Ruzsa inequality:
an upper bound on mB — nB

ne n-fold sumnA =A+ ---+ A

Khovanskii’s theorem: |nA| grows like

a polynomial for sufficiently large n

Kneser's theorem and the Cauchy—Davenport

theorem: lower bounds for |A

+ B|

Balog—Szemerédi—Gowers: a deep result

bearing on Szemerédi's theorem



Combinatorial design theory

+ dozens of varieties of block designs, hypergraphs, graphs
and the relationships among them

+ E.g. Fisher’s inequality for balanced incomplete block
designs

+ probabilistic and generating function methods

+ advanced techniques using Isabelle’s locales

PhD work of Chelsea Edmonds



Half of a standard

number theory text

+ Elliptic functions Tom M. Apostol
Modular
+ The modular group and modular Functions
; and Dirichlet
Number Theory
2+ The Dedekind eta function Second Edition

@)y Springer

+ Kronecker’s approximation theorem

Lots of advanced material



Definition. For fixed g, we define

m(o) = inf|{(c + it)| and M(o) = sup|l(o + it)|,
where the infimum and supremum are taken over all real ¢.

Theorem 7.11. For each fixed ¢ > 1 we have

{(20)

M(o) = {(0) and m(o) = ?(;)—.

PROOF. For ¢ > 1 we have |{(o + it)| < {(0) so M(c) = {(0), the supremum
being attained on the real axis. To obtain the result for m(a) we estimate the
reciprocal |1/{(s)|. For ¢ > 1 we have

o)

17) (o)

1 S -0
Zis_)l [T =1 <TI0 +p™) = 55
Hence | ((s)| > {(20)/{(0) s0 m(3) > {(20)/{(0).

Now we wish to prove the reverse inequality m(a) < ((20)/{(0). The idea

is to show that the inequality

11 —-p | <1+p°

used in (17) is very nearly an equality for certain values of t. Now |

1 — p—s — 1 ___ p—a—it — 1 ___ p—-ae—itlogp — 1 + p—aei(-—tlogp—n),

so we need to show that —t log p — = i1s nearly an even multiple of 27 for
certain values of t. For this we invoke Kronecker’s theorem. Of course,
there are infinitely many terms in the Euler product for 1/{(s) and we cannot
expect to make —t log p — 7 nearly an even multiple of 2n for all primes p.
But we will be able to do this for enough primes to obtain the desired
inequality.



On dependently-typed constructions

+ Dependent types can be erased from any formal
development for working in Isabelle/ HOL

+ ... thereby obtaining legible Isabelle proofs, and
benefiting from powerful automation

+ Case study: strict w-categories

[See Bordg & Doria Mateo’s paper in CPP 2023]



What does this Work Achieve?




legible, intuitive

proofs no borders between

mathematical topics

...and no topics off-limits

performance

Handling sophisticated,

modern mathematics



L.egible, intuitive proofs

lemma sum diff split:
fixes f:: "nat = 'a::ab group add"
assumes "m < n"
shows " (> i<n - m. f(n - 1)) = (> i<n. f i) - (O i<m. f i)"
proof -
have inj: "inj on ((-) n) {m..n}"
by (auto simp: inj on def)
have "(D>_ i<n - m. f(n - i)) = (O_ie(-) n ~ {m..n}. f(n - 1))"
proof (rule sum.cong)
have "Ax. x < n -m= 3k>m. k< nAXx=n - k"
by (metis assms diff diff cancel diff 1le mono2 diff le self le trans)
then show "{..n - m} = (-) n = {m..n}"
by (auto simp: image iff Bex def)

ged auto
also have "... = (> _i=m..n. f 1i)"

by (smt (verit) atLeastAtMost iff diff diff cancel sum.reindex cong [OF 1inj])
also have "... = (> i<n. f i) - (D_i<m. f i)"

using sum diff nat ivl[of O "m" "Suc n" f] assms

by (simp only: atLeastOAtMost atlLeastOLessThan atlLeastlLessThanSuc atlLeastAtMost)
B finally show ?thesis .
qged



theorem Dirichlet approx simult:
fixes ¥ :: "nat = real" and N n :: nat
assumes "N > 0"
obtains q p where "0<q" "q < int (N*n)" and "Ai. i<n = !of int q * ¥ i - of int(p i)! < 1/N"
proof -
have lessN: "nat |[x * real N|] < N" if "0 < x" "x < 1" for x
proof -
have "|x * real N|] < N"
using that by (simp add: assms floor less iff)
with assms show ?thesis by linarith
ged
define interv where "interv = Mk. {real k/N..< Suc k/N}"
define fracs where "fracs = Ak. map (Ai. frac (real k * ¢ i)) [0..<n]"
define X where "X = fracs ~ {..N*n}"
define Y where "Y = set (List.n lists n (map interv [0..<N]))"
have interv iff: "interv k = interv k' «— k=k'" for k k'
using assms by (auto simp: interv def Ico eq Ico divide strict right mono)
have in_interv: "x € interv (nat [x * real N|)" if "x>0" for x
using that assms by (simp add: interv def divide simps) linarith
have False
if non: "Va b. b < N n — a < b — —=(Vi<n. !frac (real b * ¥ i) - frac (real a * 9 i)! < 1/N)"
prolfi - [35 lines]
qed
then obtain a b where "a<b" "b < N*n" and *: "Ai. i<n = !frac (real b * ¥ i) - frac (real a * ¢ i)! < 1/N"
by blast
let ?k = "b-a"
let ?h = "Xi. |b * ¢ i] - |a * ¢ i]"
show ?thesis
proof
fix i
assume "i<n
have "frac (b * 9 i) - frac (a * ¢ 1) =?k * ¢ 1 - ?h 1"
using <a < b> by (simp add: frac def left diff distrib' of nat diff)
then show "}of int ?k * 9 1 - ?h i} < 1/N"
by (metis "*" <i < n»> of int of nat eq)
qed (use <a < b> <b < N*n> in auto)
qed




No borders between topics

session Modular Functions (AFP) = Zeta Function +
options [timeout = 3600]
sessions

"HOL-Library"

"HOL-Real Asymp"

"HOL-Computational Algebra”

Formal Pulseux Series

Winding Number Eval

Linear Recurrences

Algebraic Numbers

Dirichlet Series

Dirichlet L

Polynomial Factorization

Bernoulli

Landau Symbols

Cotangent PFD Formula
theories

Kronecker Theorem

Modular Functions

Dedekind Eta Function



theory Khovanskii
imports
B FiniteProduct
"Pluennecke Ruzsa Inequality.Pluennecke Ruzsa Inequality"

"Bernoulli.Bernoulli” — <«sums of a fixed power are polynomials>

"HOL-Analysis.Weierstrass Theorems" — <needed for polynomial function»

"HOL-Library.List Lenlexorder" — <lexicographic ordering for the type @{typ <nat
begin

+ ... and we combined probability with combinatorics
* ... transfinite recursion with holomorphic functions
+ we are perfectly okay without dependent types

+ with locales we can handle multiple inheritance
(“diamonds”)



Performance matters too!

+ 0:15 for the Erd6s—Straus paper on irrational series
+ 1:11 for Balog-Szemerédi—Gowers

+ 1:04 for Grothendieck schemes

+ 0:50 for ordinal partitions

+ 0:14 for Szemerédi’s regularity lemma

+ 1:03 for Roth’s theorem on arithmetic progressions

Run on a 2019 iMac, 3.6 GHz 8-Core Intel Core 19



Search and ML, experiments




The project tasks included
Intelligent Search / Proof Idioms
Automated User Support

These were highly speculative ideas about “mining”
our existing millions of lines of proofs.



Intelhgent Search: SeRAPIS

1 holomorphic_zeta theorem [Mathematics/Analysis Mathematics/Number_theory] (AFP) Zeta_ Function.Zeta_Function & O

Used by

Preview snippet

theorem holomorphic_zeta: "1 ¢ A= zeta holomorphic_on A"
unfolding zeta_def by (auto intro: holomorphic_intros)

+ Quick, concept-oriented search of all Isabelle libraries

+ Lots of experimental search options based on a huge
index of mathematical terms



ML, experiments

<+ auto-formalisation of text to Isabelle

+ Isabelle Parallel Corpus, pairing formal theorems and
proofs to their natural language counterparts

+ generating intermediate goals for proofs

+ 1dentifying relevant lemmas



Draft, sketch and prove

Formal sketch

Informal proof have cl: “1%28 = n*4”

Statement ,

We k that gcd(a, b) - 1 b) = ab, using assms

If ng(I’l, 4) =1 and heiccr;(i\,\-l 28a:g:.€f. ) - lem(a, b) = a <proof>
lecm(n, 4) = 28, then have c2: “n = 1%28/4"

( ) Thenn=1-28/4=17, <proofs

show that nis 7. ...
‘then show ?thesis

- completing the proof. B
‘ <proof>

Verified formal proof

have cl: “1*28 = n*4"
using assms

by (smt (z3) prod _gcd_lcm nat)

then have c2: “n = 1%28/4"

by auto

then show ?thesism

by auto

r Informal\

Proof Writer

i

Draft informal proof

ajtoformaliz}

\____/

Generate formal sketch

Gﬂ-the-sh eﬁ

Prover

225

kfﬁ‘ _

Prove remaining gaps



l.essons and conclusions




“It 1s in principle impossible to set up a system of
formulas that would be equivalent to intuitionistic
mathematics, for the possibilities of thought cannot
be reduced to a finite number of rules set up in

advance.”




“Thus we are led to conclude that, although
everything mathematical is formalisable, it is
nevertheless impossible to formalise all of
mathematics in a single formal system, a fact that
intuitionism has asserted all along.”




But simple type theory worked fine for practically
everything

(which means that Whitehead and Russell were right!)

We found nothing that we couldn’t formalise (nicely!)
— and never had to redo a development

Although we never had to fight the formalism,
newcomers do struggle with the system



We developed new formalisation methodologies,
especially using locales

We investigated the role of type classes and type
dependency

The ML part of the proposal was speculative, but even
here the advances are dramatic

The main obstacles? Gaps in texts, and the sheer
immensity of mathematics.

On the other hand. ..



This never happened!




What areas of mathematics

can we formalise?

Everything we tried: combinatorics, number theory,
complex analysis, quantum computation, ...

What sorts of proofs

can we formalise?

Err... Correct proofs that don’t have big gaps



We "ve formalised the work of two Fields medalists
(Roth, Gowers), an Abel prize winner (Szemerédi)
... and the legendary Paul Erdds too.



The team

Anon Bordg Angeliki Koutsoukou-Argyraki
quantum computation, Szemerédi & Roth, additive
Grothendieck schemes, combinatorics, transcendence and

w-categories, ML experiments irrationality, ML experiments



The team

ik

Wenda Li Yiannos Sta‘flhopoulos

polynomial roots, ML experiments, SErAPIS search engine, Isabelle
transcendence and irrationality, parallel corpus, extensive ML

Grothendieck schemes experiments



... and PhD students!

R
o

Chelsea Edmonds
combinatorial block designs, Balog—
Szemerédi—-Gowers theorem,
Szemerédi & Roth, Lucas’s theorem

Albert Qiaochu Jiang
autoformalisation, premise
selection, draft/sketch/prove



Other students and interns

Adrian Dona Mateo

Nils Lauermann
Artem Khovanov

ol o Paulo Emilio de Vilhena

Rvan Shao
Hanna Lachnitt y.
- Xiao Ma
Jamie Chen S
- Yaél Dillies
Kevin Lee -
X Yijun He
Mantas Baksys
Zhengkun Ye
Marco Dos Santos .
Zibo Yang

Martin Baillon
Nicolo Cavalleri



