Automated Theorem Proving:

a lechnology Roadmap

Lawrence C Paulson FRS

Mathematical Theorem Proving and its Applications, 25/4/2022 Supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178).

1. Proof Assistants

Mechanising a formal logic

+ Syntax: a precise specification of the formalism’s grammar
+ Semantics: the mathematical meaning of logical terms and formulas
* Proof theory: a precise calculus for deriving or veritying true formulas

* Automation: algorithms and data structures to verify formulas efficiently

A variety ol verification technologies

SAT solving (originated in the 1960s, revived
in the 1990s) for Boolean logic

SMT solving: extending SAT with
arithmetic, arrays, quantifiers and more

BDDs: a powertful data structure Resolution, for first-order logic (quantifiers):

for large Boolean problems

logical reasoning + rewriting

edd/? of Z‘/’]eée C.an /’mna// e / arﬂe
proé/ emsS and 15 Fu/ /y actlomadic

So why interactive theorem proving?

+* No automatic method can prove even quite simple statements

w there are infinitely many prime numbers; \ﬁ 1s irrational
* Only higher-order formalisms are expressive enough
+ Real-world projects require large hierarchies of specifications

“interactive theorem provers” should be called specification editors

Why do interactive provers need automation?

+ Even the simplest facts are extremely tedious to prove in a basic calculus
+ Lengthy calculations drawing on thousands of facts

* Almost unlimited computer power could reduce the burden on users
* finding new proots (by classical theorem proving)

+ 1dentitying similar proofs in existing libraries (by machine learning)

Interactive theorem provers today

+« Simple types (higher-order logic):

- :
Isabelle/ HOL, HOL4, HOL Light Dependent types: Lean, Coq, Agda

+ formally stronger and more

* a simpler but weaker formal . .
expressive calculi

calculus

. . * constructive proof
+ straightforward automation

+ popular with mathematicians

* can express sophisticated T
and theoreticians

constructions

The LLCEF Architecture

* A small kernel implements the logic and has the sole power to generate
theorems (Milner, 1979)

+ ... safety ensured by the programming language’s abstract data types.
+ All specification methods and proof procedures expand to full proofs.

+ Unsoundness is less likely, but the implementation is more complicated.

+ Adopted by HOL, Isabelle, Coqg, Lean... but not PV5, ACL2

Common features in all proof assistants

* Alanguage tor declaring types &
definitions, stating theorems

* Recursive tunctions and types
+ A system of proof tactics

+* A dependency graph for theories

A modern user interface
supporting subgoal-oriented proot

Automation: rewriting, arithmetic
and specialist proot procedures

Code extraction / generation

Extensive libraries of basic maths

2. Isabelle/HOLI.

Some distinctive features of Isabelle/HOI,

+ Classical proof search using forward /backward chaining
* Quickcheck and nitpick: powertul counterexample detection
* Sledgehammer: a link to external provers

* Isar, a readable language for structured proofs

+ Extensive exploitation of parallelism

Iigher-order logic

+ First-order logic extended with polymorphic types, functions and sets
“ A type of truth values, with no distinction between terms and formulas
+ Expressive enough to formalise sophisticated mathematical definitions

* Easy to understand and implement

“HOL = functional programming + logic™

(lassical prool search (auto, force, blast ...

forward or backward chaining using

easily augmented by the user to

hundreds of built-in facts about logic, support their own development

sets, simple maths and data structures

both automatic and

interactive modes (U A;UB;) = (U AT U B;)

= = el

(dyVx.Pxy «— Pxx) - 7 VxdyVz.Pzy «— Pzx
This was the key to all the work

veritying cryptographic protocols

(Quickcheck and nmitpick

BecawtSe Mdny theore»s are Staled incorrect/ y

* Quickcheck detects false statements by evaluation with appropriate test data
and also by symbolic evaluation [it excels at inductive datatypes]

+ Nitpick detects false statements using sophisticated translations into first-
order relational logic, using the SAT-based Kodkod model finder

+ inductive/ coinductive predicates and other advanced constructions are
permitted

Sledgehammer

+ Calls several external provers to work on the current goal

“ ... but does not trust their proofs!

+ Zero configuration and 1-click invocation

* Access to the whole lemma library, able to dig up the most obscure facts

+ Particularly powerful in conjunction with structured proofs

3. Structured Proofs

Tactie proots: fit only for machines

/V/ean \/a/ e Z‘/’/eo/‘em

let MVT _LEMMA = prove(let MVT = prove(
"1 (f:real->real) a b. ¥ 1€ 2T ot e 1y Y
(\x. f(x) - (((f(b) - f(a)) / (b - a)) * xPdka)a=<= x /\ x => f contl x) /\
B 00)F=COLRCb e 3 P la) Jag (b =ray) = f differentiable x)

<= b =
XQ)kblas< x /\ x < b ==>
REPEAT GEN_TAC THEN BETA_TAC THEN S e e e

ASM_CASES_TAC “b:real = a’ THEN ASM_REWRITE_TAC[](FHBN - f(a) = (b - a) * 1),
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM REALTAUBSPAQL THENx. f(x) - (((f(b) - f(a)) / (b - a)) * x) ;

MP_TAC(GENL [x:real ; “y:real] “a:real’; “b:real’] ROLLE) THEN
(SPECL ["x:real”; "y:real ; "b - a] REAt_SOBBYNL)PHENENFun t ->REWRITE_TAC[t]) o
ASM_REWRITE_TAC[] THEN funpow 2 (fst o dest_imp) o snd) THENL

DISCH_THEN(fun th -> GEN_REWRITE_TAC I [GASM RPWRITHENAC[MVT LEMMA] THEN BETA TAC THEN
REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_Moh]ASROCIHEMEN GEN TAC “x:real’ THENL
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP[BEA¢HDENC RIYIEN thdNV THEN(ONCE_DEPTH_CONV HABS_CONV) THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REMATMYLMSYMIC THENT SUB THEN CONJ TAC THENL
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REALcH\:_$XMJONEENDEPTH CONV ETA_CONV) THEN : :
REWRITE_TAC[real_sub; REAL_LDISTRIB; REAL_RDISTREBIAZSEM MATCH MP TAC THEN ASM REWRITE TAC[REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(X_CHOOSE_THEN "z:real’ MP_TAC) THEN
REWRITE_TAC[GSYM REAL_NEG_LMUL; GSYM REAL_NEGCBMVLTAC(ONCE_DEPTH_CONV HABS CONV) THEN MATCH DMiS GHa T HEMNEGNAUNGIE Sy THEN2 ASSUME_TAC MP_TAC) THEN
REAL_NEG_ADD; REAL_NEG_NEG] THEN REWRITE_TAC[CONT CONST] THEN MATCH MP_TAC DIFF ASEH_THHEN((then_) (MAP_EVERY EXISTS_TAC

REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN EXISTS_TAC “&1° THEN MATCH ACCEPT TAC DIFF X]; [((f(b) - f(a)) / (b - a)) ; "z:real]) o MP_TAC) THEN
REWRITE_TAC[AC REAL_ADD_AC DISCH THEN(fun th -> FIRST ASSUM(MP_TAC o C MATCHuMbF@wygrﬁﬂﬁ$C[] THEN DISCH_THEN((then_) CONJ_TAC o MP_TAC) THENL
Ak - keVESE szl s (Yt W E X R 25 REALRBWQItENVAcB&ﬂiféﬂ@ntiaﬂlémENHEN DISCH_THEN(X_CHOOJ%H LTAAC;] DISFH JTHENGK ALL_TAC) THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[REAL_ADD RID]);; EXISTS TAC "1 - ((f(b) - f(a)) / (b - a))" THEN MATCH_MP_TAC REAL _DIV_LMUL THEN REWRITE_TAC[REAL_SUB_@] THEN
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN MATCH MP_HPHCGIAHEUSURSENALL_TAC THEN UNDISCH_TAC "a < a THEN
CONJ_TAC THENL REWRITE TAC[REAL LT REFL]] THEN
[CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN FIRST_ASSGPMcAHEN TAC\Xx. ((f(b) - £(a)) / (b - a)) * x) diffl
CONV_TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN (UREDY =R Ca)) /b —a)) (Z)

GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL RID] T th -> DISCH_THEN(MP_TAC o C CONJ th)) THENL
MATCH_MP_TAC DIFF_CMUL THEN MATCH_ACCEPT TAC DIHMCONV ;TAC(ONCE_DEPTH_CONV HABS_CONV) THEN REWRITE_TAC[] THEN
ALL TAC] THEN GEN_REWRITE_TAC LAND CONV [GSYM REAL_MUL_RID] THEN
MATCH_MP_TAC DIFF_CMUL THEN REWRITE_TAC[DIFF_X]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA TAC THEN

REWRITE_TAC[REAL_SUB_ADD] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
REWRITE_TAC[REAL_ADD LID]);;

The same, as a structured proot

theorem mvt:
fixes ¢ :: "real = real"
assumes "a < b"
and contf: "continuous_on {a..b} ¢"
and derf: "Ax. [@a < X; X < b] = (¢ has_derivative ¢' x) (at x)"
obtains & where "a < " "E < b" "¢ b -¢ a= (¢' &) (b-a)"
proof -
define f where "f = Ax. ¢ x - (9 b — ¢ a) / (b-a) x x"
have "3£. a <& A E <b A (Ay. o' EYy - (pb -9 a) / (b-a) xy) = (Av. 0)"
proof (intro Rolle_deriv[OF <a < b>])
fix X
assume x: "a < x" "x < b"
show "(f has_derivative (Ay. ¢' xy — (¢ b — ¢ a) / (b=-a) x y)) (at x)"
unfolding f_def by (intro derivative_intros derf x)
next
show "f a = f b"
using assms by (simp add: f_def field_simps)
next
show "continuous _on {a..b} f"
unfolding f_def by (intro continuous_intros assms)
qged
then show ?thesis
by (smt (verit, ccfv_SIG) pos_le _divide_eq pos_less _divide_eq that)
qed

Structured proofs are necessary!

+ Because formal proofs should make sense to users
... reducing the need to trust our verification tools
+ For reuse and eventual translation to other systems

+ For maintenance (easily fix proofs that break due to changes to
definitions... or automation)

tith sSore other 5}/52‘ ens,

wSers avoid awtloricdion For 2Ad reason!

Structured proots
assist machine learning!

+ Working locally within a large proof
+ Looking for just the next step (not the whole proof)
* Proof by analogy

+ Identitying idioms

For Isabelle, we've lots of data

+* About 230K proof lines in Isabelle’s maths libraries:
Analysis, Complex Analysis, Number Theory, Algebra

+ Nearly 3.4M proof lines nearly 700 entries in the Archive
of Formal Proofs (not all mathematics though)

+« Over 400 different authors: diverse styles and topics

| .ots of structured “chunks”

+ Structured proof fragments contain explicit assertions
and context elements that could drive learning

+* These might relate to natural mathematical steps
+ Proving a function to be continuous
+ Getting a ball around a point within an open set

+ Covering a compact set with finitely many balls

It is essential to synthesise terms and formulas

Even tactics take arguments

Structured proofs mostly consist of explicit formulas

4. A Few Proof ldioms for M.

Inequality chains

have "X m*Ym-Xn*Yn! =1 Xm>*((Ym-Yn)+(Xxm-Xn)>*Yn!"
unfolding mult diff mult ..

also have "... < I Xm* (Ym-Yn)! + ! (Xm-Xn) *Yn!"
by (rule abs triangle ineq)

also have "... = X m! * !'Ym -Yn) + ' Xm-Xn! * 1Y nl"
unfolding abs mult ..

also have "... <a *t + s * b"

by (simp all add: add strict mono mult strict mono' a b 1 j *)
finally show "!Xm * Y m - Xn *Y n! < r"
by (simp only: r)
typically by the triangle inequality
with simple algebraic manipulations

there are hundreds of examples

Simple topological steps

have "open (interior I)" by auto
from openE[OF this <«x € interior I»]
obtain e where e: "0 < e" "ball x e C interior I"

define U where "U = (Aw. (w - &) * g w) = T"
have "open U" by (metis oimT U def)
moreover have "0 € U"
using <¢ € T> by (auto simp: U def intro: image eql [where x = £])

ultimately obtain = where "=>0" and ¢: "“cball 0 = C U"
using <open U> open contains cball by blast

a neighbourhood around a point within an open set

many similar but not identical instances

Summations

also
by

"real (Suc n) * S (X +y) (Sucn) = (x+vy)* (O>Di<n. Sx i *Sy (n - 1i))"
(metis Suc.hyps times S)
have "... = x * ()Ji<n. S x i *Sy (n-1)) +y * (>Ji<n. S x i *S vy (n - 1i))"
(rule distrib right)
have "... = (D]i<n. x * S x i *S vy (n - 1)) + (>i<n. S x i *y *S vy (n - i))"
(simp add: sum distrib left ac simps S comm)
have "... = (DJi<n. x * S x i *S vy (n - 1)) + (O i<n. S x i * (y *S vy (n - 1)))"
(simp add: ac simps)
have "... (> i<n. real (Suc i) *r (S x (Suc i) * Sy (n - 1)))
+ (> i<n. real (Sucn - i) *s (S x 1 *S vy (Sucn - 1i)))"

(simp add: times S Suc diff le)
have "() i<n. real (Suc i) *r (S x (Suc i) * Sy (n - 1i)))

= (> i<Suc n. real 1 * (S x i *S vy (Sucn - 1i)))"
(subst sum.atMost Suc shift) simp
have " (> i<n. real (Suc n - i) *s (S x 1 *S vy (Sucn - 1i)))

= () i<Suc n. real (Suc n - i) *x (S x 1 *S vy (Sucn - 1i)))"
simp
have "() i<Suc n. real i *s (S x i *S vy (Sucn - 1i)))

+ () i<Suc n. real (Suc n - i) *x (S x 1 *S vy (Suc n - 1i)))

= (> i<Suc n. real (Suc n) *x (S x 1 *S vy (Sucn - 1i)))"
(simp Tlip: sum.distrib scaleR add left of nat add)
have "... = real (Suc n) *r (> i<Suc n. S x i *S vy (Sucn - i))"

(simp only: scaleR right.sum)

finally show "S (x + y) (Suc n) = (>.i<Suc n. Sx i *Svy (Sucn - 1i))"

by

(simp del: sum.cl ivl Suc)

Painful, yet the steps of that proof are routine!

the distributive law x + y)z = xz + yz
the distributive law x¥ _ a,= 3 _ xa,
the distributive law ¥ _ a,+b)=3%._ a,+X._ b,
Shifting the index of summation and deleting a zero term

Change-of-variables is also common in such proofs

Can’t at least some of these steps be
learned from similar previous proofs?

Isabelle imeline (36 years!)

1986: higher-order unification

1988: classical reasoning

1989: logical framework

2002: structured proofs: Isar
2004: Archive of Formal Proofs

2007: sledgehammer

1989: term rewriting simplifier

1991: polymorphism and HOL

2008: multithreading

2011: counterexample finding

1995: set theory libraries (nitpick and quickcheck)

1996: verification case studies 2013: code generation

1997: axiomatic type classes 2015: jEdit-based prover IDE
1998: classical reasoner “blast” 2016: HOL Light analysis library

1999: modules for structured

2017+: advanced mathematics

specifications, “locales”

