Machine Learning and the Formalisation Of Mathematics: Research Challenges

Lawrence C Paulson FRS

1. Introducing ALEXANDRIA

Thank you, ERC!

Mathematicians are fallible

Look at the footnotes on a single page (118) of Jech's The Axiom of Choice

${ }^{1}$ The result of Problem 11 contradicts the results announced by Levy [1963b]. Unfortunately, the construction presented there cannot be completed.
${ }^{2}$ The transfer to ZF was also claimed by Marek [1966] but the outlined method appears to be unsatisfactory and has not been published.
${ }^{3}$ A contradicting result was announced and later withdrawn by Truss [1970].
${ }^{4}$ The example in Problem 22 is a counterexample to another condition of Mostowski, who conjectured its sufficiency and singled out this example as a test case.
${ }^{5}$ The independence result contradicts the claim of Felgner [1969] that the Cofinality Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner's corrections to [1969]).

We aim to link people, formal proofs and traditional mathematics

\therefore Funded by the European Research Council (2017-22)
\therefore Four postdoctoral researchers:
\% one Isabelle engineer (Wenda Li)
\therefore two professional mathematicians (Angeliki Koutsoukou-Argyraki and Anthony Bordg)
\because an expert on natural language/machine learning/ information retrieval (Yiannos Stathopoulos)

What have we been up to?

> Building libraries of advanced mathematics: algebra, analysis, probability theory...

Natural language search for library theorems

Writing verified computer algebra tools

Conjecture synthesis via ML

> Aiming to support the re-use of proof fragments

2. Structured Proofs

Tactic proofs: fit only for machines

Intermediate value theorem

```
let IVT = prove(
    !f a b y. a <= b /\
            (f(a)<= y /\ y<= f(b)) /\
            (!x. a <= x /\ x <= b ==> f contl x)
```



```
REPEAT GEN_TAC THEN DISCH THEN(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
DISCH_THEN(CONJUNCTS_THENHDASELMMEACAClx.a <= x N x <= b = f contl x THEN
    (CONJUNCTS_THEN2 MP_TACDSSCHPTHSNSUMEMTAGG)) > THENNST ASSUM(MP TAC o MATCH MP th)) THEN
CONV_TAC CONTRAPOS_CONV R欺NITE TAC[contl: LIM] THEN
DISCH_THEN(ASSUME_TAC O GPNCH RHTHENNNP_FXISSSSGENV) abSEN - f(x:real)) ) THEN
(MP_TAC O C SPEC BOLZANOGENMNENRITE_TAC (funpow 2 LAND_CONV) [GSYM ABEFCNZ] CONENTAC THENL
```



```
    W(C SUBGOAL_THEN (fun t DISCH_HHEN&XACHOGSE_THEN d:real STRIP_ASSUMASNA_REWTHFN_TAC[REAL_LT_LE] THEN DISCH_THEN_SUBST_ALL_TAC THEN
```



```
    ASM REWRITE TAC[] THENL [DTSJI TAC' DIS\2 JACJDJHEN: THEN ASM REWASSM REWRITETFAC[GSYM REAL_NOT LT] THEN
```



```
    MATCH_MP_TAC REAL_LE_TRANS_SNHENEWRITE TAC[real abs; REAL SUB LE] THEN
```



```
    ALL_TAC] THEN ASM REWRITE_TAC[real_sub; REAL LE_LADD; REAL_LE_NEG; REAL_LE_RADD];
X_GEN_TAC ` x real` THEN ASM_OASEESTAN&ITE TACXREAL ADD SYM]FFHEN REWRITE TAC[REAL SUB ADD] THEN
    [ALL_TAC; REWRITTE TAC[REAL NOT L̄T; real_abs; REAL_SUB_L_LE] THEN
    EXISTS_TAC `&1` THEN REWRI\EBEGAL[REAENLTFQJ.]reaEN`<= y` ASSUME_TAC THENL
    MAP_EVERY X_GEN_TAC [`u:rea&MATCH`\MP]
```



```
    ASM_REWRITE_TAC[]] THEN DISCH_THEN(MP TAC O SPEC u - X \) THEN REWRITE_TAC[NOT_IMP] THEN
    ASM_REWRITE_TAC[REAL_NOT_LT;-REAL_LE_NEG; real_Sub; REAL_LE_RADD]]]);;
```


Where's the intuition?

By Kpengboy (Own work, based off Intermediatevaluetheorem.png), via Wikimedia Commons

Or again: a HOL Light tactic proof

```
let SIMPLE_PATH_SHIFTPATH = prove
    (`!g a. simple_path g /\ pathfinish g = pathstart g /\
                a IN interval[vec 0,vec 1]
            ==> simple_path(shiftpath a g)`,
    REPEAT GEN_TAC THEN REWRITE_TAC[simple_path] THEN
    MATCH_MP_TAC(TAUT
        `(a /\ c /\ d ==> e) /\ (b /\ c /\ d ==> f)
        =>(a/\ b) \\c \\d ==> e /\ f`) THEN
    CONJ_TAC THENL [MESON_TAC[PATH_SHIFTPATH]; ALL_TAC] THEN
    REWRITE_TAC[simple_path; shiftpath; IN_INTERVAL_1; DROP_VEC;
            DROP_ADD; DROP_SUB] THEN
    REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
    ONCE_REWRITE_TAC[TAUT `a /\ b ハ\ c => d``>> c ==> a /\ b ==> d`] THEN
    STRIP_TAC THEN REPEAT GEN_TAC THEN
    REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
    DISCH_THEN(fun th -> FIRST_X_ASSUM(MP_TAC o C MATCH_MP th)) THEN
    REPEAT(POP_ASSUM MP_TAC) THEN
    REWRITE_TAC}[DROP_ADD\overline{D}; DROP_SUB; DROP_VEC; GSYM DROP_EQ] THE
    REAL_ARITH_TAC);;
```


The same, as a structured proof

```
lemma simple_path_shiftpath:
    assumes "simple_path g" "pathfinish g = pathstart g" and a: "0 \leq a" "a \leq 1"
    shows "simple_path (shiftpath a g)"
    unfolding simple path def
proof (intro conjI impI ballI)
    show "path (shiftpath a g)
    by (simp add: assms path shiftpath simple path imp path)
    have *: "\x y. \llbracketg x = g y; x \in {0..1}; y f {0..1}\rrbracket\Longrightarrow > = y v x = 0 ^ y = 1 \vee x = 1 ^ y = 0"
    using assms by (simp add: simple path def)
    show "x = y \vee x = 0 ^ y = 1 \vee x = 1 ^ y = 0"
        if "x \in {0..1}" "y \in {0..1}" "shiftpath a g x = shiftpath a g y" for x y
        using that a unfolding shiftpath_def
        by (force split: if_split_asm dest!: *)
qed
```


Proofs with gaps

a chain of "stepping stones" from the assumptions to conclusion

Users can fill these gaps in any order

Structured proofs are necessary!

\% Because formal proofs should make sense to users
... reducing the need to trust our verification tools
\therefore For reuse and eventual translation to other systems
\% For maintenance (easily fix proofs that break due to changes to definitions... or automation)

```
With some other systems,
users avoid automation for that reason!
```


3. Implications for ML

New possibilities for ML with structured proofs

\% Working locally within a large proof
\% Looking for just the next step (not the whole proof)
\% Proof by analogy

* Identifying idioms

Lots of data

\% About 230K proof lines in Isabelle's maths libraries: Analysis, Complex Analysis, Number Theory, Algebra
\because Nearly 2.6 M proof lines in the Archive of Formal Proofs (not all mathematics though)

* Hundreds of different authors: diverse styles and topics

Lots of structured "chunks"

\% Structured proof fragments contain explicit assertions and context elements that could drive learning

* These might relate to natural mathematical steps
* Proving a function to be continuous
\because Getting a ball around a point within an open set
* Covering a compact set with finitely many balls

Where does prior work fit in?

\therefore TacticToe, etc., aim to prove theorems automatically within the tactic paradigm, also predicting (just) the next tactic
\% Gauthier et al. work on statistical conjecturing attempts term and formula synthesis
There's already a trend towards incremental
proof construction (as opposed to full proofs)

It is essential to synthesise terms and formulas

Even tactics take arguments

Structured proofs mostly consist of explicit formulas

4. A Few Typical Proof Idioms

Inequality chains

```
have "!X m * Y m - X n * Y n! = \X m * (Y m - Y n) + (X m - X n) * Y n!"
```

 unfolding mult_diff_mult ..
 also have "... $\leq|X m *(Y m-Y n)|+\mid(X m-X n) * Y n!"$
by (rule abs_triangle_ineq)
also have "... = |X mi * |Y m - Y ni + |X m - X ni * |Y n|"
unfolding abs_mult ..
also have "... < a * t + s * b"
by (simp_all add: add_strict_mono mult_strict_mono' a b i j *)
finally show " $\dagger \mathrm{X}$ m * Y m - X n * Y ni < r"
by (simp only: r)
typically by the triangle inequality
with simple algebraic manipulations
there are hundreds of examples

Simple topological steps

have "open (interior I)" by auto
from openE[OF this $\langle x \in$ interior $I\rangle$]
obtain e where e: "0 < e" "ball x e \subseteq interior I".

```
define U where "U = (\lambdaw. (w - \xi) * g w) ` T"
have "open U" by (metis oimT U_def)
moreover have "0 \inU"
    using < }\in\inT> by (auto simp: U_def intro: image_eqI [where x = \xi]
ultimately obtain \varepsilon where " }<00"\mathrm{ and }\varepsilon\mathrm{ : "cball 0 &` U"
    using <open U> open_contains_cball by blast
```

a neighbourhood around a point within an open set
many similar but not identical instances

Summations

```
have "real (Suc n) *R S (x + y) (Suc n) = (x + y) * (\sumi\leqn. S x i * S y (n - i))"
    by (metis Suc.hyps times_S)
also have "... = x * (\sumi\leqn.S x i * S y (n - i)) + y * (\sumi\leqn. S x i * S y (n - i))"
    by (rule distrib_right)
also have "... = (\sumi\leqn. x * S x i * S y (n - i)) + (\sumi\leqn. S x i * y * S y (n - i))"
    by (simp add: sum_distrib_left ac_simps S_comm)
also have "... = (\sumi\leqn. x * S x i * S y (n - i)) + (\sumi\leqn. S x i * (y * S y (n - i)))"
    by (simp add: ac simps)
also have "... = (\sumi\leqn. real (Suc i) *R (S x (Suc i) * S y (n - i)))
    +(\sumi\leqn. real (Suc n - i) *r (S x i * S y (Suc n - i)))"
    by (simp add: times_S Suc_diff_le)
also have "(\sumi\leqn. real (Suc i) *R (S x (Suc i) * S y (n - i)))
        =(\sumi\leqSuc n. real i *r (S x i * S y (Suc n - i)))"
    by (subst sum.atMost_Suc_shift) simp
also have "(\sumi\leqn. real (Suc n - i) *R (S x i * S y (Suc n - i)))
            =(\sumi\leqSuc n. real (Suc n - i) *r (S x i * S y (Suc n - i)))"
    by simp
also have "(\sumi\leqSuc n. real i *R (S x i * S y (Suc n - i)))
            +(\sumi\leqSuc n. real (Suc n - i) *R (S x i * S y (Suc n - i)))
            = (\sumi\leqSuc n. real (Suc n) *R (S x i * S y (Suc n - i)))"
    by (simp flip: sum.distrib scaleR_add_left of_nat_add)
also have "... = real (Suc n) *R ( \sumi\leqSuc n. S x i * S y (Suc n - i))"
    by (simp only: scaleR_right.sum)
finally show "S (x + y) (Suc n) = (\sumi\leqSuc n. S x i * S y (Suc n - i))"
    by (simp del: sum.cl_ivl_Suc)
```


Painful, yet the steps of that proof are routine!

the distributive law $(x+y) z=x z+y z$
the distributive law $x \sum_{i \leq n} a_{n}=\sum_{i \leq n} x a_{n}$
the distributive law $\sum_{i \leq n}\left(a_{n}+b_{n}\right)=\sum_{i \leq n} a_{n}+\sum_{i \leq n} b_{n}$
Shifting the index of summation and deleting a zero term

Change-of-variables is also common in such proofs
Can't at least some of these steps be learned from similar previous proofs?

So, an idea: link common "utility lemmas" to natural language concepts?
... then let users supply natural language hints?

This shouldn't require too much laborious lemma tagging: just a few dozen lemmas would cover many techniques

But for which sort of user?

*For mathematicians, who need help
$\%$ to use the proof assistant
\% to navigate its library
$\%$ to locate missing material in the mathematical literature and eventually to formalise it

* Or verification engineers
$\%$ who need mathematics for an application
\% but lack expert knowledge
\% and again need help finding relevant library items?

Some work of ours

\% SErAPIS : A Concept-Oriented Search Engine (next talk!)
\% IsarStep: a dataset for conjecture synthesis (Wenda Li)

* to propose intermediate propositions within structured proofs
\% via neural sequence-to-sequence models.
\therefore Close to 20% accuracy when synthesising intermediate propositions.
\therefore Can also capture the relationships between concepts, e.g. sets vs. their members.

Conclusions

* the formalisation of mathematics, especially into structured proofs, requires a different approach to ML
\because synthesis of terms and assertions to continue (not necessarily complete) a proof
\% linking between informal proof ideas and their formal equivalents
* brainstorming backed by the system's full knowledge

