Hammering Away
A User’s Guide to Sledgehammer for Isabelle/HOL

Jasmin Christian Blanchette

Institut fiir Informatik, Technische Universitat Miinchen

January 30, 2011

Contents
1 Introduction 2
2 Installation 3
3 First Steps 4
4 Hints 5
5 Command Syntax 6
6 Option Reference 7
6.1 Mode of Operation 8
6.2 Problem Encoding L. 10
6.3 Relevance Filter 10

6.4 Output Format 11
6.5 Authentication L 11

1 Introduction

Sledgehammer is a tool that applies first-order automatic theorem provers
(ATPs) and satisfiability-modulo-theories (SMT) solvers on the current goal.
The supported ATPs are E [7], SPASS [10], Vampire [6], SInE-E [4], and
SNARK [8]. The ATPs are run either locally or remotely via the SystemOn-
TPTP web service [9]. In addition to the ATPs, the SMT solvers Z3 [11] is
used, and you can tell Sledgehammer to try Yices [3] and CVC3 [1] as well.

The problem passed to the automatic provers consists of your current goal
together with a heuristic selection of hundreds of facts (theorems) from the
current theory context, filtered by relevance. Because jobs are run in the
background, you can continue to work on your proof by other means. Provers
can be run in parallel. Any reply (which may arrive half a minute later) will
appear in the Proof General response buffer.

The result of a successful proof search is some source text that usually (but
not always) reconstructs the proof within Isabelle. For ATPs, the recon-
structed proof relies on the general-purpose Metis prover [5], which is fully
integrated into Isabelle/HOL, with explicit inferences going through the ker-
nel. Thus its results are correct by construction.

In this manual, we will explicitly invoke the sledgehammer command.
Sledgehammer also provides an automatic mode that can be enabled via
the “Auto Sledgehammer” option from the “Isabelle” menu in Proof General.
In this mode, Sledgehammer is run on every newly entered theorem. The
time limit for Auto Sledgehammer and other automatic tools can be set using
the “Auto Tools Time Limit” option.

To run Sledgehammer, you must make sure that the theory Sledgehammer
is imported—this is rarely a problem in practice since it is part of Main.
Examples of Sledgehammer use can be found in Isabelle’s src/HOL/Metis.
Examples directory. Comments and bug reports concerning Sledgehammer
or this manual should be directed to blanchette®@in.tum.de.

2 Installation

Sledgehammer is part of Isabelle, so you don’t need to install it. However,
it relies on third-party automatic theorem provers (ATPs) and SAT solvers.
Currently, E; SPASS, and Vampire can be run locally; in addition, E, Vam-
pire, SInE-E, and SNARK are available remotely via SystemOnTPTP [9]. If
you want better performance, you should install E and SPASS locally.

There are three main ways to install ATPs on your machine:

e If you installed an official Isabelle package with everything inside, it
should already include properly setup executables for E and SPASS,
ready to use.!

e Alternatively, you can download the Isabelle-aware E and SPASS bi-
nary packages from Isabelle’s download page. Extract the archives,
then add a line to your ~/.isabelle/etc/components file with the
absolute path to E or SPASS. For example, if the components does not
exist yet and you extracted SPASS to /usr/local/spass-3.7, create
the components file with the single line

/usr/local/spass-3.7
in it.

e If you prefer to build E or SPASS yourself, or obtained a Vampire exe-
cutable from somewhere (e.g., http://www.vprover.org/), set the en-
vironment variable E_HOME, SPASS_HOME, or VAMPIRE_HOME to the direc-
tory that contains the eproof, SPASS, or vampire executable. Sledge-
hammer has been tested with E 1.0 and 1.2, SPASS 3.5 and 3.7, and
Vampire 1.02. Since the ATPs’ output formats are neither documented
nor stable, other versions of the ATPs might or might not work well
with Sledgehammer.

To check whether E and SPASS are installed, follow the example in §3.

Remote ATP invocation via the SystemOnTPTP web service requires Perl
with the World Wide Web Library (libwww-perl) installed. If you must
use a proxy server to access the Internet, set the http-proxy environment
variable to the proxy, either in the environment in which Isabelle is launched
or in your ~/.isabelle/etc/settings file. Here are a few examples:

1. Vampire’s license prevents us from doing the same for this otherwise wonderful tool.
2. Following the rewrite of Vampire, the counter for version numbers was reset to 0;
hence the new Vampire 1.0 is more recent than Vampire 11.5.

http://www.vprover.org/

http-proxy=http://proxy.example.org
http-proxy=http://proxy.example.org:8080
http-proxy=http://joeblow:pAsSwRdOproxy.example.org

3 First Steps

To illustrate Sledgehammer in context, let us start a theory file and attempt
to prove a simple lemma:

theory Scratch
imports Main

begin
lemma “[a] = [b] «—— a=10"
sledgehammer

Instead of issuing the sledgehammer command, you can also find Sledge-
hammer in the “Commands” submenu of the “Isabelle” menu in Proof General
or press the Emacs key sequence C-c¢ C-a C-s. Either way, Sledgehammer
produces the following output after a few seconds:

Sledgehammer: “e” for subgoal 1:

(la] = [b]) = (a = b)

Try this command: by (metis hd.simps).

To minimize the number of lemmas, try this:
sledgehammer minimize [prover = e| (hd.simps).

Sledgehammer: “spass” for subgoal 1:

([a] =[b]) = (a =)

Try this command: by (metis insert- Nil last- ConsL).

To minimize the number of lemmas, try this:

sledgehammer minimize [prover = spass| (insert- Nil last- ConsL).

Sledgehammer: “vampire” for subgoal 1:

(la] = [b]) = (a = b)

Try this command: by (metis eq-commute last-snoc)
To minimize the number of lemmas, try this:

sledgehammer minimize [prover = vampire| (eq-commute last-snoc).

Sledgehammer: “remote.sine-e” for subgoal 1:

([o] = [b]) = (e =)

Try this command: by (metis hd.simps)

To minimize the number of lemmas, try this:

sledgehammer minimize [prover = remote. sine- e[(hd.simps). Sledge-
hammer: “remote-z3" for subgoal 1:

(lo] = [8)) = (a = b)

Try this command: by (metis hd.simps)

To minimize the number of lemmas, try this:

sledgehammer minimize [prover = remote_sine-e| (hd.simps).

Sledgehammer ran E, SPASS, Vampire, SInE-E, and Z3 in parallel. De-
pending on which provers are installed and how many processor cores are
available, some of the provers might be missing or present with a remote-
prefix.

For each successful prover, Sledgehammer gives a one-liner proof that uses
the metis or smt method. You can click the proof to insert it into the theory
text. You can click the “sledgehammer minimize” command if you want
to look for a shorter (and probably faster) proof. But here the proof found
by E looks perfect, so click it to finish the proof.

You can ask Sledgehammer for an Isar text proof by passing the isar-proof
option:

sledgehammer [isar-proof|

When Isar proof construction is successful, it can yield proofs that are more
readable and also faster than the metis one-liners. This feature is experi-
mental and is only available for ATPs.

4 Hints

For best results, first simplify your problem by calling auto or at least safe
followed by simp-all. None of the ATPs contain arithmetic decision proce-
dures. They are not especially good at heavy rewriting, but because they
regard equations as undirected, they often prove theorems that require the
reverse orientation of a simp rule. Higher-order problems can be tackled, but
the success rate is better for first-order problems. Hence, you may get better
results if you first simplify the problem to remove higher-order features.

Note that problems can be easy for auto and difficult for ATPs, but the
reverse is also true, so don’t be discouraged if your first attempts fail. Because
the system refers to all theorems known to Isabelle, it is particularly suitable
when your goal has a short proof from lemmas that you don’t know about.

5 Command Syntax

Sledgehammer can be invoked at any point when there is an open goal by
entering the sledgehammer command in the theory file. Its general syntax
is as follows:

? . ? .19 ?
sledgehammer subcommand’ options’ facts-override” num’

For convenience, Sledgehammer is also available in the “Commands” submenu
of the “Isabelle” menu in Proof General or by pressing the Emacs key sequence
C-c C-a C-s. This is equivalent to entering the sledgehammer command
with no arguments in the theory text.

In the general syntax, the subcommand may be any of the following:

e run (the default): Runs Sledgehammer on subgoal number num (1
by default), with the given options and facts.

e minimize: Attempts to minimize the provided facts (specified in the
facts_override argument) to obtain a simpler proof involving fewer
facts. The options and goal number are as for run.

e messages: Redisplays recent messages issued by Sledgehammer. This
allows you to examine results that might have been lost due to Sledge-
hammer’s asynchronous nature. The num argument specifies a limit
on the number of messages to display (5 by default).

e available_provers: Prints the list of installed provers. See §2 and
§6.1 for more information on how to install automatic provers.

e running-provers: Prints information about currently running au-
tomatic provers, including elapsed runtime and remaining time until
timeout.

e kill_provers: Terminates all running automatic provers.

e refresh_tptp: Refreshes the list of remote ATPs available at System-
OnTPTP [9].

Sledgehammer’s behavior can be influenced by various options, which can be
specified in brackets after the sledgehammer command. The options are
a list of key—value pairs of the form “[k; = vy,...,k, = v,]”. For Boolean
options, “= true” is optional. For example:

sledgehammer [isar-proof, timeout = 120 s|

Default values can be set using sledgehammer_params:
sledgehammer_params options
The supported options are described in §6.

The facts-override argument lets you alter the set of facts that go through
the relevance filter. It may be of the form “(facts)”, where facts is a space-
separated list of Isabelle facts (theorems, local assumptions, etc.), in which
case the relevance filter is bypassed and the given facts are used. It may also
be of the form “(add: facts;)”, “(del: factss)”, or “(add: facts, del: factss)”,
where the relevance filter is instructed to proceed as usual except that it
should consider facts; highly-relevant and factsy fully irrelevant.

You can instruct Sledgehammer to run automatically on newly entered theo-
rems by enabling the “Auto Sledgehammer” option from the “Isabelle” menu
in Proof General. For automatic runs, only the first prover set using provers
(86.1) is considered, verbose (§6.4) and debug (§6.4) are disabled, fewer facts
are passed to the prover, and timeout (§6.1) is superseded by the “Auto Tools
Time Limit” in Proof General’s “Isabelle” menu. Sledgehammer’s output is
also more concise.

6 Option Reference

Sledgehammer’s options are categorized as follows: mode of operation (§6.1),
problem encoding (§6.2), relevance filter (§6.3), output format (§6.4), and
authentication (§6.5).
The descriptions below refer to the following syntactic quantities:

[

string): A string.

e (bool): true or false.

int): An integer.

{
{
e (bool_or_smart): true, false, or smart.
(in
{

float_pair): A pair of floating-point numbers (e.g., 0.6 0.95).
int_or-smart): An integer or smart.

{
e (float-or-mone): An integer (e.g., 60) or floating-point number (e.g.,
0.5) expressing a number of seconds, or the keyword none (oo seconds).

Default values are indicated in square brackets. Boolean options have a
negated counterpart (e.g., blocking vs. non-blocking). When setting Boolean
options, “= true” may be omitted.

6.1 Mode of Operation

provers = (string)

Specifies the automatic provers to use as a space-separated list (e.g.,
“e spass”). The following provers are supported:

e e: E is an ATP developed by Stephan Schulz [7]. To use E, set
the environment variable E_LHOME to the directory that contains the
eproof executable, or install the prebuilt E package from Isabelle’s
download page. See §2 for details.

e spass: SPASS is an ATP developed by Christoph Weidenbach
et al. [10]. To use SPASS, set the environment variable SPASS_
HOME to the directory that contains the SPASS executable, or in-
stall the prebuilt SPASS package from Isabelle’s download page.
Sledgehammer requires version 3.5 or above. See §2 for details.

e vampire: Vampire is an ATP developed by Andrei Voronkov and
his colleagues [6]. To use Vampire, set the environment variable
VAMPIRE_HOME to the directory that contains the vampire exe-
cutable. Sledgehammer has been tested with versions 11, 0.6, and
1.0.

e 23: 73 is an SMT solver developed at Microsoft Research [11]. To
use Z3, set the environment variable Z3_SOLVER to the complete
path of the executable, including the file name. Sledgehammer
has been tested with 2.7 to 2.15.

e yices: Yices is an SMT solver developed at SRI [3]. To use Yices,
set the environment variable YICES_SOLVER to the complete path
of the executable, including the file name. Sledgehammer has been
tested with version 1.0.

e cvcd: CVC3isan SMT solver developed by Clark Barrett, Cesare
Tinelli, and their colleagues [1|. To use CVC3, set the environment
variable CVC3_SOLVER to the complete path of the executable, in-

cluding the file name. Sledgehammer has been tested with version
2.2.

e remote_e: The remote version of E runs on Geoff Sutcliffe’s Mi-
ami servers [9].

e remote_vampire: The remote version of Vampire runs on Geoff
Sutcliffe’s Miami servers. Version 9 is used.

e remote-sine-e: SInE-E is a metaprover developed by Krystof
Hoder [4] based on E. The remote version of SInE runs on Geoff
Sutcliffe’s Miami servers.

e remote_snark: SNARK is a prover developed by Stickel et al.
[8]. The remote version of SNARK runs on Geoff Sutcliffe’s Miami
Servers.

e remote-z3: The remote version of Z3 runs on servers at the TU
Miinchen (or wherever REMOTE_SMT_URL is set to point).

e remote-cvc3: The remote version of CVC3 runs on servers at
the TU Miinchen (or wherever REMOTE_SMT.URL is set to point).

By default, Sledgehammer will run E, SPASS, Vampire, SInE-E, and
Z3 (or whatever the SMT module’s smit_solver configuration option is
set to) in parallel—either locally or remotely, depending on the num-
ber of processor cores available. For historical reasons, the default
value of this option can be overridden using the option “Sledgeham-
mer: Provers” from the “Isabelle” menu in Proof General.

It is a good idea to run several provers in parallel, although it could
slow down your machine. Running E, SPASS, Vampire, and SInE-E
together for 5 seconds yields a better success rate than running the
most effective of these (Vampire) for 120 seconds [2].

prover = (string)

Alias for provers.

atps = (string)
Legacy alias for provers.

atp = (string)
Legacy alias for provers.

timeout = (float-or-none) [30]
Specifies the maximum number of seconds that the automatic provers
should spend searching for a proof. For historical reasons, the default
value of this option can be overridden using the option “Sledgehammer:
Time Limit” from the “Isabelle” menu in Proof General.

blocking [= (bool)| |[false] (neg.: non-blocking)

Specifies whether the sledgehammer command should operate syn-
chronously. The asynchronous (non-blocking) mode lets the user start

proving the putative theorem manually while Sledgehammer looks for
a proof, but it can also be more confusing.

overlord [= (bool)| |[false] (neg.: no-overlord)

Specifies whether Sledgehammer should put its temporary files in $ISA-
BELLE_HOME_USER, which is useful for debugging Sledgehammer but
also unsafe if several instances of the tool are run simultaneously. The
files are identified by the prefix prob_; you may safely remove them
after Sledgehammer has run.

See also debug (§6.4).

6.2 Problem Encoding

explicit_apply [: (bool)] [false] (neg.: implicit-apply)
Specifies whether function application should be encoded as an explicit
“apply” operator in ATP problems. If the option is set to false, each
function will be directly applied to as many arguments as possible.
Enabling this option can sometimes help discover higher-order proofs
that otherwise would not be found.

full_types [= (bool)] |[false] (neg.: partial_types)
Specifies whether full-type information is encoded in ATP problems.
Enabling this option can prevent the discovery of type-incorrect proofs,
but it also tends to slow down the ATPs significantly. For historical
reasons, the default value of this option can be overridden using the
option “Sledgehammer: Full Types” from the “Isabelle” menu in Proof
General.

6.3 Relevance Filter

relevance_thresholds = (float-pair) [0.45 0.85]

Specifies the thresholds above which facts are considered relevant by
the relevance filter. The first threshold is used for the first iteration of
the relevance filter and the second threshold is used for the last iteration
(if it is reached). The effective threshold is quadratically interpolated
for the other iterations. Each threshold ranges from 0 to 1, where 0
means that all theorems are relevant and 1 only theorems that refer to
previously seen constants.

10

maz_relevant [= (bool_or_smart)] [smart] (neg.: int_or.smart)

Specifies the maximum number of facts that may be returned by the
relevance filter. If the option is set to smart, it is set to a value that

was empirically found to be appropriate for the prover. A typical value
would be 300.

6.4 Output Format

verbose [= (bool)| |[false] (neg.: quiet)
Specifies whether the sledgehammer command should explain what
it does. This option is implicitly disabled for automatic runs.

debug [= (bool)] |[false] (neg.: no-debug)
Specifies whether Sledgehammer should display additional debugging
information beyond what wverbose already displays. Enabling debug
also enables verbose and blocking (§6.1) behind the scenes. The debug
option is implicitly disabled for automatic runs.

See also overlord (§6.1).

isar-proof [= (bool)] |[false] (neg.: no-isar-proof)
Specifies whether Isar proofs should be output in addition to one-liner
metis proofs. Isar proof construction is still experimental and often
fails; however, they are usually faster and sometimes more robust than
metis proofs.

isar_shrink_factor = (int) [1]
Specifies the granularity of the Isar proof. A value of n indicates that

each Isar proof step should correspond to a group of up to n consecutive
proof steps in the ATP proof.

6.5 Authentication

expect = (string)
Specifies the expected outcome, which must be one of the following:
e some: Sledgehammer found a (potentially unsound) proof.
e none: Sledgehammer found no proof.
o unknown: Sledgehammer encountered some problem.

11

Sledgehammer emits an error (if blocking is enabled) or a warning (oth-
erwise) if the actual outcome differs from the expected outcome. This
option is useful for regression testing.

See also blocking (§6.1).

References

[1] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages
298-302. Springer, 2007.

[2] S. Bohme and T. Nipkow. Sledgehammer: Judgement day. In J. Giesl
and R. Héahnle, editors, Automated Reasoning: IJCAR 2010, Lecture
Notes in Computer Science. Springer-Verlag, 2010.

[3] B. Dutertre and L. de Moura. The Yices SMT solver, 2006.

[4] K. Hoder. Sine (sumo inference engine). http://www.cs.man.ac.uk/
“hoderk/sine/.

[5] J. Hurd. Metis theorem prover. http://www.gilith.com/software/
metis/.

[6] A. Riazanov and A. Voronkov. The design and implementation of Vam-
pire. Journal of AI Communications, 15(2/3):91-110, 2002.

[7] S. Schulz. E—a brainiac theorem prover. Journal of AI Communications,
15(2/3):111-126, 2002.

[8] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Under-
wood. Deductive composition of astronomical software from subrou-
tine libraries. In A. Bundy, editor, Automated Deduction — CADE-12
International Conference, LNAI 814, pages 341-355. Springer, 1994.

[9] G. Sutcliffe. System description: SystemOnTPTP. In D. McAllester,
editor, Automated Deduction — CADE-17 International Conference,
volume 1831 of Lecture Notes in Artificial Intelligence, pages 406-410.
Springer-Verlag, 2000.

[10] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and
P. Wischnewski. SPASS version 3.5. http://www.spass-prover.org/
publications/spass.pdf.

[11] Z3: An efficient SMT solver. http://research.microsoft.com/
en-us/um/redmond/projects/z3/.

12

http://www.cs.man.ac.uk/~hoderk/sine/
http://www.cs.man.ac.uk/~hoderk/sine/
http://www.gilith.com/software/metis/
http://www.gilith.com/software/metis/
http://www.spass-prover.org/publications/spass.pdf
http://www.spass-prover.org/publications/spass.pdf
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

	Introduction
	Installation
	First Steps
	Hints
	Command Syntax
	Option Reference
	Mode of Operation
	Problem Encoding
	Relevance Filter
	Output Format
	Authentication

