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Chapter 1

Basic Use of Isabelle

1.1 Ending a session

quit : unit -> unit
exit : int -> unit
commit : unit -> bool

quit(); ends the Isabelle session, without saving the state.

exit i; similar to quit, passing return code i to the operating system.

commit(); saves the current state without ending the session, provided that
the logic image is opened read-write; return value false indicates an
error.

Typing control-D also finishes the session in essentially the same way as
the sequence commit(); quit(); would.

1



Chapter 2

Tactics

2.1 Other basic tactics

2.1.1 Inserting premises and facts

cut_facts_tac : thm list -> int -> tactic
cut_inst_tac : (string*string)list -> thm -> int -> tactic
subgoal_tac : string -> int -> tactic
subgoals_tac : string list -> int -> tactic

These tactics add assumptions to a subgoal.

cut_facts_tac thms i adds the thms as new assumptions to subgoal i .
Once they have been inserted as assumptions, they become subject
to tactics such as eresolve_tac and rewrite_goals_tac. Only rules
with no premises are inserted: Isabelle cannot use assumptions that
contain =⇒ or

∧
. Sometimes the theorems are premises of a rule being

derived, returned by goal; instead of calling this tactic, you could state
the goal with an outermost meta-quantifier.

cut_inst_tac insts thm i instantiates the thm with the instantiations in-
sts, as described in §??. It adds the resulting theorem as a new as-
sumption to subgoal i .

subgoal_tac formula i adds the formula as an assumption to subgoal i ,
and inserts the same formula as a new subgoal, i + 1.

subgoals_tac formulae i uses subgoal_tac to add the members of the list
of formulae as assumptions to subgoal i .

2.1.2 “Putting off” a subgoal

defer_tac : int -> tactic

defer_tac i moves subgoal i to the last position in the proof state. It can
be useful when correcting a proof script: if the tactic given for subgoal i

2



CHAPTER 2. TACTICS 3

fails, calling defer_tac instead will let you continue with the rest of
the script.

The tactic fails if subgoal i does not exist or if the proof state contains
type unknowns.

2.1.3 Definitions and meta-level rewriting

Definitions in Isabelle have the form t ≡ u, where t is typically a constant
or a constant applied to a list of variables, for example sqr(n) ≡ n × n.
Conditional definitions, φ =⇒ t ≡ u, are also supported. Unfolding the
definition t ≡ u means using it as a rewrite rule, replacing t by u throughout
a theorem. Folding t ≡ u means replacing u by t . Rewriting continues until
no rewrites are applicable to any subterm.

There are rules for unfolding and folding definitions; Isabelle does not do
this automatically. The corresponding tactics rewrite the proof state, yielding
a single next state. See also the goalw command, which is the easiest way of
handling definitions.

rewrite_goals_tac : thm list -> tactic
rewrite_tac : thm list -> tactic
fold_goals_tac : thm list -> tactic
fold_tac : thm list -> tactic

rewrite_goals_tac defs unfolds the defs throughout the subgoals of the
proof state, while leaving the main goal unchanged. Use SELECT_GOAL

to restrict it to a particular subgoal.

rewrite_tac defs unfolds the defs throughout the proof state, including the
main goal — not normally desirable!

fold_goals_tac defs folds the defs throughout the subgoals of the proof
state, while leaving the main goal unchanged.

fold_tac defs folds the defs throughout the proof state.

! These tactics only cope with definitions expressed as meta-level equalities (≡).
More general equivalences are handled by the simplifier, provided that it is set

up appropriately for your logic (see Chapter 9).
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2.1.4 Theorems useful with tactics

asm_rl: thm
cut_rl: thm

asm_rl is ψ =⇒ ψ. Under elim-resolution it does proof by assumption, and
eresolve_tac (asm_rl::thms) i is equivalent to

assume_tac i ORELSE eresolve_tac thms i

cut_rl is [[ψ =⇒ θ, ψ]] =⇒ θ. It is useful for inserting assumptions; it
underlies forward_tac, cut_facts_tac and subgoal_tac.

2.2 Obscure tactics

2.2.1 Manipulating assumptions

thin_tac : string -> int -> tactic
rotate_tac : int -> int -> tactic

thin_tac formula i deletes the specified assumption from subgoal i . Of-
ten the assumption can be abbreviated, replacing subformulæ by un-
knowns; the first matching assumption will be deleted. Removing use-
less assumptions from a subgoal increases its readability and can make
search tactics run faster.

rotate_tac n i rotates the assumptions of subgoal i by n positions: from
right to left if n is positive, and from left to right if n is negative. This
is sometimes necessary in connection with asm_full_simp_tac, which
processes assumptions from left to right.

2.2.2 Tidying the proof state

distinct_subgoals_tac : tactic
prune_params_tac : tactic
flexflex_tac : tactic

distinct_subgoals_tac removes duplicate subgoals from a proof state.
(These arise especially in ZF, where the subgoals are essentially type
constraints.)

prune_params_tac removes unused parameters from all subgoals of the
proof state. It works by rewriting with the theorem (

∧
x . V ) ≡ V .

This tactic can make the proof state more readable. It is used with
rule_by_tactic to simplify the resulting theorem.
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flexflex_tac removes all flex-flex pairs from the proof state by applying
the trivial unifier. This drastic step loses information, and should only
be done as the last step of a proof.

Flex-flex constraints arise from difficult cases of higher-order unifica-
tion. To prevent this, use res_inst_tac to instantiate some variables
in a rule (§??). Normally flex-flex constraints can be ignored; they
often disappear as unknowns get instantiated.

2.2.3 Composition: resolution without lifting

compose_tac: (bool * thm * int) -> int -> tactic

Composing two rules means resolving them without prior lifting or renam-
ing of unknowns. This low-level operation, which underlies the resolution
tactics, may occasionally be useful for special effects. A typical application
is res_inst_tac, which lifts and instantiates a rule, then passes the result
to compose_tac.

compose_tac (flag, rule, m) i refines subgoal i using rule, without lift-
ing. The rule is taken to have the form [[ψ1; . . . ;ψm ]] =⇒ ψ, where ψ
need not be atomic; thus m determines the number of new subgoals.
If flag is true then it performs elim-resolution — it solves the first
premise of rule by assumption and deletes that assumption.

2.3 *Managing lots of rules

These operations are not intended for interactive use. They are concerned
with the processing of large numbers of rules in automatic proof strategies.
Higher-order resolution involving a long list of rules is slow. Filtering tech-
niques can shorten the list of rules given to resolution, and can also detect
whether a subgoal is too flexible, with too many rules applicable.

2.3.1 Combined resolution and elim-resolution

biresolve_tac : (bool*thm)list -> int -> tactic
bimatch_tac : (bool*thm)list -> int -> tactic
subgoals_of_brl : bool*thm -> int
lessb : (bool*thm) * (bool*thm) -> bool

Bi-resolution takes a list of (flag , rule) pairs. For each pair, it applies
resolution if the flag is false and elim-resolution if the flag is true. A single
tactic call handles a mixture of introduction and elimination rules.
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biresolve_tac brls i refines the proof state by resolution or elim-resolution
on each rule, as indicated by its flag. It affects subgoal i of the proof
state.

bimatch_tac is like biresolve_tac, but performs matching: unknowns in
the proof state are never updated (see §??).

subgoals_of_brl(flag,rule) returns the number of new subgoals that bi-
resolution would yield for the pair (if applied to a suitable subgoal).
This is n if the flag is false and n − 1 if the flag is true, where n is
the number of premises of the rule. Elim-resolution yields one fewer
subgoal than ordinary resolution because it solves the major premise
by assumption.

lessb (brl1,brl2) returns the result of

subgoals_of_brl brl1 < subgoals_of_brl brl2

Note that sort lessb brls sorts a list of (flag , rule) pairs by the number
of new subgoals they will yield. Thus, those that yield the fewest subgoals
should be tried first.

2.3.2 Discrimination nets for fast resolution

net_resolve_tac : thm list -> int -> tactic
net_match_tac : thm list -> int -> tactic
net_biresolve_tac: (bool*thm) list -> int -> tactic
net_bimatch_tac : (bool*thm) list -> int -> tactic
filt_resolve_tac : thm list -> int -> int -> tactic
could_unify : term*term->bool
filter_thms : (term*term->bool) -> int*term*thm list -> thm list

The module Net implements a discrimination net data structure for fast selec-
tion of rules [3, Chapter 14]. A term is classified by the symbol list obtained
by flattening it in preorder. The flattening takes account of function appli-
cations, constants, and free and bound variables; it identifies all unknowns
and also regards λ-abstractions as unknowns, since they could η-contract to
anything.

A discrimination net serves as a polymorphic dictionary indexed by terms.
The module provides various functions for inserting and removing items from
nets. It provides functions for returning all items whose term could match or
unify with a target term. The matching and unification tests are overly lax
(due to the identifications mentioned above) but they serve as useful filters.
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A net can store introduction rules indexed by their conclusion, and elim-
ination rules indexed by their major premise. Isabelle provides several func-
tions for ‘compiling’ long lists of rules into fast resolution tactics. When
supplied with a list of theorems, these functions build a discrimination net;
the net is used when the tactic is applied to a goal. To avoid repeatedly con-
structing the nets, use currying: bind the resulting tactics to ml identifiers.

net_resolve_tac thms builds a discrimination net to obtain the effect of a
similar call to resolve_tac.

net_match_tac thms builds a discrimination net to obtain the effect of a
similar call to match_tac.

net_biresolve_tac brls builds a discrimination net to obtain the effect of
a similar call to biresolve_tac.

net_bimatch_tac brls builds a discrimination net to obtain the effect of a
similar call to bimatch_tac.

filt_resolve_tac thms maxr i uses discrimination nets to extract the
thms that are applicable to subgoal i . If more than maxr theorems
are applicable then the tactic fails. Otherwise it calls resolve_tac.

This tactic helps avoid runaway instantiation of unknowns, for example
in type inference.

could_unify (t,u) returns false if t and u are ‘obviously’ non-unifiable,
and otherwise returns true. It assumes all variables are distinct, re-
porting that ?a=?a may unify with 0=1.

filter_thms could (limit , prem, thms) returns the list of potentially resolv-
able rules (in thms) for the subgoal prem, using the predicate could to
compare the conclusion of the subgoal with the conclusion of each rule.
The resulting list is no longer than limit.



Chapter 3

Tacticals

Tacticals are operations on tactics. Their implementation makes use of func-
tional programming techniques, especially for sequences. Most of the time,
you may forget about this and regard tacticals as high-level control struc-
tures.

3.1 The basic tacticals

3.1.1 Joining two tactics

The tacticals THEN and ORELSE, which provide sequencing and alterna-
tion, underlie most of the other control structures in Isabelle. APPEND and
INTLEAVE provide more sophisticated forms of alternation.

THEN : tactic * tactic -> tactic infix 1
ORELSE : tactic * tactic -> tactic infix
APPEND : tactic * tactic -> tactic infix
INTLEAVE : tactic * tactic -> tactic infix

tac1 THEN tac2 is the sequential composition of the two tactics. Applied to
a proof state, it returns all states reachable in two steps by applying
tac1 followed by tac2. First, it applies tac1 to the proof state, getting
a sequence of next states; then, it applies tac2 to each of these and
concatenates the results.

tac1 ORELSE tac2 makes a choice between the two tactics. Applied to a
state, it tries tac1 and returns the result if non-empty; if tac1 fails then
it uses tac2. This is a deterministic choice: if tac1 succeeds then tac2 is
excluded.

tac1 APPEND tac2 concatenates the results of tac1 and tac2. By not making a
commitment to either tactic, APPEND helps avoid incompleteness during
search.

8
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tac1 INTLEAVE tac2 interleaves the results of tac1 and tac2. Thus, it includes
all possible next states, even if one of the tactics returns an infinite
sequence.

3.1.2 Joining a list of tactics

EVERY : tactic list -> tactic
FIRST : tactic list -> tactic

EVERY and FIRST are block structured versions of THEN and ORELSE.

EVERY [tac1, . . . , tacn ] abbreviates tac1 THEN ... THEN tacn . It is useful
for writing a series of tactics to be executed in sequence.

FIRST [tac1, . . . , tacn ] abbreviates tac1 ORELSE ... ORELSE tacn . It is
useful for writing a series of tactics to be attempted one after another.

3.1.3 Repetition tacticals

TRY : tactic -> tactic
REPEAT_DETERM : tactic -> tactic
REPEAT_DETERM_N : int -> tactic -> tactic
REPEAT : tactic -> tactic
REPEAT1 : tactic -> tactic
DETERM_UNTIL : (thm -> bool) -> tactic -> tactic
trace_REPEAT : bool ref initially false

TRY tac applies tac to the proof state and returns the resulting sequence, if
non-empty; otherwise it returns the original state. Thus, it applies tac
at most once.

REPEAT_DETERM tac applies tac to the proof state and, recursively, to the
head of the resulting sequence. It returns the first state to make tac
fail. It is deterministic, discarding alternative outcomes.

REPEAT_DETERM_N n tac is like REPEAT_DETERM tac but the number of repi-
titions is bound by n (unless negative).

REPEAT tac applies tac to the proof state and, recursively, to each element of
the resulting sequence. The resulting sequence consists of those states
that make tac fail. Thus, it applies tac as many times as possible
(including zero times), and allows backtracking over each invocation of
tac. It is more general than REPEAT_DETERM, but requires more space.
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REPEAT1 tac is like REPEAT tac but it always applies tac at least once, failing
if this is impossible.

DETERM_UNTIL p tac applies tac to the proof state and, recursively, to the
head of the resulting sequence, until the predicate p (applied on the
proof state) yields true. It fails if tac fails on any of the intermediate
states. It is deterministic, discarding alternative outcomes.

set trace_REPEAT; enables an interactive tracing mode for the tacticals
REPEAT_DETERM and REPEAT. To view the tracing options, type h at the
prompt.

3.1.4 Identities for tacticals

all_tac : tactic
no_tac : tactic

all_tac maps any proof state to the one-element sequence containing that
state. Thus, it succeeds for all states. It is the identity element of the
tactical THEN.

no_tac maps any proof state to the empty sequence. Thus it succeeds for
no state. It is the identity element of ORELSE, APPEND, and INTLEAVE.
Also, it is a zero element for THEN, which means that tac THEN no_tac

is equivalent to no_tac.

These primitive tactics are useful when writing tacticals. For example, TRY
and REPEAT (ignoring tracing) can be coded as follows:

fun TRY tac = tac ORELSE all_tac;

fun REPEAT tac =
(fn state => ((tac THEN REPEAT tac) ORELSE all_tac) state);

If tac can return multiple outcomes then so can REPEAT tac. Since REPEAT

uses ORELSE and not APPEND or INTLEAVE, it applies tac as many times as
possible in each outcome.

! Note REPEAT’s explicit abstraction over the proof state. Recursive tacticals
must be coded in this awkward fashion to avoid infinite recursion. With the

following definition, REPEAT tac would loop due to ml’s eager evaluation strategy:

fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all_tac;

The built-in REPEAT avoids THEN, handling sequences explicitly and using tail re-
cursion. This sacrifices clarity, but saves much space by discarding intermediate
proof states.
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3.2 Control and search tacticals

A predicate on theorems, namely a function of type thm->bool, can test
whether a proof state enjoys some desirable property — such as having no
subgoals. Tactics that search for satisfactory states are easy to express. The
main search procedures, depth-first, breadth-first and best-first, are provided
as tacticals. They generate the search tree by repeatedly applying a given
tactic.

3.2.1 Filtering a tactic’s results

FILTER : (thm -> bool) -> tactic -> tactic
CHANGED : tactic -> tactic

FILTER p tac applies tac to the proof state and returns a sequence consisting
of those result states that satisfy p.

CHANGED tac applies tac to the proof state and returns precisely those states
that differ from the original state. Thus, CHANGED tac always has some
effect on the state.

3.2.2 Depth-first search

DEPTH_FIRST : (thm->bool) -> tactic -> tactic
DEPTH_SOLVE : tactic -> tactic
DEPTH_SOLVE_1 : tactic -> tactic
trace_DEPTH_FIRST: bool ref initially false

DEPTH_FIRST satp tac returns the proof state if satp returns true. Other-
wise it applies tac, then recursively searches from each element of the
resulting sequence. The code uses a stack for efficiency, in effect apply-
ing tac THEN DEPTH_FIRST satp tac to the state.

DEPTH_SOLVE tac uses DEPTH_FIRST to search for states having no subgoals.

DEPTH_SOLVE_1 tac uses DEPTH_FIRST to search for states having fewer sub-
goals than the given state. Thus, it insists upon solving at least one
subgoal.

set trace_DEPTH_FIRST; enables interactive tracing for DEPTH_FIRST. To
view the tracing options, type h at the prompt.
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3.2.3 Other search strategies

BREADTH_FIRST : (thm->bool) -> tactic -> tactic
BEST_FIRST : (thm->bool)*(thm->int) -> tactic -> tactic
THEN_BEST_FIRST : tactic * ((thm->bool) * (thm->int) * tactic)

-> tactic infix 1
trace_BEST_FIRST: bool ref initially false

These search strategies will find a solution if one exists. However, they do
not enumerate all solutions; they terminate after the first satisfactory result
from tac.

BREADTH_FIRST satp tac uses breadth-first search to find states for which
satp is true. For most applications, it is too slow.

BEST_FIRST (satp, distf ) tac does a heuristic search, using distf to estimate
the distance from a satisfactory state. It maintains a list of states or-
dered by distance. It applies tac to the head of this list; if the re-
sult contains any satisfactory states, then it returns them. Otherwise,
BEST_FIRST adds the new states to the list, and continues.

The distance function is typically size_of_thm, which computes the
size of the state. The smaller the state, the fewer and simpler subgoals
it has.

tac0 THEN_BEST_FIRST (satp, distf , tac) is like BEST_FIRST, except that the
priority queue initially contains the result of applying tac0 to the proof
state. This tactical permits separate tactics for starting the search and
continuing the search.

set trace_BEST_FIRST; enables an interactive tracing mode for the tactical
BEST_FIRST. To view the tracing options, type h at the prompt.

3.2.4 Auxiliary tacticals for searching

COND : (thm->bool) -> tactic -> tactic -> tactic
IF_UNSOLVED : tactic -> tactic
SOLVE : tactic -> tactic
DETERM : tactic -> tactic
DETERM_UNTIL_SOLVED : tactic -> tactic

COND p tac1 tac2 applies tac1 to the proof state if it satisfies p, and applies
tac2 otherwise. It is a conditional tactical in that only one of tac1

and tac2 is applied to a proof state. However, both tac1 and tac2 are
evaluated because ml uses eager evaluation.
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IF_UNSOLVED tac applies tac to the proof state if it has any subgoals, and
simply returns the proof state otherwise. Many common tactics, such
as resolve_tac, fail if applied to a proof state that has no subgoals.

SOLVE tac applies tac to the proof state and then fails iff there are subgoals
left.

DETERM tac applies tac to the proof state and returns the head of the result-
ing sequence. DETERM limits the search space by making its argument
deterministic.

DETERM_UNTIL_SOLVED tac forces repeated deterministic application of tac
to the proof state until the goal is solved completely.

3.2.5 Predicates and functions useful for searching

has_fewer_prems : int -> thm -> bool
eq_thm : thm * thm -> bool
eq_thm_prop : thm * thm -> bool
size_of_thm : thm -> int

has_fewer_prems n thm reports whether thm has fewer than n premises.
By currying, has_fewer_prems n is a predicate on theorems; it may
be given to the searching tacticals.

eq_thm (thm1, thm2) reports whether thm1 and thm2 are equal. Both the-
orems must have compatible signatures. Both theorems must have the
same conclusions, the same hypotheses (in the same order), and the
same set of sort hypotheses. Names of bound variables are ignored.

eq_thm_prop (thm1, thm2) reports whether the propositions of thm1 and
thm2 are equal. Names of bound variables are ignored.

size_of_thm thm computes the size of thm, namely the number of variables,
constants and abstractions in its conclusion. It may serve as a distance
function for BEST_FIRST.

3.3 Tacticals for subgoal numbering

When conducting a backward proof, we normally consider one goal at a
time. A tactic can affect the entire proof state, but many tactics — such
as resolve_tac and assume_tac — work on a single subgoal. Subgoals are
designated by a positive integer, so Isabelle provides tacticals for combining
values of type int->tactic.
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3.3.1 Restricting a tactic to one subgoal

SELECT_GOAL : tactic -> int -> tactic
METAHYPS : (thm list -> tactic) -> int -> tactic

SELECT_GOAL tac i restricts the effect of tac to subgoal i of the proof state.
It fails if there is no subgoal i , or if tac changes the main goal (do
not use rewrite_tac). It applies tac to a dummy proof state and uses
the result to refine the original proof state at subgoal i . If tac returns
multiple results then so does SELECT_GOAL tac i .

SELECT_GOAL works by creating a state of the form φ =⇒ φ, with
the one subgoal φ. If subgoal i has the form ψ =⇒ θ then (ψ =⇒
θ) =⇒ (ψ =⇒ θ) is in fact [[ψ =⇒ θ; ψ]] =⇒ θ, a proof state with two
subgoals. Such a proof state might cause tactics to go astray. Therefore
SELECT_GOAL inserts a quantifier to create the state

(
∧

x . ψ =⇒ θ) =⇒ (
∧

x . ψ =⇒ θ).

METAHYPS tacf i takes subgoal i , of the form∧
x1 . . . xl . [[θ1; . . . ; θk ]] =⇒ θ,

and creates the list θ′1, . . . , θ′k of meta-level assumptions. In these
theorems, the subgoal’s parameters (x1, . . . , xl) become free variables.
It supplies the assumptions to tacf and applies the resulting tactic to
the proof state θ =⇒ θ.

If the resulting proof state is [[φ1; . . . ;φn ]] =⇒ φ, possibly containing
θ′1, . . . , θ

′
k as assumptions, then it is lifted back into the original context,

yielding n subgoals.

Meta-level assumptions may not contain unknowns. Unknowns in the
hypotheses θ1, . . . , θk become free variables in θ′1, . . . , θ′k , and are re-
stored afterwards; the METAHYPS call cannot instantiate them. Un-
knowns in θ may be instantiated. New unknowns in φ1, . . . , φn are
lifted over the parameters.

Here is a typical application. Calling hyp_res_tac i resolves subgoal i
with one of its own assumptions, which may itself have the form of an
inference rule (these are called higher-level assumptions).

val hyp_res_tac = METAHYPS (fn prems => resolve_tac prems 1);

The function gethyps is useful for debugging applications of METAHYPS.

! METAHYPS fails if the context or new subgoals contain type unknowns. In
principle, the tactical could treat these like ordinary unknowns.
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3.3.2 Scanning for a subgoal by number

ALLGOALS : (int -> tactic) -> tactic
TRYALL : (int -> tactic) -> tactic
SOMEGOAL : (int -> tactic) -> tactic
FIRSTGOAL : (int -> tactic) -> tactic
REPEAT_SOME : (int -> tactic) -> tactic
REPEAT_FIRST : (int -> tactic) -> tactic
trace_goalno_tac : (int -> tactic) -> int -> tactic

These apply a tactic function of type int -> tactic to all the subgoal num-
bers of a proof state, and join the resulting tactics using THEN or ORELSE.
Thus, they apply the tactic to all the subgoals, or to one subgoal.

Suppose that the original proof state has n subgoals.

ALLGOALS tacf is equivalent to tacf (n) THEN ... THEN tacf (1).

It applies tacf to all the subgoals, counting downwards (to avoid prob-
lems when subgoals are added or deleted).

TRYALL tacf is equivalent to TRY(tacf (n)) THEN ... THEN TRY(tacf (1)).

It attempts to apply tacf to all the subgoals. For instance, the tactic
TRYALL assume_tac attempts to solve all the subgoals by assumption.

SOMEGOAL tacf is equivalent to tacf (n) ORELSE ... ORELSE tacf (1).

It applies tacf to one subgoal, counting downwards. For instance, the
tactic SOMEGOAL assume_tac solves one subgoal by assumption, failing
if this is impossible.

FIRSTGOAL tacf is equivalent to tacf (1) ORELSE ... ORELSE tacf (n).

It applies tacf to one subgoal, counting upwards.

REPEAT_SOME tacf applies tacf once or more to a subgoal, counting down-
wards.

REPEAT_FIRST tacf applies tacf once or more to a subgoal, counting upwards.

trace_goalno_tac tac i applies tac i to the proof state. If the resulting
sequence is non-empty, then it is returned, with the side-effect of print-
ing Subgoal i selected. Otherwise, trace_goalno_tac returns the
empty sequence and prints nothing.

It indicates that ‘the tactic worked for subgoal i ’ and is mainly used
with SOMEGOAL and FIRSTGOAL.
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3.3.3 Joining tactic functions

THEN’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix 1
ORELSE’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix
APPEND’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix
INTLEAVE’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix
EVERY’ : (’a -> tactic) list -> ’a -> tactic
FIRST’ : (’a -> tactic) list -> ’a -> tactic

These help to express tactics that specify subgoal numbers. The tactic

SOMEGOAL (fn i => resolve_tac rls i ORELSE eresolve_tac erls i)

can be simplified to

SOMEGOAL (resolve_tac rls ORELSE’ eresolve_tac erls)

Note that TRY’, REPEAT’, DEPTH_FIRST’, etc. are not provided, because func-
tion composition accomplishes the same purpose. The tactic

ALLGOALS (fn i => REPEAT (etac exE i ORELSE atac i))

can be simplified to

ALLGOALS (REPEAT o (etac exE ORELSE’ atac))

These tacticals are polymorphic; x need not be an integer.

(tacf1 THEN’ tacf2)(x ) yields tacf1(x ) THEN tacf2(x )
(tacf1 ORELSE’ tacf2)(x ) yields tacf1(x ) ORELSE tacf2(x )
(tacf1 APPEND’ tacf2)(x ) yields tacf1(x ) APPEND tacf2(x )

(tacf1 INTLEAVE’ tacf2)(x ) yields tacf1(x ) INTLEAVE tacf2(x )
EVERY’ [tacf1, . . . , tacfn ] (x ) yields EVERY [tacf1(x ), . . . , tacfn(x )]
FIRST’ [tacf1, . . . , tacfn ] (x ) yields FIRST [tacf1(x ), . . . , tacfn(x )]

3.3.4 Applying a list of tactics to 1

EVERY1: (int -> tactic) list -> tactic
FIRST1: (int -> tactic) list -> tactic

A common proof style is to treat the subgoals as a stack, always restricting
attention to the first subgoal. Such proofs contain long lists of tactics, each
applied to 1. These can be simplified using EVERY1 and FIRST1:

EVERY1 [tacf1, . . . , tacfn ] abbreviates EVERY [tacf1(1), . . . , tacfn(1)]
FIRST1 [tacf1, . . . , tacfn ] abbreviates FIRST [tacf1(1), . . . , tacfn(1)]



Chapter 4

Theorems and Forward Proof

Theorems, which represent the axioms, theorems and rules of object-logics,
have type thm. This chapter begins by describing operations that print the-
orems and that join them in forward proof. Most theorem operations are
intended for advanced applications, such as programming new proof pro-
cedures. Many of these operations refer to signatures, certified terms and
certified types, which have the ml types Sign.sg, cterm and ctyp and are
discussed in Chapter 5. Beginning users should ignore such complexities —
and skip all but the first section of this chapter.

4.1 Basic operations on theorems

4.1.1 Pretty-printing a theorem

prth : thm -> thm
prths : thm list -> thm list
prthq : thm Seq.seq -> thm Seq.seq
print_thm : thm -> unit
print_goals : int -> thm -> unit
string_of_thm : thm -> string

The first three commands are for interactive use. They are identity functions
that display, then return, their argument. The ml identifier it will refer to
the value just displayed.

The others are for use in programs. Functions with result type unit are
convenient for imperative programming.

prth thm prints thm at the terminal.

prths thms prints thms, a list of theorems.

prthq thmq prints thmq, a sequence of theorems. It is useful for inspecting
the output of a tactic.

print_thm thm prints thm at the terminal.

17
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print_goals limit thm prints thm in goal style, with the premises as sub-
goals. It prints at most limit subgoals. The subgoal module calls
print_goals to display proof states.

string_of_thm thm converts thm to a string.

4.1.2 Forward proof: joining rules by resolution

RSN : thm * (int * thm) -> thm infix
RS : thm * thm -> thm infix
MRS : thm list * thm -> thm infix
OF : thm * thm list -> thm infix
RLN : thm list * (int * thm list) -> thm list infix
RL : thm list * thm list -> thm list infix
MRL : thm list list * thm list -> thm list infix

Joining rules together is a simple way of deriving new rules. These functions
are especially useful with destruction rules. To store the result in the theorem
database, use bind_thm (§??).

thm1 RSN (i , thm2) resolves the conclusion of thm1 with the ith premise
of thm2. Unless there is precisely one resolvent it raises exception THM;
in that case, use RLN.

thm1 RS thm2 abbreviates thm1 RSN (1, thm2). Thus, it resolves the conclu-
sion of thm1 with the first premise of thm2.

[thm1, . . . , thmn ] MRS thm uses RSN to resolve thmi against premise i of thm,
for i = n, . . . , 1. This applies thmn , . . . , thm1 to the first n premises
of thm. Because the theorems are used from right to left, it does not
matter if the thmi create new premises. MRS is useful for expressing
proof trees.

thm OF [thm1, . . . , thmn ] is the same as [thm1, . . . , thmn ] MRS thm, with
slightly more readable argument order, though.

thms1 RLN (i , thms2) joins lists of theorems. For every thm1 in thms1 and
thm2 in thms2, it resolves the conclusion of thm1 with the ith premise
of thm2, accumulating the results.

thms1 RL thms2 abbreviates thms1 RLN (1, thms2).

[thms1, . . . , thmsn ] MRL thms is analogous to MRS, but combines theorem lists
rather than theorems. It too is useful for expressing proof trees.
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4.1.3 Expanding definitions in theorems

rewrite_rule : thm list -> thm -> thm
rewrite_goals_rule : thm list -> thm -> thm

rewrite_rule defs thm unfolds the defs throughout the theorem thm.

rewrite_goals_rule defs thm unfolds the defs in the premises of thm,
but it leaves the conclusion unchanged. This rule is the basis for
rewrite_goals_tac, but it serves little purpose in forward proof.

4.1.4 Instantiating unknowns in a theorem

read_instantiate : (string*string) list -> thm -> thm
read_instantiate_sg : Sign.sg -> (string*string) list -> thm -> thm
cterm_instantiate : (cterm*cterm) list -> thm -> thm
instantiate’ : ctyp option list -> cterm option list -> thm -> thm

These meta-rules instantiate type and term unknowns in a theorem. They
are occasionally useful. They can prevent difficulties with higher-order uni-
fication, and define specialized versions of rules.

read_instantiate insts thm processes the instantiations insts and instan-
tiates the rule thm. The processing of instantiations is described in
§??, under res_inst_tac.

Use res_inst_tac, not read_instantiate, to instantiate a rule and
refine a particular subgoal. The tactic allows instantiation by the sub-
goal’s parameters, and reads the instantiations using the signature as-
sociated with the proof state.

Use read_instantiate_sg below if insts appears to be treated incor-
rectly.

read_instantiate_sg sg insts thm is like read_instantiate insts thm,
but it reads the instantiations under signature sg. This is necessary to
instantiate a rule from a general theory, such as first-order logic, using
the notation of some specialized theory. Use the function sign_of to
get a theory’s signature.

cterm_instantiate ctpairs thm is similar to read_instantiate, but the
instantiations are provided as pairs of certified terms, not as strings to
be read.
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instantiate’ ctyps cterms thm instantiates thm according to the posi-
tional arguments ctyps and cterms. Counting from left to right,
schematic variables ?x are either replaced by t for any argument Some t ,
or left unchanged in case of None or if the end of the argument list is
encountered. Types are instantiated before terms.

4.1.5 Miscellaneous forward rules

standard : thm -> thm
zero_var_indexes : thm -> thm
make_elim : thm -> thm
rule_by_tactic : tactic -> thm -> thm
rotate_prems : int -> thm -> thm
permute_prems : int -> int -> thm -> thm
rearrange_prems : int list -> thm -> thm

standard thm puts thm into the standard form of object-rules. It discharges
all meta-assumptions, replaces free variables by schematic variables,
renames schematic variables to have subscript zero, also strips outer
(meta) quantifiers and removes dangling sort hypotheses.

zero_var_indexes thm makes all schematic variables have subscript zero,
renaming them to avoid clashes.

make_elim thm converts thm, which should be a destruction rule of the form
[[P1; . . . ; Pm ]] =⇒ Q , to the elimination rule [[P1; . . . ; Pm ; Q =⇒ R]] =⇒
R. This is the basis for destruct-resolution: dresolve_tac, etc.

rule_by_tactic tac thm applies tac to the thm, freezing its variables first,
then yields the proof state returned by the tactic. In typical usage,
the thm represents an instance of a rule with several premises, some
with contradictory assumptions (because of the instantiation). The
tactic proves those subgoals and does whatever else it can, and returns
whatever is left.

rotate_prems k thm rotates the premises of thm to the left by k positions
(to the right if k < 0). It simply calls permute_prems, below, with
j = 0. Used with eresolve_tac, it gives the effect of applying the
tactic to some other premise of thm than the first.

permute_prems j k thm rotates the premises of thm leaving the first j
premises unchanged. It requires 0 ≤ j ≤ n, where n is the num-
ber of premises. If k is positive then it rotates the remaining n − j
premises to the left; if k is negative then it rotates the premises to the
right.
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rearrange_prems ps thm permutes the premises of thm where the value
at the i -th position (counting from 0) in the list ps gives the position
within the original thm to be transferred to position i . Any remaining
trailing positions are left unchanged.

4.1.6 Taking a theorem apart

cprop_of : thm -> cterm
concl_of : thm -> term
prems_of : thm -> term list
cprems_of : thm -> cterm list
nprems_of : thm -> int
tpairs_of : thm -> (term*term) list
sign_of_thm : thm -> Sign.sg
theory_of_thm : thm -> theory
dest_state : thm * int -> (term*term) list * term list * term * term
rep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx: int,

shyps: sort list, hyps: term list, prop: term}
crep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx: int,

shyps: sort list, hyps: cterm list, prop: cterm}

cprop_of thm returns the statement of thm as a certified term.

concl_of thm returns the conclusion of thm as a term.

prems_of thm returns the premises of thm as a list of terms.

cprems_of thm returns the premises of thm as a list of certified terms.

nprems_of thm returns the number of premises in thm, and is equivalent to
length (prems_of thm).

tpairs_of thm returns the flex-flex constraints of thm.

sign_of_thm thm returns the signature associated with thm.

theory_of_thm thm returns the theory associated with thm. Note that this
does a lookup in Isabelle’s global database of loaded theories.

dest_state (thm, i) decomposes thm as a tuple containing a list of flex-flex
constraints, a list of the subgoals 1 to i − 1, subgoal i , and the rest
of the theorem (this will be an implication if there are more than i
subgoals).
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rep_thm thm decomposes thm as a record containing the statement of thm
(prop), its list of meta-assumptions (hyps), its derivation (der), a
bound on the maximum subscript of its unknowns (maxidx), and a
reference to its signature (sign_ref). The shyps field is discussed
below.

crep_thm thm like rep_thm, but returns the hypotheses and statement as
certified terms.

4.1.7 *Sort hypotheses

strip_shyps : thm -> thm
strip_shyps_warning : thm -> thm

Isabelle’s type variables are decorated with sorts, constraining them to
certain ranges of types. This has little impact when sorts only serve for
syntactic classification of types — for example, FOL distinguishes between
terms and other types. But when type classes are introduced through axioms,
this may result in some sorts becoming empty : where one cannot exhibit a
type belonging to it because certain sets of axioms are unsatisfiable.

If a theorem contains a type variable that is constrained by an empty sort,
then that theorem has no instances. It is basically an instance of ex falso
quodlibet. But what if it is used to prove another theorem that no longer
involves that sort? The latter theorem holds only if under an additional
non-emptiness assumption.

Therefore, Isabelle’s theorems carry around sort hypotheses. The shyps

field is a list of sorts occurring in type variables in the current prop and hyps

fields. It may also includes sorts used in the theorem’s proof that no longer
appear in the prop or hyps fields — so-called dangling sort constraints. These
are the critical ones, asserting non-emptiness of the corresponding sorts.

Isabelle automatically removes extraneous sorts from the shyps field at
the end of a proof, provided that non-emptiness can be established by looking
at the theorem’s signature: from the classes and arities information. This
operation is performed by strip_shyps and strip_shyps_warning.

strip_shyps thm removes any extraneous sort hypotheses that can be wit-
nessed from the type signature.

strip_shyps_warning is like strip_shyps, but issues a warning message of
any pending sort hypotheses that do not have a (syntactic) witness.



CHAPTER 4. THEOREMS AND FORWARD PROOF 23

4.1.8 Tracing flags for unification

Unify.trace_simp : bool ref initially false
Unify.trace_types : bool ref initially false
Unify.trace_bound : int ref initially 10
Unify.search_bound : int ref initially 20

Tracing the search may be useful when higher-order unification behaves un-
expectedly. Letting res_inst_tac circumvent the problem is easier, though.

set Unify.trace_simp; causes tracing of the simplification phase.

set Unify.trace_types; generates warnings of incompleteness, when uni-
fication is not considering all possible instantiations of type unknowns.

Unify.trace_bound := n; causes unification to print tracing information
once it reaches depth n. Use n = 0 for full tracing. At the default
value of 10, tracing information is almost never printed.

Unify.search_bound := n; prevents unification from searching past the
depth n. Because of this bound, higher-order unification cannot return
an infinite sequence, though it can return an exponentially long one.
The search rarely approaches the default value of 20. If the search is
cut off, unification prints a warning Unification bound exceeded.

4.2 *Primitive meta-level inference rules

These implement the meta-logic in the style of the lcf system, as functions
from theorems to theorems. They are, rarely, useful for deriving results in
the pure theory. Mainly, they are included for completeness, and most users
should not bother with them. The meta-rules raise exception THM to signal
malformed premises, incompatible signatures and similar errors.

The meta-logic uses natural deduction. Each theorem may depend on
meta-level assumptions. Certain rules, such as (=⇒I ), discharge assump-
tions; in most other rules, the conclusion depends on all of the assumptions
of the premises. Formally, the system works with assertions of the form

φ [φ1, . . . , φn ],

where φ1, . . . , φn are the assumptions. This can be also read as a single
conclusion sequent φ1, . . . , φn ` φ. Do not confuse meta-level assumptions
with the object-level assumptions in a subgoal, which are represented in the
meta-logic using =⇒.
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Each theorem has a signature. Certified terms have a signature. When
a rule takes several premises and certified terms, it merges the signatures to
make a signature for the conclusion. This fails if the signatures are incom-
patible.

The following presentation of primitive rules ignores sort hypotheses (see
also §4.1.7). These are handled transparently by the logic implementation.

The implication rules are (=⇒I ) and (=⇒E ):

[φ]
....
ψ

φ =⇒ ψ
(=⇒I )

φ =⇒ ψ φ

ψ
(=⇒E )

Equality of truth values means logical equivalence:

φ =⇒ ψ ψ =⇒ φ

φ ≡ ψ
(≡I )

φ ≡ ψ φ

ψ
(≡E )

The equality rules are reflexivity, symmetry, and transitivity:

a ≡ a (refl)
a ≡ b
b ≡ a

(sym) a ≡ b b ≡ c
a ≡ c (trans)

The λ-conversions are α-conversion, β-conversion, and extensionality:1

(λx . a) ≡ (λy . a[y/x ]) ((λx . a)(b)) ≡ a[b/x ]

f (x ) ≡ g(x )

f ≡ g
(ext)

The abstraction and combination rules let conversions be applied to
subterms:2

a ≡ b
(λx . a) ≡ (λx . b)

(abs)
f ≡ g a ≡ b

f (a) ≡ g(b)
(comb)

The universal quantification rules are (
∧

I ) and (
∧

E ):3

φ∧
x . φ

(
∧

I )

∧
x . φ

φ[b/x ]
(
∧

E )

1α-conversion holds if y is not free in a; (ext) holds if x is not free in the assumptions,
f , or g .

2Abstraction holds if x is not free in the assumptions.
3(

∧
I ) holds if x is not free in the assumptions.
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4.2.1 Assumption rule

assume: cterm -> thm

assume ct makes the theorem φ [φ], where φ is the value of ct . The rule
checks that ct has type prop and contains no unknowns, which are not
allowed in assumptions.

4.2.2 Implication rules

implies_intr : cterm -> thm -> thm
implies_intr_list : cterm list -> thm -> thm
implies_intr_hyps : thm -> thm
implies_elim : thm -> thm -> thm
implies_elim_list : thm -> thm list -> thm

implies_intr ct thm is (=⇒I ), where ct is the assumption to discharge,
say φ. It maps the premise ψ to the conclusion φ =⇒ ψ, removing all
occurrences of φ from the assumptions. The rule checks that ct has
type prop.

implies_intr_list cts thm applies (=⇒I ) repeatedly, on every element
of the list cts .

implies_intr_hyps thm applies (=⇒I ) to discharge all the hypotheses (as-
sumptions) of thm. It maps the premise φ [φ1, . . . , φn ] to the conclusion
[[φ1, . . . , φn ]] =⇒ φ.

implies_elim thm1 thm2 applies (=⇒E ) to thm1 and thm2. It maps the
premises φ =⇒ ψ and φ to the conclusion ψ.

implies_elim_list thm thms applies (=⇒E ) repeatedly to thm, using
each element of thms in turn. It maps the premises [[φ1, . . . , φn ]] =⇒ ψ
and φ1,. . . ,φn to the conclusion ψ.

4.2.3 Logical equivalence rules

equal_intr : thm -> thm -> thm
equal_elim : thm -> thm -> thm

equal_intr thm1 thm2 applies (≡I ) to thm1 and thm2. It maps the
premises ψ and φ to the conclusion φ ≡ ψ; the assumptions are those
of the first premise with φ removed, plus those of the second premise
with ψ removed.

equal_elim thm1 thm2 applies (≡E ) to thm1 and thm2. It maps the
premises φ ≡ ψ and φ to the conclusion ψ.
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4.2.4 Equality rules

reflexive : cterm -> thm
symmetric : thm -> thm
transitive : thm -> thm -> thm

reflexive ct makes the theorem ct ≡ ct .

symmetric thm maps the premise a ≡ b to the conclusion b ≡ a.

transitive thm1 thm2 maps the premises a ≡ b and b ≡ c to the conclu-
sion a ≡ c.

4.2.5 The λ-conversion rules

beta_conversion : cterm -> thm
extensional : thm -> thm
abstract_rule : string -> cterm -> thm -> thm
combination : thm -> thm -> thm

There is no rule for α-conversion because Isabelle regards α-convertible the-
orems as equal.

beta_conversion ct makes the theorem ((λx . a)(b)) ≡ a[b/x ], where ct is
the term (λx . a)(b).

extensional thm maps the premise f (x ) ≡ g(x ) to the conclusion f ≡ g .
Parameter x is taken from the premise. It may be an unknown or a
free variable (provided it does not occur in the assumptions); it must
not occur in f or g .

abstract_rule v x thm maps the premise a ≡ b to the conclusion (λx .
a) ≡ (λx . b), abstracting over all occurrences (if any!) of x . Parame-
ter x is supplied as a cterm. It may be an unknown or a free variable
(provided it does not occur in the assumptions). In the conclusion, the
bound variable is named v .

combination thm1 thm2 maps the premises f ≡ g and a ≡ b to the conclu-
sion f (a) ≡ g(b).

4.2.6 Forall introduction rules

forall_intr : cterm -> thm -> thm
forall_intr_list : cterm list -> thm -> thm
forall_intr_frees : thm -> thm
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forall_intr x thm applies (
∧

I ), abstracting over all occurrences (if any!)
of x . The rule maps the premise φ to the conclusion

∧
x . φ. Parame-

ter x is supplied as a cterm. It may be an unknown or a free variable
(provided it does not occur in the assumptions).

forall_intr_list xs thm applies (
∧

I ) repeatedly, on every element of the
list xs .

forall_intr_frees thm applies (
∧

I ) repeatedly, generalizing over all the
free variables of the premise.

4.2.7 Forall elimination rules

forall_elim : cterm -> thm -> thm
forall_elim_list : cterm list -> thm -> thm
forall_elim_var : int -> thm -> thm
forall_elim_vars : int -> thm -> thm

forall_elim ct thm applies (
∧

E ), mapping the premise
∧

x . φ to the con-
clusion φ[ct/x ]. The rule checks that ct and x have the same type.

forall_elim_list cts thm applies (
∧

E ) repeatedly, on every element of
the list cts .

forall_elim_var k thm applies (
∧

E ), mapping the premise
∧

x . φ to the
conclusion φ[?xk/x ]. Thus, it replaces the outermost

∧
-bound variable

by an unknown having subscript k .

forall_elim_vars k thm applies forall_elim_var k repeatedly until the
theorem no longer has the form

∧
x . φ.

4.2.8 Instantiation of unknowns

instantiate: (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm

There are two versions of this rule. The primitive one is Thm.instantiate,
which merely performs the instantiation and can produce a conclusion not
in normal form. A derived version is Drule.instantiate, which normalizes
its conclusion.

instantiate (tyinsts,insts) thm simultaneously substitutes types for type
unknowns (the tyinsts) and terms for term unknowns (the insts). In-
stantiations are given as (v , t) pairs, where v is an unknown and t is a
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term (of the same type as v) or a type (of the same sort as v). All the
unknowns must be distinct.

In some cases, instantiate’ (see §4.1.4) provides a more convenient
interface to this rule.

4.2.9 Freezing/thawing type unknowns

freezeT: thm -> thm
varifyT: thm -> thm

freezeT thm converts all the type unknowns in thm to free type variables.

varifyT thm converts all the free type variables in thm to type unknowns.

4.3 Derived rules for goal-directed proof

Most of these rules have the sole purpose of implementing particular tactics.
There are few occasions for applying them directly to a theorem.

4.3.1 Proof by assumption

assumption : int -> thm -> thm Seq.seq
eq_assumption : int -> thm -> thm

assumption i thm attempts to solve premise i of thm by assumption.

eq_assumption is like assumption but does not use unification.

4.3.2 Resolution

biresolution : bool -> (bool*thm)list -> int -> thm
-> thm Seq.seq

biresolution match rules i state performs bi-resolution on subgoal i of
state, using the list of (flag , rule) pairs. For each pair, it applies res-
olution if the flag is false and elim-resolution if the flag is true. If
match is true, the state is not instantiated.



CHAPTER 4. THEOREMS AND FORWARD PROOF 29

4.3.3 Composition: resolution without lifting

compose : thm * int * thm -> thm list
COMP : thm * thm -> thm
bicompose : bool -> bool * thm * int -> int -> thm

-> thm Seq.seq

In forward proof, a typical use of composition is to regard an assertion of the
form φ =⇒ ψ as atomic. Schematic variables are not renamed, so beware of
clashes!

compose (thm1, i, thm2) uses thm1, regarded as an atomic formula, to
solve premise i of thm2. Let thm1 and thm2 be ψ and [[φ1; . . . ;φn ]] =⇒ φ.
For each s that unifies ψ and φi , the result list contains the theorem

([[φ1; . . . ;φi−1;φi+1; . . . ;φn ]] =⇒ φ)s .

thm1 COMP thm2 calls compose (thm1, 1, thm2) and returns the result, if
unique; otherwise, it raises exception THM. It is analogous to RS.

For example, suppose that thm1 is a = b =⇒ b = a, a symmetry
rule, and that thm2 is [[P =⇒ Q ;¬Q ]] =⇒ ¬P , which is the principle
of contrapositives. Then the result would be the derived rule ¬(b =
a) =⇒ ¬(a = b).

bicompose match (flag, rule, m) i state refines subgoal i of state us-
ing rule, without lifting. The rule is taken to have the form
[[ψ1; . . . ;ψm ]] =⇒ ψ, where ψ need not be atomic; thus m determines the
number of new subgoals. If flag is true then it performs elim-resolution
— it solves the first premise of rule by assumption and deletes that as-
sumption. If match is true, the state is not instantiated.

4.3.4 Other meta-rules

trivial : cterm -> thm
lift_rule : (thm * int) -> thm -> thm
rename_params_rule : string list * int -> thm -> thm
flexflex_rule : thm -> thm Seq.seq

trivial ct makes the theorem φ =⇒ φ, where φ is the value of ct . This is
the initial state for a goal-directed proof of φ. The rule checks that ct
has type prop.

lift_rule (state, i) rule prepares rule for resolution by lifting it over the
parameters and assumptions of subgoal i of state.
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rename_params_rule (names, i) thm uses the names to rename the pa-
rameters of premise i of thm. The names must be distinct. If there
are fewer names than parameters, then the rule renames the innermost
parameters and may modify the remaining ones to ensure that all the
parameters are distinct.

flexflex_rule thm removes all flex-flex pairs from thm using the trivial
unifier.

4.4 Proof terms

Isabelle can record the full meta-level proof of each theorem. The proof term
contains all logical inferences in detail. Resolution and rewriting steps are
broken down to primitive rules of the meta-logic. The proof term can be
inspected by a separate proof-checker, for example.

According to the well-known Curry-Howard isomorphism, a proof can be
viewed as a λ-term. Following this idea, proofs in Isabelle are internally
represented by a datatype similar to the one for terms described in §5.3.

infix 8 % %%;

datatype proof =
PBound of int

| Abst of string * typ option * proof
| AbsP of string * term option * proof
| op % of proof * term option
| op %% of proof * proof
| Hyp of term
| PThm of (string * (string * string list) list) *

proof * term * typ list option
| PAxm of string * term * typ list option
| Oracle of string * term * typ list option
| MinProof of proof list;

Abst (a, τ, prf ) is the abstraction over a term variable of type τ in the
body prf . Logically, this corresponds to

∧
introduction. The name a

is used only for parsing and printing.

AbsP (a, ϕ, prf ) is the abstraction over a proof variable standing for a
proof of proposition ϕ in the body prf . This corresponds to =⇒ intro-
duction.

prf % t is the application of proof prf to term t which corresponds to
∧

elimination.
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prf1 %% prf2 is the application of proof prf1 to proof prf2 which corresponds
to =⇒ elimination.

PBound i is a proof variable with de Bruijn [4] index i .

Hyp ϕ corresponds to the use of a meta level hypothesis ϕ.

PThm ((name, tags), prf , ϕ, τ) stands for a pre-proved theorem, where
name is the name of the theorem, prf is its actual proof, ϕ is the proven
proposition, and τ is a type assignment for the type variables occurring
in the proposition.

PAxm (name, ϕ, τ) corresponds to the use of an axiom with name name
and proposition ϕ, where τ is a type assignment for the type variables
occurring in the proposition.

Oracle (name, ϕ, τ) denotes the invocation of an oracle with name name
which produced a proposition ϕ, where τ is a type assignment for the
type variables occurring in the proposition.

MinProof prfs represents a minimal proof where prfs is a list of theorems,
axioms or oracles.

Note that there are no separate constructors for abstraction and application
on the level of types, since instantiation of type variables is accomplished via
the type assignments attached to Thm, Axm and Oracle.

Each theorem’s derivation is stored as the der field of its internal record:

#2 (#der (rep_thm conjI));
PThm (("HOL.conjI", []),

AbsP ("H", None, AbsP ("H", None, ...)), ..., None) %

None % None : Proofterm.proof

This proof term identifies a labelled theorem, conjI of theory HOL, whose
underlying proof is AbsP ("H", None, AbsP ("H", None, . . .)). The the-
orem is applied to two (implicit) term arguments, which correspond to the
two variables occurring in its proposition.

Isabelle’s inference kernel can produce proof objects with different levels
of detail. This is controlled via the global reference variable proofs:

proofs := 0; only record uses of oracles

proofs := 1; record uses of oracles as well as dependencies on other theo-
rems and axioms
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proofs := 2; record inferences in full detail

Reconstruction and checking of proofs as described in §4.4.1 will not work for
proofs constructed with proofs set to 0 or 1. Theorems involving oracles will
be printed with a suffixed [!] to point out the different quality of confidence
achieved.

The dependencies of theorems can be viewed using the function thm_deps:

thm_deps [thm1, . . ., thmn];

generates the dependency graph of the theorems thm1, . . ., thmn and displays
it using Isabelle’s graph browser. For this to work properly, the theorems in
question have to be proved with proofs set to a value greater than 0. You
can use

ThmDeps.enable : unit -> unit
ThmDeps.disable : unit -> unit

to set proofs appropriately.

4.4.1 Reconstructing and checking proof terms

When looking at the above datatype of proofs more closely, one notices that
some arguments of constructors are optional. The reason for this is that
keeping a full proof term for each theorem would result in enormous memory
requirements. Fortunately, typical proof terms usually contain quite a lot of
redundant information that can be reconstructed from the context. There-
fore, Isabelle’s inference kernel creates only partial (or implicit) proof terms,
in which all typing information in terms, all term and type labels of abstrac-
tions AbsP and Abst, and (if possible) some argument terms of % are omitted.
The following functions are available for reconstructing and checking proof
terms:

Reconstruct.reconstruct_proof :
Sign.sg -> term -> Proofterm.proof -> Proofterm.proof

Reconstruct.expand_proof :
Sign.sg -> string list -> Proofterm.proof -> Proofterm.proof

ProofChecker.thm_of_proof : theory -> Proofterm.proof -> thm

Reconstruct.reconstruct_proof sg t prf turns the partial proof prf
into a full proof of the proposition denoted by t , with respect to signa-
ture sg . Reconstruction will fail with an error message if prf is not a
proof of t , is ill-formed, or does not contain sufficient information for
reconstruction by higher order pattern unification [8, 1]. The latter may
only happen for proofs built up “by hand” but not for those produced
automatically by Isabelle’s inference kernel.
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proof = Lam params. proof | Λparams. proof
| proof % any | proof · any
| proof %% proof | proof · proof
| id | longid

param = idt | idt : prop | ( param )

params = param | param params

Figure 4.1: Proof term syntax

Reconstruct.expand_proof sg [name1, . . ., namen] prf expands and
reconstructs the proofs of all theorems with names name1, . . ., namen

in the (full) proof prf .

ProofChecker.thm_of_proof thy prf turns the (full) proof prf into a the-
orem with respect to theory thy by replaying it using only primitive
rules from Isabelle’s inference kernel.

4.4.2 Parsing and printing proof terms

Isabelle offers several functions for parsing and printing proof terms. The
concrete syntax for proof terms is described in Fig. 4.1. Implicit term argu-
ments in partial proofs are indicated by “_”. Type arguments for theorems
and axioms may be specified using % or “·” with an argument of the form
TYPE(type) (see §??). They must appear before any other term argument of
a theorem or axiom. In contrast to term arguments, type arguments may be
completely omitted.

ProofSyntax.read_proof : theory -> bool -> string -> Proofterm.proof
ProofSyntax.pretty_proof : Sign.sg -> Proofterm.proof -> Pretty.T
ProofSyntax.pretty_proof_of : bool -> thm -> Pretty.T
ProofSyntax.print_proof_of : bool -> thm -> unit

The function read_proof reads in a proof term with respect to a given
theory. The boolean flag indicates whether the proof term to be parsed
contains explicit typing information to be taken into account. Usually, typing
information is left implicit and is inferred during proof reconstruction. The
pretty printing functions operating on theorems take a boolean flag as an
argument which indicates whether the proof term should be reconstructed
before printing.
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The following example (based on Isabelle/HOL) illustrates how to parse
and check proof terms. We start by parsing a partial proof term

val prf = ProofSyntax.read_proof Main.thy false
"impI % _ % _ %% (Lam H : _. conjE % _ % _ % _ %% H %%

(Lam (H1 : _) H2 : _. conjI % _ % _ %% H2 %% H1))";
val prf = PThm (("HOL.impI", []), ..., ..., None) % None % None %%

AbsP ("H", None, PThm (("HOL.conjE", []), ..., ..., None) %

None % None % None %% PBound 0 %%

AbsP ("H1", None, AbsP ("H2", None, ...))) : Proofterm.proof

The statement to be established by this proof is

val t = term_of
(read_cterm (sign_of Main.thy) ("A & B --> B & A", propT));
val t = Const ("Trueprop", "bool => prop") $

(Const ("op -->", "[bool, bool] => bool") $

... $ ... : Term.term

Using t we can reconstruct the full proof

val prf’ = Reconstruct.reconstruct_proof (sign_of Main.thy) t prf;
val prf’ = PThm (("HOL.impI", []), ..., ..., Some []) %

Some (Const ("op &", ...) $ Free ("A", ...) $ Free ("B", ...)) %

Some (Const ("op &", ...) $ Free ("B", ...) $ Free ("A", ...)) %%

AbsP ("H", Some (Const ("Trueprop", ...) $ ...), ...)

: Proofterm.proof

This proof can finally be turned into a theorem

val thm = ProofChecker.thm_of_proof Main.thy prf’;
val thm = "A & B --> B & A" : Thm.thm
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Theories, Terms and Types

5.1 The theory loader

Isabelle’s theory loader manages dependencies of the internal graph of theory
nodes (the theory database) and the external view of the file system.

Theory and ml files are located by skimming through the directories listed
in Isabelle’s internal load path, which merely contains the current directory
“.” by default. The load path may be accessed by the following operations.

show_path: unit -> string list
add_path: string -> unit
del_path: string -> unit
reset_path: unit -> unit
with_path: string -> (’a -> ’b) -> ’a -> ’b
no_document: (’a -> ’b) -> ’a -> ’b

show_path(); displays the load path components in canonical string repre-
sentation (which is always according to Unix rules).

add_path "dir"; adds component dir to the beginning of the load path.

del_path "dir"; removes any occurrences of component dir from the load
path.

reset_path(); resets the load path to “.” (current directory) only.

with_path "dir" f x; temporarily adds component dir to the beginning
of the load path while executing (f x ).

no_document f x; temporarily disables LATEX document generation while
executing (f x ).

Furthermore, in operations referring indirectly to some file (e.g. use_dir)
the argument may be prefixed by a directory that will be temporarily ap-
pended to the load path, too.

35
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5.2 Basic operations on theories

5.2.1 *Theory inclusion

transfer : theory -> thm -> thm

Transferring theorems to super theories has no logical significance, but
may affect some operations in subtle ways (e.g. implicit merges of signatures
when applying rules, or pretty printing of theorems).

transfer thy thm transfers theorem thm to theory thy , provided the latter
includes the theory of thm.

5.3 Terms

Terms belong to the ml type term, which is a concrete datatype with six
constructors:

type indexname = string * int;
infix 9 $;
datatype term = Const of string * typ

| Free of string * typ
| Var of indexname * typ
| Bound of int
| Abs of string * typ * term
| op $ of term * term;

Const (a, T) is the constant with name a and type T . Constants include
connectives like ∧ and ∀ as well as constants like 0 and Suc. Other
constants may be required to define a logic’s concrete syntax.

Free (a, T) is the free variable with name a and type T .

Var (v, T) is the scheme variable with indexname v and type T . An
indexname is a string paired with a non-negative index, or subscript; a
term’s scheme variables can be systematically renamed by incrementing
their subscripts. Scheme variables are essentially free variables, but
may be instantiated during unification.

Bound i is the bound variable with de Bruijn index i , which counts the
number of lambdas, starting from zero, between a variable’s occurrence
and its binding. The representation prevents capture of variables. For
more information see de Bruijn [4] or Paulson [10, page 376].
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Abs (a, T, u) is the λ-abstraction with body u, and whose bound vari-
able has name a and type T . The name is used only for parsing and
printing; it has no logical significance.

t $ u is the application of t to u.

Application is written as an infix operator to aid readability. Here is an
ml pattern to recognize FOL formulae of the form A → B , binding the
subformulae to A and B :

Const("Trueprop",_) $ (Const("op -->",_) $ A $ B)

5.4 *Variable binding

loose_bnos : term -> int list
incr_boundvars : int -> term -> term
abstract_over : term*term -> term
variant_abs : string * typ * term -> string * term
aconv : term * term -> bool infix

These functions are all concerned with the de Bruijn representation of bound
variables.

loose_bnos t returns the list of all dangling bound variable references. In
particular, Bound 0 is loose unless it is enclosed in an abstraction. Sim-
ilarly Bound 1 is loose unless it is enclosed in at least two abstractions;
if enclosed in just one, the list will contain the number 0. A well-formed
term does not contain any loose variables.

incr_boundvars j increases a term’s dangling bound variables by the off-
set j . This is required when moving a subterm into a context where
it is enclosed by a different number of abstractions. Bound variables
with a matching abstraction are unaffected.

abstract_over (v , t) forms the abstraction of t over v , which may be any
well-formed term. It replaces every occurrence of v by a Bound variable
with the correct index.

variant_abs (a,T , u) substitutes into u, which should be the body of an
abstraction. It replaces each occurrence of the outermost bound vari-
able by a free variable. The free variable has type T and its name
is a variant of a chosen to be distinct from all constants and from all
variables free in u.
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t aconv u tests whether terms t and u are α-convertible: identical up to
renaming of bound variables.

• Two constants, Frees, or Vars are α-convertible if their names
and types are equal. (Variables having the same name but dif-
ferent types are thus distinct. This confusing situation should be
avoided!)

• Two bound variables are α-convertible if they have the same num-
ber.

• Two abstractions are α-convertible if their bodies are, and their
bound variables have the same type.

• Two applications are α-convertible if the corresponding subterms
are.

5.5 Certified terms

A term t can be certified under a signature to ensure that every type in t is
well-formed and every constant in t is a type instance of a constant declared
in the signature. The term must be well-typed and its use of bound variables
must be well-formed. Meta-rules such as forall_elim take certified terms
as arguments.

Certified terms belong to the abstract type cterm. Elements of the type
can only be created through the certification process. In case of error, Isabelle
raises exception TERM.

5.5.1 Printing terms

string_of_cterm : cterm -> string
Sign.string_of_term : Sign.sg -> term -> string

string_of_cterm ct displays ct as a string.

Sign.string_of_term sign t displays t as a string, using the syntax
of sign.
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5.5.2 Making and inspecting certified terms

cterm_of : Sign.sg -> term -> cterm
read_cterm : Sign.sg -> string * typ -> cterm
cert_axm : Sign.sg -> string * term -> string * term
read_axm : Sign.sg -> string * string -> string * term
rep_cterm : cterm -> {T:typ, t:term, sign:Sign.sg, maxidx:int}
Sign.certify_term : Sign.sg -> term -> term * typ * int

cterm_of sign t certifies t with respect to signature sign.

read_cterm sign (s, T) reads the string s using the syntax of sign, cre-
ating a certified term. The term is checked to have type T ; this type
also tells the parser what kind of phrase to parse.

cert_axm sign (name, t) certifies t with respect to sign as a meta-
proposition and converts all exceptions to an error, including the final
message

The error(s) above occurred in axiom "name"

read_axm sign (name, s) similar to cert_axm, but first reads the string s
using the syntax of sign.

rep_cterm ct decomposes ct as a record containing its type, the term itself,
its signature, and the maximum subscript of its unknowns. The type
and maximum subscript are computed during certification.

Sign.certify_term is a more primitive version of cterm_of, returning the
internal representation instead of an abstract cterm.

5.6 Types

Types belong to the ml type typ, which is a concrete datatype with three
constructor functions. These correspond to type constructors, free type vari-
ables and schematic type variables. Types are classified by sorts, which are
lists of classes (representing an intersection). A class is represented by a
string.
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type class = string;
type sort = class list;

datatype typ = Type of string * typ list
| TFree of string * sort
| TVar of indexname * sort;

infixr 5 -->;
fun S --> T = Type ("fun", [S, T]);

Type (a, Ts) applies the type constructor named a to the type operand
list Ts . Type constructors include fun, the binary function space con-
structor, as well as nullary type constructors such as prop. Other type
constructors may be introduced. In expressions, but not in patterns,
S-->T is a convenient shorthand for function types.

TFree (a, s) is the type variable with name a and sort s .

TVar (v, s) is the type unknown with indexname v and sort s . Type
unknowns are essentially free type variables, but may be instantiated
during unification.

5.7 Certified types

Certified types, which are analogous to certified terms, have type ctyp.

5.7.1 Printing types

string_of_ctyp : ctyp -> string
Sign.string_of_typ : Sign.sg -> typ -> string

string_of_ctyp cT displays cT as a string.

Sign.string_of_typ sign T displays T as a string, using the syntax
of sign.

5.7.2 Making and inspecting certified types

ctyp_of : Sign.sg -> typ -> ctyp
rep_ctyp : ctyp -> {T: typ, sign: Sign.sg}
Sign.certify_typ : Sign.sg -> typ -> typ

ctyp_of sign T certifies T with respect to signature sign.
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rep_ctyp cT decomposes cT as a record containing the type itself and its
signature.

Sign.certify_typ is a more primitive version of ctyp_of, returning the
internal representation instead of an abstract ctyp.
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Defining Logics

6.1 Mixfix declarations

When defining a theory, you declare new constants by giving their names,
their type, and an optional mixfix annotation. Mixfix annotations allow
you to extend Isabelle’s basic λ-calculus syntax with readable notation. They
can express any context-free priority grammar. Isabelle syntax definitions are
inspired by obj [5]; they are more general than the priority declarations of
ml and Prolog.

A mixfix annotation defines a production of the priority grammar. It
describes the concrete syntax, the translation to abstract syntax, and the
pretty printing. Special case annotations provide a simple means of specifying
infix operators and binders.

6.1.1 The general mixfix form

Here is a detailed account of mixfix declarations. Suppose the following line
occurs within a consts or syntax section of a .thy file:

c :: "σ" ("template" ps p)

This constant declaration and mixfix annotation are interpreted as follows:

• The string c is the name of the constant associated with the production;
unless it is a valid identifier, it must be enclosed in quotes. If c is
empty (given as "") then this is a copy production. Otherwise, parsing
an instance of the phrase template generates the ast ("c" a1 . . . an),
where ai is the ast generated by parsing the i -th argument.

• The constant c, if non-empty, is declared to have type σ (consts section
only).

• The string template specifies the right-hand side of the production. It
has the form

w0 w1 . . . wn ,

42
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where each occurrence of _ denotes an argument position and the wi

do not contain _. (If you want a literal _ in the concrete syntax, you
must escape it as described below.) The wi may consist of delimiters,
spaces or pretty printing annotations (see below).

• The type σ specifies the production’s nonterminal symbols (or name
tokens). If template is of the form above then σ must be a function
type with at least n argument positions, say σ = [τ1, . . . , τn ]⇒ τ . Non-
terminal symbols are derived from the types τ1, . . . , τn , τ as described
below. Any of these may be function types.

• The optional list ps may contain at most n integers, say [p1, . . .,
pm], where pi is the minimal priority required of any phrase that may
appear as the i -th argument. Missing priorities default to 0.

• The integer p is the priority of this production. If omitted, it defaults
to the maximal priority. Priorities range between 0 and max_pri (=
1000).

The resulting production is

A(p) = w0 A
(p1)
1 w1 A

(p2)
2 . . . A(pn )

n wn

where A and the Ai are the nonterminals corresponding to the types τ and
τi respectively. The nonterminal symbol associated with a type (. . .)ty is
logic, if this is a logical type (namely one of class logic excluding prop).
Otherwise it is ty (note that only the outermost type constructor is taken
into account). Finally, the nonterminal of a type variable is any.

! Theories must sometimes declare types for purely syntactic purposes — merely
playing the role of nonterminals. One example is type, the built-in type of

types. This is a ‘type of all types’ in the syntactic sense only. Do not declare
such types under arities as belonging to class logic, for that would make them
useless as separate nonterminal symbols.

Associating nonterminals with types allows a constant’s type to specify
syntax as well. We can declare the function f to have type [τ1, . . . , τn ] ⇒ τ
and, through a mixfix annotation, specify the layout of the function’s n
arguments. The constant’s name, in this case f , will also serve as the label
in the abstract syntax tree.

You may also declare mixfix syntax without adding constants to the the-
ory’s signature, by using a syntax section instead of consts. Thus a pro-
duction need not map directly to a logical function (this typically requires
additional syntactic translations, see also Chapter 7).

As a special case of the general mixfix declaration, the form
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c :: "σ" ("template")

specifies no priorities. The resulting production puts no priority constraints
on any of its arguments and has maximal priority itself. Omitting priorities
in this manner is prone to syntactic ambiguities unless the production’s right-
hand side is fully bracketed, as in "if _ then _ else _ fi".

Omitting the mixfix annotation completely, as in c :: "σ", is sensible
only if c is an identifier. Otherwise you will be unable to write terms involv-
ing c.

6.1.2 Example: arithmetic expressions

This theory specification contains a syntax section with mixfix declarations
encoding the priority grammar from §??:

ExpSyntax = Pure +
types
exp

syntax
"0" :: exp ("0" 9)
"+" :: [exp, exp] => exp ("_ + _" [0, 1] 0)
"*" :: [exp, exp] => exp ("_ * _" [3, 2] 2)
"-" :: exp => exp ("- _" [3] 3)

end

Executing Syntax.print_gram reveals the productions derived from the
above mixfix declarations (lots of additional information deleted):

Syntax.print_gram (syn_of ExpSyntax.thy);
exp = "0" => "0" (9)

exp = exp[0] "+" exp[1] => "+" (0)

exp = exp[3] "*" exp[2] => "*" (2)

exp = "-" exp[3] => "-" (3)

Note that because exp is not of class logic, it has been retained as a
separate nonterminal. This also entails that the syntax does not provide
for identifiers or paranthesized expressions. Normally you would also want
to add the declaration arities exp::logic after types and use consts

instead of syntax. Try this as an exercise and study the changes in the
grammar.

6.1.3 Infixes

Infix operators associating to the left or right can be declared using infixl

or infixr. Basically, the form c :: σ (infixl p) abbreviates the mixfix
declarations
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"op c" :: σ ("(_ c/ _)" [p, p + 1] p)
"op c" :: σ ("op c")

and c :: σ (infixr p) abbreviates the mixfix declarations

"op c" :: σ ("(_ c/ _)" [p + 1, p] p)
"op c" :: σ ("op c")

The infix operator is declared as a constant with the prefix op. Thus, pre-
fixing infixes with op makes them behave like ordinary function symbols, as
in ml. Special characters occurring in c must be escaped, as in delimiters,
using a single quote.

A slightly more general form of infix declarations allows constant names
to be independent from their concrete syntax, namely c :: σ (infixl "sy"
p), the same for infixr. As an example consider:

and :: [bool, bool] => bool (infixr "&" 35)

The internal constant name will then be just and, without any op prefixed.

6.1.4 Binders

A binder is a variable-binding construct such as a quantifier. The constant
declaration

c :: σ (binder "Q" [pb] p)

introduces a constant c of type σ, which must have the form (τ1 ⇒ τ2)⇒ τ3.
Its concrete syntax is Q x . P , where x is a bound variable of type τ1, the
body P has type τ2 and the whole term has type τ3. The optional integer pb
specifies the body’s priority, by default p. Special characters in Q must be
escaped using a single quote.

The declaration is expanded internally to something like

c :: (τ1 => τ2) => τ3
"Q" :: [idts, τ2] => τ3 ("(3Q_./ _)" [0, pb] p)

Here idts is the nonterminal symbol for a list of identifiers with optional type
constraints (see Fig. ??). The declaration also installs a parse translation
for Q and a print translation for c to translate between the internal and
external forms.

A binder of type (σ ⇒ τ)⇒ τ can be nested by giving a list of variables.
The external form Q x1 x2 . . . xn . P corresponds to the internal form

c(λx1 . c(λx2 . . . . c(λxn . P) . . .)).

For example, let us declare the quantifier ∀:
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All :: (’a => o) => o (binder "ALL " 10)

This lets us write ∀x . P as either All(%x.P) or ALL x.P . When printing,
Isabelle prefers the latter form, but must fall back on All(P) if P is not an
abstraction. Both P and ALL x.P have type o, the type of formulae, while
the bound variable can be polymorphic.

6.2 *Alternative print modes

Isabelle’s pretty printer supports alternative output syntaxes. These may
be used independently or in cooperation. The currently active print modes
(with precedence from left to right) are determined by a reference variable.

print_mode: string list ref

Initially this may already contain some print mode identifiers, depending
on how Isabelle has been invoked (e.g. by some user interface). So changes
should be incremental — adding or deleting modes relative to the current
value.

Any ml string is a legal print mode identifier, without any predeclaration
required. The following names should be considered reserved, though: ""

(the empty string), symbols, xsymbols, and latex.
There is a separate table of mixfix productions for pretty printing as-

sociated with each print mode. The currently active ones are conceptually
just concatenated from left to right, with the standard syntax output table
always coming last as default. Thus mixfix productions of preceding modes
in the list may override those of later ones. Also note that token translations
are always relative to some print mode (see §7.7).

The canonical application of print modes is optional printing of mathe-
matical symbols from a special screen font instead of ascii. Another example
is to re-use Isabelle’s advanced λ-term printing mechanisms to generate com-
pletely different output, say for interfacing external tools like model checkers
(see also HOL/Modelcheck).

6.3 Ambiguity of parsed expressions

To keep the grammar small and allow common productions to be shared all
logical types (except prop) are internally represented by one nonterminal,
namely logic. This and omitted or too freely chosen priorities may lead to
ways of parsing an expression that were not intended by the theory’s maker.
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In most cases Isabelle is able to select one of multiple parse trees that an
expression has lead to by checking which of them can be typed correctly.
But this may not work in every case and always slows down parsing. The
warning and error messages that can be produced during this process are as
follows:

If an ambiguity can be resolved by type inference the following warn-
ing is shown to remind the user that parsing is (unnecessarily) slowed
down. In cases where it’s not easily possible to eliminate the ambiguity
the frequency of the warning can be controlled by changing the value of
Syntax.ambiguity_level which has type int ref. Its default value is 1
and by increasing it one can control how many parse trees are necessary to
generate the warning.

Ambiguous input "..."

produces the following parse trees:

...

Fortunately, only one parse tree is type correct.

You may still want to disambiguate your grammar or your input.

The following message is normally caused by using the same syntax in
two different productions:

Ambiguous input "..."

produces the following parse trees:

...

More than one term is type correct:

...

Ambiguities occuring in syntax translation rules cannot be resolved by
type inference because it is not necessary for these rules to be type cor-
rect. Therefore Isabelle always generates an error message and the ambiguity
should be eliminated by changing the grammar or the rule.



Chapter 7

Syntax Transformations

This chapter is intended for experienced Isabelle users who need to define
macros or code their own translation functions. It describes the transforma-
tions between parse trees, abstract syntax trees and terms.

7.1 Abstract syntax trees

The parser, given a token list from the lexer, applies productions to yield a
parse tree. By applying some internal transformations the parse tree becomes
an abstract syntax tree, or ast. Macro expansion, further translations and
finally type inference yields a well-typed term. The printing process is the
reverse, except for some subtleties to be discussed later.

Figure 7.1 outlines the parsing and printing process. Much of the com-
plexity is due to the macro mechanism. Using macros, you can specify most
forms of concrete syntax without writing any ml code.

Abstract syntax trees are an intermediate form between the raw parse
trees and the typed λ-terms. An ast is either an atom (constant or variable)
or a list of at least two subtrees. Internally, they have type Syntax.ast:

datatype ast = Constant of string
| Variable of string
| Appl of ast list

Isabelle uses an S-expression syntax for abstract syntax trees. Constant
atoms are shown as quoted strings, variable atoms as non-quoted strings and
applications as a parenthesised list of subtrees. For example, the ast

Appl [Constant "_constrain",
Appl [Constant "_abs", Variable "x", Variable "t"],
Appl [Constant "fun", Variable "’a", Variable "’b"]]

is shown as ("_constrain" ("_abs" x t) ("fun" ’a ’b)). Both () and
(f) are illegal because they have too few subtrees.

The resemblance to Lisp’s S-expressions is intentional, but there are two
kinds of atomic symbols: Constant x and Variable x . Do not take the

48
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string
↓ lexer, parser

parse tree
↓ parse ast translation

ast
↓ ast rewriting (macros)

ast
↓ parse translation, type inference

— well-typed term —
↓ print translation

ast
↓ ast rewriting (macros)

ast
↓ print ast translation, token translation

string

Figure 7.1: Parsing and printing

names Constant and Variable too literally; in the later translation to terms,
Variable x may become a constant, free or bound variable, even a type
constructor or class name; the actual outcome depends on the context.

Similarly, you can think of (f x1 . . . xn) as the application of f to the
arguments x1, . . . , xn . But the kind of application is determined later by
context; it could be a type constructor applied to types.

Forms like (("_abs" x t) u) are legal, but asts are first-order: the
"_abs" does not bind the x in any way. Later at the term level, ("_abs"
x t) will become an Abs node and occurrences of x in t will be replaced by
bound variables (the term constructor Bound).

7.2 Transforming parse trees to ASTs

The parse tree is the raw output of the parser. Translation functions, called
parse AST translations, transform the parse tree into an abstract syntax
tree.

The parse tree is constructed by nesting the right-hand sides of the pro-
ductions used to recognize the input. Such parse trees are simply lists of
tokens and constituent parse trees, the latter representing the nonterminals
of the productions. Let us refer to the actual productions in the form dis-
played by print_syntax (see §?? for an example).
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input string ast
"f" f

"’a" ’a

"t == u" ("==" t u)

"f(x)" ("_appl" f x)

"f(x, y)" ("_appl" f ("_args" x y))

"f(x, y, z)" ("_appl" f ("_args" x ("_args" y z)))

"%x y. t" ("_lambda" ("_idts" x y) t)

Figure 7.2: Parsing examples using the Pure syntax

Ignoring parse ast translations, parse trees are transformed to asts by
stripping out delimiters and copy productions. More precisely, the mapping
[[−]] is derived from the productions as follows:

• Name tokens: [[t ]] = Variable s , where t is an id, var, tid, tvar, num,
xnum or xstr token, and s its associated string. Note that for xstr

this does not include the quotes.

• Copy productions: [[. . .P . . .]] = [[P ]]. Here . . . stands for strings of
delimiters, which are discarded. P stands for the single constituent
that is not a delimiter; it is either a nonterminal symbol or a name
token.

• 0-ary productions: [[. . . =>c]] = Constant c. Here there are no con-
stituents other than delimiters, which are discarded.

• n-ary productions, where n ≥ 1: delimiters are discarded and the
remaining constituents P1, . . . , Pn are built into an application whose
head constant is c:

[[. . .P1 . . .Pn . . . =>c]] = Appl [Constant c, [[P1]], . . . , [[Pn ]]]

Figure 7.2 presents some simple examples, where ==, _appl, _args, and so
forth name productions of the Pure syntax. These examples illustrate the
need for further translations to make asts closer to the typed λ-calculus.
The Pure syntax provides predefined parse ast translations for ordinary
applications, type applications, nested abstractions, meta implications and
function types. Figure 7.3 shows their effect on some representative input
strings.

The names of constant heads in the ast control the translation process.
The list of constants invoking parse ast translations appears in the output
of print_syntax under parse_ast_translation.
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input string ast
"f(x, y, z)" (f x y z)

"’a ty" (ty ’a)

"(’a, ’b) ty" (ty ’a ’b)

"%x y z. t" ("_abs" x ("_abs" y ("_abs" z t)))

"%x :: ’a. t" ("_abs" ("_constrain" x ’a) t)

"[| P; Q; R |] => S" ("==>" P ("==>" Q ("==>" R S)))

"[’a, ’b, ’c] => ’d" ("fun" ’a ("fun" ’b ("fun" ’c ’d)))

Figure 7.3: Built-in parse ast translations

7.3 Transforming ASTs to terms

The ast, after application of macros (see §7.5), is transformed into a term.
This term is probably ill-typed since type inference has not occurred yet.
The term may contain type constraints consisting of applications with head
"_constrain"; the second argument is a type encoded as a term. Type
inference later introduces correct types or rejects the input.

Another set of translation functions, namely parse translations, may affect
this process. If we ignore parse translations for the time being, then asts are
transformed to terms by mapping ast constants to constants, ast variables
to schematic or free variables and ast applications to applications.

More precisely, the mapping [[−]] is defined by

• Constants: [[Constant x ]] = Const(x , dummyT).

• Schematic variables: [[Variable "?xi"]] = Var((x , i), dummyT), where x
is the base name and i the index extracted from xi .

• Free variables: [[Variable x ]] = Free(x , dummyT).

• Function applications with n arguments:

[[Appl [f , x1, . . . , xn ]]] = [[f ]] $ [[x1]] $ . . . $ [[xn ]]

Here Const, Var, Free and $ are constructors of the datatype term, while
dummyT stands for some dummy type that is ignored during type inference.

So far the outcome is still a first-order term. Abstractions and bound
variables (constructors Abs and Bound) are introduced by parse translations.
Such translations are attached to "_abs", "!!" and user-defined binders.
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7.4 Printing of terms

The output phase is essentially the inverse of the input phase. Terms are
translated via abstract syntax trees into strings. Finally the strings are
pretty printed.

Print translations (§7.6) may affect the transformation of terms into asts.
Ignoring those, the transformation maps term constants, variables and appli-
cations to the corresponding constructs on asts. Abstractions are mapped
to applications of the special constant _abs.

More precisely, the mapping [[−]] is defined as follows:

• [[Const(x , τ)]] = Constant x .

• [[Free(x , τ)]] = constrain(Variable x , τ).

• [[Var((x , i), τ)]] = constrain(Variable "?xi", τ), where ?xi is the string
representation of the indexname (x , i).

• For the abstraction λx :: τ . t , let x ′ be a variant of x renamed to
differ from all names occurring in t , and let t ′ be obtained from t
by replacing all bound occurrences of x by the free variable x ′. This
replaces corresponding occurrences of the constructor Bound by the
term Free(x ′, dummyT):

[[Abs(x , τ, t)]] = Appl [Constant "_abs", constrain(Variable x ′, τ), [[t ′]]]

• [[Bound i ]] = Variable "B.i". The occurrence of constructor Bound

should never happen when printing well-typed terms; it indicates a de
Bruijn index with no matching abstraction.

• Where f is not an application,

[[f $ x1 $ . . . $ xn ]] = Appl [[[f ]], [[x1]], . . . , [[xn ]]]

Type constraints are inserted to allow the printing of types. This is governed
by the boolean variable show_types:

• constrain(x , τ) = x if τ = dummyT or show_types is set to false.

• constrain(x , τ) = Appl [Constant "_constrain", x , [[τ ]]] otherwise.

Here, [[τ ]] is the ast encoding of τ : type constructors go to Constants;
type identifiers go to Variables; type applications go to Appls with
the type constructor as the first element. If show_sorts is set to true,
some type variables are decorated with an ast encoding of their sort.
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The ast, after application of macros (see §7.5), is transformed into the final
output string. The built-in print AST translations reverse the parse ast
translations of Fig. 7.3.

For the actual printing process, the names attached to productions of
the form . . .A

(p1)
1 . . .A(pn )

n . . . =>c play a vital role. Each ast with constant
head c, namely "c" or ("c" x1 . . . xn), is printed according to the production
for c. Each argument xi is converted to a string, and put in parentheses if
its priority (pi) requires this. The resulting strings and their syntactic sugar
(denoted by . . . above) are joined to make a single string.

If an application ("c" x1 . . . xm) has more arguments than the correspond-
ing production, it is first split into (("c" x1 . . . xn) xn+1 . . . xm). Applications
with too few arguments or with non-constant head or without a correspond-
ing production are printed as f (x1, . . . , xl) or (α1, . . . , αl)ty . Multiple pro-
ductions associated with some name c are tried in order of appearance. An
occurrence of Variable x is simply printed as x .

Blanks are not inserted automatically. If blanks are required to sepa-
rate tokens, specify them in the mixfix declaration, possibly preceded by a
slash (/) to allow a line break.

7.5 Macros: syntactic rewriting

Mixfix declarations alone can handle situations where there is a direct con-
nection between the concrete syntax and the underlying term. Sometimes we
require a more elaborate concrete syntax, such as quantifiers and list nota-
tion. Isabelle’s macros and translation functions can perform translations
such as

ALL x:A.P ⇀↽ Ball(A, %x.P)

[x, y, z] ⇀↽ Cons(x, Cons(y, Cons(z, Nil)))

Translation functions (see §7.6) must be coded in ML; they are the most
powerful translation mechanism but are difficult to read or write. Macros
are specified by first-order rewriting systems that operate on abstract syntax
trees. They are usually easy to read and write, and can express all but the
most obscure translations.

Figure 7.4 defines a fragment of first-order logic and set theory.1 Theory
SetSyntax declares constants for set comprehension (Collect), replacement
(Replace) and bounded universal quantification (Ball). Each of these binds

1This and the following theories are complete working examples, though they specify
only syntax, no axioms. The file ZF/ZF.thy presents a full set theory definition, including
many macro rules.
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SetSyntax = Pure +
types
i o

arities
i, o :: logic

consts
Trueprop :: o => prop ("_" 5)
Collect :: [i, i => o] => i
Replace :: [i, [i, i] => o] => i
Ball :: [i, i => o] => o

syntax
"@Collect" :: [idt, i, o] => i ("(1{_:_./ _})")
"@Replace" :: [idt, idt, i, o] => i ("(1{_./ _:_, _})")
"@Ball" :: [idt, i, o] => o ("(3ALL _:_./ _)" 10)

translations
"{x:A. P}" == "Collect(A, %x. P)"
"{y. x:A, Q}" == "Replace(A, %x y. Q)"
"ALL x:A. P" == "Ball(A, %x. P)"

end

Figure 7.4: Macro example: set theory

some variables. Without additional syntax we should have to write ∀x ∈ A.P
as Ball(A,%x.P), and similarly for the others.

The theory specifies a variable-binding syntax through additional produc-
tions that have mixfix declarations. Each non-copy production must specify
some constant, which is used for building asts. The additional constants
are decorated with @ to stress their purely syntactic purpose; they may not
occur within the final well-typed terms, being declared as syntax rather than
consts.

The translations cause the replacement of external forms by internal forms
after parsing, and vice versa before printing of terms. As a specification of the
set theory notation, they should be largely self-explanatory. The syntactic
constants, @Collect, @Replace and @Ball, appear implicitly in the macro
rules via their mixfix forms.

Macros can define variable-binding syntax because they operate on asts,
which have no inbuilt notion of bound variable. The macro variables x and y

have type idt and therefore range over identifiers, in this case bound vari-
ables. The macro variables P and Q range over formulae containing bound
variable occurrences.

Other applications of the macro system can be less straightforward, and
there are peculiarities. The rest of this section will describe in detail how
Isabelle macros are preprocessed and applied.
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7.5.1 Specifying macros

Macros are basically rewrite rules on asts. But unlike other macro systems
found in programming languages, Isabelle’s macros work in both directions.
Therefore a syntax contains two lists of rewrites: one for parsing and one for
printing.

The translations section specifies macros. The syntax for a macro is

(root) string


=>

<=

==

 (root) string

This specifies a parse rule (=>), a print rule (<=), or both (==). The two
strings specify the left and right-hand sides of the macro rule. The (root)
specification is optional; it specifies the nonterminal for parsing the string
and if omitted defaults to logic. ast rewrite rules (l , r) must obey certain
conditions:

• Rules must be left linear: l must not contain repeated variables.

• Every variable in r must also occur in l .

Macro rules may refer to any syntax from the parent theories. They may
also refer to anything defined before the current translations section —
including any mixfix declarations.

Upon declaration, both sides of the macro rule undergo parsing and parse
ast translations (see §7.1), but do not themselves undergo macro expansion.
The lexer runs in a different mode that additionally accepts identifiers of the
form letter quasiletter ∗ (like _idt, _K). Thus, a constant whose name starts
with an underscore can appear in macro rules but not in ordinary terms.

Some atoms of the macro rule’s ast are designated as constants for match-
ing. These are all names that have been declared as classes, types or constants
(logical and syntactic).

The result of this preprocessing is two lists of macro rules, each stored as a
pair of asts. They can be viewed using print_syntax (sections parse_rules
and print_rules). For theory SetSyntax of Fig. 7.4 these are

parse_rules:
("@Collect" x A P) -> ("Collect" A ("_abs" x P))
("@Replace" y x A Q) -> ("Replace" A ("_abs" x ("_abs" y Q)))
("@Ball" x A P) -> ("Ball" A ("_abs" x P))

print_rules:
("Collect" A ("_abs" x P)) -> ("@Collect" x A P)
("Replace" A ("_abs" x ("_abs" y Q))) -> ("@Replace" y x A Q)
("Ball" A ("_abs" x P)) -> ("@Ball" x A P)
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! Avoid choosing variable names that have previously been used as constants,
types or type classes; the consts section in the output of print_syntax lists all

such names. If a macro rule works incorrectly, inspect its internal form as shown
above, recalling that constants appear as quoted strings and variables without
quotes.

! If eta_contract is set to true, terms will be η-contracted before the ast
rewriter sees them. Thus some abstraction nodes needed for print rules to

match may vanish. For example, Ball(A, %x. P(x)) contracts to Ball(A, P);
the print rule does not apply and the output will be Ball(A, P). This problem
would not occur if ml translation functions were used instead of macros (as is done
for binder declarations).

! Another trap concerns type constraints. If show_types is set to true, bound
variables will be decorated by their meta types at the binding place (but not

at occurrences in the body). Matching with Collect(A, %x. P) binds x to some-
thing like ("_constrain" y "i") rather than only y. ast rewriting will cause
the constraint to appear in the external form, say {y::i:A::i. P::o}.

To allow such constraints to be re-read, your syntax should specify bound
variables using the nonterminal idt. This is the case in our example. Choosing
id instead of idt is a common error.

7.5.2 Applying rules

As a term is being parsed or printed, an ast is generated as an intermediate
form (recall Fig. 7.1). The ast is normalised by applying macro rules in the
manner of a traditional term rewriting system. We first examine how a single
rule is applied.

Let t be the abstract syntax tree to be normalised and (l , r) some trans-
lation rule. A subtree u of t is a redex if it is an instance of l ; in this case
l is said to match u. A redex matched by l may be replaced by the corre-
sponding instance of r , thus rewriting the ast t . Matching requires some
notion of place-holders that may occur in rule patterns but not in ordinary
asts; Variable atoms serve this purpose.

The matching of the object u by the pattern l is performed as follows:

• Every constant matches itself.

• Variable x in the object matches Constant x in the pattern. This
point is discussed further below.

• Every ast in the object matches Variable x in the pattern, binding x
to u.
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• One application matches another if they have the same number of sub-
trees and corresponding subtrees match.

• In every other case, matching fails. In particular, Constant x can only
match itself.

A successful match yields a substitution that is applied to r , generating the
instance that replaces u.

The second case above may look odd. This is where Variables of non-
rule asts behave like Constants. Recall that asts are not far removed from
parse trees; at this level it is not yet known which identifiers will become
constants, bounds, frees, types or classes. As §7.1 describes, former parse
tree heads appear in asts as Constants, while the name tokens id, var, tid,
tvar, num, xnum and xstr become Variables. On the other hand, when asts
generated from terms for printing, all constants and type constructors become
Constants; see §7.1. Thus asts may contain a messy mixture of Variables
and Constants. This is insignificant at macro level because matching treats
them alike.

Because of this behaviour, different kinds of atoms with the same name
are indistinguishable, which may make some rules prone to misbehaviour.
Example:

types
Nil

consts
Nil :: ’a list

syntax
"[]" :: ’a list ("[]")

translations
"[]" == "Nil"

The term Nil will be printed as [], just as expected. The term %Nil.t will
be printed as %[].t, which might not be expected! Guess how type Nil is
printed?

Normalizing an ast involves repeatedly applying macro rules until none
are applicable. Macro rules are chosen in order of appearance in the theory
definitions. You can watch the normalization of asts during parsing and
printing by setting Syntax.trace_ast to true. The information displayed
when tracing includes the ast before normalization (pre), redexes with re-
sults (rewrote), the normal form finally reached (post) and some statistics
(normalize).
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7.5.3 Example: the syntax of finite sets

This example demonstrates the use of recursive macros to implement a con-
venient notation for finite sets.

FinSyntax = SetSyntax +
types
is

syntax
"" :: i => is ("_")
"@Enum" :: [i, is] => is ("_,/ _")

consts
empty :: i ("{}")
insert :: [i, i] => i

syntax
"@Finset" :: is => i ("{(_)}")

translations
"{x, xs}" == "insert(x, {xs})"
"{x}" == "insert(x, {})"

end

Finite sets are internally built up by empty and insert. The declarations
above specify {x, y, z} as the external representation of

insert(x, insert(y, insert(z, empty)))

The nonterminal symbol is stands for one or more objects of type i separated
by commas. The mixfix declaration "_,/ _" allows a line break after the
comma for pretty printing; if no line break is required then a space is printed
instead.

The nonterminal is declared as the type is, but with no arities dec-
laration. Hence is is not a logical type and may be used safely as a new
nonterminal for custom syntax. The nonterminal is can later be re-used for
other enumerations of type i like lists or tuples. If we had needed polymor-
phic enumerations, we could have used the predefined nonterminal symbol
args and skipped this part altogether.

Next follows empty, which is already equipped with its syntax {}, and
insert without concrete syntax. The syntactic constant @Finset provides
concrete syntax for enumerations of i enclosed in curly braces. Remember
that a pair of parentheses, as in "{(_)}", specifies a block of indentation for
pretty printing.

The translations may look strange at first. Macro rules are best under-
stood in their internal forms:
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parse_rules:
("@Finset" ("@Enum" x xs)) -> ("insert" x ("@Finset" xs))
("@Finset" x) -> ("insert" x "empty")

print_rules:
("insert" x ("@Finset" xs)) -> ("@Finset" ("@Enum" x xs))
("insert" x "empty") -> ("@Finset" x)

This shows that {x,xs} indeed matches any set enumeration of at least two
elements, binding the first to x and the rest to xs. Likewise, {xs} and {x}

represent any set enumeration. The parse rules only work in the order given.

! The ast rewriter cannot distinguish constants from variables and looks only
for names of atoms. Thus the names of Constants occurring in the (internal)

left-hand side of translation rules should be regarded as reserved words. Choose
non-identifiers like @Finset or sufficiently long and strange names. If a bound
variable’s name gets rewritten, the result will be incorrect; for example, the term

%empty insert. insert(x, empty)

is incorrectly printed as %empty insert. {x}.

7.5.4 Example: a parse macro for dependent types

As stated earlier, a macro rule may not introduce new Variables on the
right-hand side. Something like "K(B)" => "%x.B" is illegal; if allowed, it
could cause variable capture. In such cases you usually must fall back on
translation functions. But a trick can make things readable in some cases:
calling translation functions by parse macros:

ProdSyntax = SetSyntax +
consts
Pi :: [i, i => i] => i

syntax
"@PROD" :: [idt, i, i] => i ("(3PROD _:_./ _)" 10)
"@->" :: [i, i] => i ("(_ ->/ _)" [51, 50] 50)

translations
"PROD x:A. B" => "Pi(A, %x. B)"
"A -> B" => "Pi(A, _K(B))"

end
ML
val print_translation = [("Pi", dependent_tr’ ("@PROD", "@->"))];

Here Pi is a logical constant for constructing general products. Two
external forms exist: the general case PROD x:A.B and the function space A

-> B, which abbreviates Pi(A, %x.B) when B does not depend on x.
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The second parse macro introduces _K(B), which later becomes %x.B due
to a parse translation associated with _K. Unfortunately there is no such
trick for printing, so we have to add a ML section for the print translation
dependent_tr’.

Recall that identifiers with a leading _ are allowed in translation rules,
but not in ordinary terms. Thus we can create asts containing names that
are not directly expressible.

The parse translation for _K is already installed in Pure, and the function
dependent_tr’ is exported by the syntax module for public use. See §7.6
below for more of the arcane lore of translation functions.

7.6 Translation functions

This section describes the translation function mechanism. By writing ml
functions, you can do almost everything to terms or asts during parsing
and printing. The logic LK is a good example of sophisticated transforma-
tions between internal and external representations of sequents; here, macros
would be useless.

A full understanding of translations requires some familiarity with Isa-
belle’s internals, especially the datatypes term, typ, Syntax.ast and the
encodings of types and terms as such at the various stages of the parsing or
printing process. Most users should never need to use translation functions.

7.6.1 Declaring translation functions

There are four kinds of translation functions, with one of these coming in two
variants. Each such function is associated with a name, which triggers calls
to it. Such names can be constants (logical or syntactic) or type constructors.

Function print_syntax displays the sets of names associated with the
translation functions of a theory under parse_ast_translation, etc. You
can add new ones via the ML section of a theory definition file. Even though
the ML section is the very last part of the file, newly installed translation
functions are already effective when processing all of the preceding sections.

The ML section’s contents are simply copied verbatim near the beginning
of the ml file generated from a theory definition file. Definitions made here
are accessible as components of an ml structure; to make some parts private,
use an ml local declaration. The ml code may install translation functions
by declaring any of the following identifiers:
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val parse_ast_translation : (string * (ast list -> ast)) list
val print_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list
val typed_print_translation :

(string * (bool -> typ -> term list -> term)) list

7.6.2 The translation strategy

The different kinds of translation functions are called during the transfor-
mations between parse trees, asts and terms (recall Fig. 7.1). Whenever
a combination of the form ("c" x1 . . . xn) is encountered, and a translation
function f of appropriate kind exists for c, the result is computed by the ml
function call f [x1, . . . , xn].

For ast translations, the arguments x1, . . . , xn are asts. A combination
has the form Constant c or Appl [Constant c, x1, . . . , xn ]. For term transla-
tions, the arguments are terms and a combination has the form Const(c, τ)
or Const(c, τ) $ x1 $ . . . $ xn . Terms allow more sophisticated transfor-
mations than asts do, typically involving abstractions and bound variables.
Typed print translations may even peek at the type τ of the constant they are
invoked on; they are also passed the current value of the show_sorts flag.

Regardless of whether they act on terms or asts, translation functions
called during the parsing process differ from those for printing more funda-
mentally in their overall behaviour:

Parse translations are applied bottom-up. The arguments are already in
translated form. The translations must not fail; exceptions trigger an
error message. There may never be more than one function associated
with any syntactic name.

Print translations are applied top-down. They are supplied with argu-
ments that are partly still in internal form. The result again undergoes
translation; therefore a print translation should not introduce as head
the very constant that invoked it. The function may raise exception
Match to indicate failure; in this event it has no effect. Multiple func-
tions associated with some syntactic name are tried in an unspecified
order.

Only constant atoms — constructor Constant for asts and Const for
terms — can invoke translation functions. This causes another difference
between parsing and printing.

Parsing starts with a string and the constants are not yet identified.
Only parse tree heads create Constants in the resulting ast, as described in
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§7.2. Macros and parse ast translations may introduce further Constants.
When the final ast is converted to a term, all Constants become Consts, as
described in §7.3.

Printing starts with a well-typed term and all the constants are known.
So all logical constants and type constructors may invoke print translations.
These, and macros, may introduce further constants.

7.6.3 Example: a print translation for dependent types

Let us continue the dependent type example (page 59) by examining the
parse translation for _K and the print translation dependent_tr’, which are
both built-in. By convention, parse translations have names ending with _tr

and print translations have names ending with _tr’. Search for such names
in the Isabelle sources to locate more examples.

Here is the parse translation for _K:

fun k_tr [t] = Abs ("x", dummyT, incr_boundvars 1 t)
| k_tr ts = raise TERM ("k_tr", ts);

If k_tr is called with exactly one argument t , it creates a new Abs node
with a body derived from t . Since terms given to parse translations are
not yet typed, the type of the bound variable in the new Abs is simply
dummyT. The function increments all Bound nodes referring to outer abstrac-
tions by calling incr_boundvars, a basic term manipulation function defined
in Pure/term.ML.

Here is the print translation for dependent types:

fun dependent_tr’ (q, r) (A :: Abs (x, T, B) :: ts) =
if 0 mem (loose_bnos B) then
let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B) in
list_comb
(Const (q,dummyT) $
Syntax.mark_boundT (x’, T) $ A $ B’, ts)

end
else list_comb (Const (r, dummyT) $ A $ B, ts)

| dependent_tr’ _ _ = raise Match;

The argument (q, r) is supplied to the curried function dependent_tr’ by
a partial application during its installation. For example, we could set up
print translations for both Pi and Sigma by including

val print_translation =
[("Pi", dependent_tr’ ("@PROD", "@->")),
("Sigma", dependent_tr’ ("@SUM", "@*"))];

within the ML section. The first of these transforms Pi(A, Abs(x ,T ,B)) into
@PROD(x ′,A,B ′) or @->(A,B), choosing the latter form if B does not de-
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pend on x . It checks this using loose_bnos, yet another function from
Pure/term.ML. Note that x ′ is a version of x renamed away from all names
in B , and B ′ is the body B with Bound nodes referring to the Abs node
replaced by Free(x ′, dummyT) (but marked as representing a bound variable).

We must be careful with types here. While types of Consts are ignored,
type constraints may be printed for some Frees and Vars if show_types is set
to true. Variables of type dummyT are never printed with constraint, though.
The line

let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B);

replaces bound variable occurrences in B by the free variable x ′ with type
dummyT. Only the binding occurrence of x ′ is given the correct type T, so this
is the only place where a type constraint might appear.

Also note that we are responsible to mark free identifiers that actually
represent bound variables. This is achieved by Syntax.variant_abs’ and
Syntax.mark_boundT above. Failing to do so may cause these names to be
printed in the wrong style.

7.7 Token translations

Isabelle’s meta-logic features quite a lot of different kinds of identifiers,
namely class, tfree, tvar, free, bound, var. One might want to have these
printed in different styles, e.g. in bold or italic, or even transcribed into
something more readable like α, α′, β instead of ’a, ’aa, ’b for type vari-
ables. Token translations provide a means to such ends, enabling the user
to install certain ml functions associated with any logical token class and
depending on some print mode.

The logical class of identifiers can not necessarily be determined by its
syntactic category, though. For example, consider free vs. bound variables.
So Isabelle’s pretty printing mechanism, starting from fully typed terms,
has to be careful to preserve this additional information2. In particular,
user-supplied print translation functions operating on terms have to be well-
behaved in this respect. Free identifiers introduced to represent bound vari-
ables have to be marked appropriately (cf. the example at the end of §7.6).

Token translations may be installed by declaring the token_translation
value within the ML section of a theory definition file:

2This is done by marking atoms in abstract syntax trees appropriately. The marks are
actually visible by print translation functions – they are just special constants applied to
atomic asts, for example ("_bound" x).
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val token_translation:
(string * string * (string -> string * real)) list

The elements of this list are of the form (m, c, f ), where m is a print mode
identifier, c a token class, and f : string → string×real the actual translation
function. Assuming that x is of identifier class c, and print mode m is the first
(active) mode providing some translation for c, then x is output according to
f (x ) = (x ′, len). Thereby x ′ is the modified identifier name and len its visual
length in terms of characters (e.g. length 1.0 would correspond to 1/2 em in
LATEX). Thus x ′ may include non-printing parts like control sequences or
markup information for typesetting systems.



Chapter 8

Substitution Tactics

Replacing equals by equals is a basic form of reasoning. Isabelle supports
several kinds of equality reasoning. Substitution means replacing free oc-
currences of t by u in a subgoal. This is easily done, given an equality t = u,
provided the logic possesses the appropriate rule. The tactic hyp_subst_tac

performs substitution even in the assumptions. But it works via object-level
implication, and therefore must be specially set up for each suitable object-
logic.

Substitution should not be confused with object-level rewriting. Given
equalities of the form t = u, rewriting replaces instances of t by corresponding
instances of u, and continues until it reaches a normal form. Substitution
handles ‘one-off’ replacements by particular equalities while rewriting handles
general equations. Chapter 9 discusses Isabelle’s rewriting tactics.

8.1 Substitution rules

Many logics include a substitution rule of the form

[[?a = ?b; ?P(?a)]] =⇒ ?P(?b) (subst)

In backward proof, this may seem difficult to use: the conclusion ?P(?b)
admits far too many unifiers. But, if the theorem eqth asserts t = u, then
eqth RS subst is the derived rule

?P(t) =⇒ ?P(u).

Provided u is not an unknown, resolution with this rule is well-behaved.1 To
replace u by t in subgoal i , use

resolve_tac [eqth RS subst] i .

To replace t by u in subgoal i , use

1Unifying ?P(u) with a formula Q expresses Q in terms of its dependence upon u.
There are still 2k unifiers, if Q has k occurrences of u, but Isabelle ensures that the first
unifier includes all the occurrences.

65
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resolve_tac [eqth RS ssubst] i ,

where ssubst is the ‘swapped’ substitution rule

[[?a = ?b; ?P(?b)]] =⇒ ?P(?a). (ssubst)

If sym denotes the symmetry rule ?a = ?b =⇒ ?b = ?a, then ssubst is
just sym RS subst. Many logics with equality include the rules subst and
ssubst, as well as refl, sym and trans (for the usual equality laws). Ex-
amples include FOL and HOL, but not CTT (Constructive Type Theory).

Elim-resolution is well-behaved with assumptions of the form t = u. To
replace u by t or t by u in subgoal i , use

eresolve_tac [subst] i or eresolve_tac [ssubst] i .

Logics HOL, FOL and ZF define the tactic stac by

fun stac eqth = CHANGED o rtac (eqth RS ssubst);

Now stac eqth is like resolve_tac [eqth RS ssubst] but with the valu-
able property of failing if the substitution has no effect.

8.2 Substitution in the hypotheses

Substitution rules, like other rules of natural deduction, do not affect the
assumptions. This can be inconvenient. Consider proving the subgoal

[[c = a; c = b]] =⇒ a = b.

Calling eresolve_tac [ssubst] i simply discards the assumption c = a,
since c does not occur in a = b. Of course, we can work out a solution. First
apply eresolve_tac [subst] i , replacing a by c:

c = b =⇒ c = b

Equality reasoning can be difficult, but this trivial proof requires nothing
more sophisticated than substitution in the assumptions. Object-logics that
include the rule (subst) provide tactics for this purpose:

hyp_subst_tac : int -> tactic
bound_hyp_subst_tac : int -> tactic

hyp_subst_tac i selects an equality assumption of the form t = u or u = t ,
where t is a free variable or parameter. Deleting this assumption, it
replaces t by u throughout subgoal i , including the other assumptions.
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bound_hyp_subst_tac i is similar but only substitutes for parameters
(bound variables). Uses for this are discussed below.

The term being replaced must be a free variable or parameter. Substitution
for constants is usually unhelpful, since they may appear in other theorems.
For instance, the best way to use the assumption 0 = 1 is to contradict a
theorem that states 0 6= 1, rather than to replace 0 by 1 in the subgoal!

Substitution for unknowns, such as ?x = 0, is a bad idea: we might
prove the subgoal more easily by instantiating ?x to 1. Substitution for
free variables is unhelpful if they appear in the premises of a rule being
derived: the substitution affects object-level assumptions, not meta-level as-
sumptions. For instance, replacing a by b could make the premise P(a)
worthless. To avoid this problem, use bound_hyp_subst_tac; alternatively,
call cut_facts_tac to insert the atomic premises as object-level assump-
tions.

8.3 Setting up the package

Many Isabelle object-logics, such as FOL, HOL and their descendants, come
with hyp_subst_tac already defined. A few others, such as CTT, do not
support this tactic because they lack the rule (subst). When defining a
new logic that includes a substitution rule and implication, you must set
up hyp_subst_tac yourself. It is packaged as the ml functor HypsubstFun,
which takes the argument signature HYPSUBST_DATA:

signature HYPSUBST_DATA =
sig
structure Simplifier : SIMPLIFIER
val dest_Trueprop : term -> term
val dest_eq : term -> (term*term)*typ
val dest_imp : term -> term*term
val eq_reflection : thm (* a=b ==> a==b *)
val rev_eq_reflection: thm (* a==b ==> a=b *)
val imp_intr : thm (*(P ==> Q) ==> P-->Q *)
val rev_mp : thm (* [| P; P-->Q |] ==> Q *)
val subst : thm (* [| a=b; P(a) |] ==> P(b) *)
val sym : thm (* a=b ==> b=a *)
val thin_refl : thm (* [|x=x; P|] ==> P *)
end;

Thus, the functor requires the following items:

Simplifier should be an instance of the simplifier (see Chapter 9).
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dest_Trueprop should coerce a meta-level formula to the corresponding
object-level one. Typically, it should return P when applied to the
term TruepropP (see example below).

dest_eq should return the triple ((t , u),T ), where T is the type of t and u,
when applied to the ml term that represents t = u. For other terms,
it should raise an exception.

dest_imp should return the pair (P ,Q) when applied to the ml term that
represents the implication P → Q . For other terms, it should raise an
exception.

eq_reflection is the theorem discussed in §9.7.

rev_eq_reflection is the reverse of eq_reflection.

imp_intr should be the implies introduction rule (?P =⇒ ?Q) =⇒ ?P → ?Q .

rev_mp should be the ‘reversed’ implies elimination rule [[?P ; ?P → ?Q ]] =⇒
?Q .

subst should be the substitution rule [[?a = ?b; ?P(?a)]] =⇒ ?P(?b).

sym should be the symmetry rule ?a = ?b =⇒ ?b = ?a.

thin_refl should be the rule [[?a = ?a; ?P ]] =⇒ ?P , which is used to erase
trivial equalities.

The functor resides in file Provers/hypsubst.ML in the Isabelle distribution
directory. It is not sensitive to the precise formalization of the object-logic.
It is not concerned with the names of the equality and implication symbols,
or the types of formula and terms.

Coding the functions dest_Trueprop, dest_eq and dest_imp requires
knowledge of Isabelle’s representation of terms. For FOL, they are declared
by

fun dest_Trueprop (Const ("Trueprop", _) $ P) = P
| dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);

fun dest_eq (Const("op =",T) $ t $ u) = ((t, u), domain_type T)

fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
| dest_imp t = raise TERM ("dest_imp", [t]);

Recall that Trueprop is the coercion from type o to type prop, while op = is
the internal name of the infix operator =. Function domain_type, given the
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function type S ⇒ T , returns the type S . Pattern-matching expresses the
function concisely, using wildcards (_) for the types.

The tactic hyp_subst_tac works as follows. First, it identifies a suit-
able equality assumption, possibly re-orienting it using sym. Then it moves
other assumptions into the conclusion of the goal, by repeatedly calling
etac rev_mp. Then, it uses asm_full_simp_tac or ssubst to substitute
throughout the subgoal. (If the equality involves unknowns then it must use
ssubst.) Then, it deletes the equality. Finally, it moves the assumptions
back to their original positions by calling resolve_tac [imp_intr].



Chapter 9

Simplification

This chapter describes Isabelle’s generic simplification package. It performs
conditional and unconditional rewriting and uses contextual information (‘lo-
cal assumptions’). It provides several general hooks, which can provide au-
tomatic case splits during rewriting, for example. The simplifier is already
set up for many of Isabelle’s logics: FOL, ZF, HOL, HOLCF.

The first section is a quick introduction to the simplifier that should be
sufficient to get started. The later sections explain more advanced features.

9.1 Simplification for dummies

Basic use of the simplifier is particularly easy because each theory is equipped
with sensible default information controlling the rewrite process — namely
the implicit current simpset. A suite of simple commands is provided that
refer to the implicit simpset of the current theory context.

! Make sure that you are working within the correct theory context. Executing
proofs interactively, or loading them from ML files without associated theories

may require setting the current theory manually via the context command.

9.1.1 Simplification tactics

Simp_tac : int -> tactic
Asm_simp_tac : int -> tactic
Full_simp_tac : int -> tactic
Asm_full_simp_tac : int -> tactic
trace_simp : bool ref initially false
debug_simp : bool ref initially false

Simp_tac i simplifies subgoal i using the current simpset. It may solve the
subgoal completely if it has become trivial, using the simpset’s solver
tactic.

Asm_simp_tac is like Simp_tac, but extracts additional rewrite rules from
the local assumptions.
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Full_simp_tac is like Simp_tac, but also simplifies the assumptions (with-
out using the assumptions to simplify each other or the actual goal).

Asm_full_simp_tac is like Asm_simp_tac, but also simplifies the assump-
tions. In particular, assumptions can simplify each other. 1

set trace_simp; makes the simplifier output internal operations. This in-
cludes rewrite steps, but also bookkeeping like modifications of the
simpset.

set debug_simp; makes the simplifier output some extra information about
internal operations. This includes any attempted invocation of simpli-
fication procedures.

As an example, consider the theory of arithmetic in HOL. The (rather
trivial) goal 0+(x +0) = x +0+0 can be solved by a single call of Simp_tac
as follows:

context Arith.thy;
Goal "0 + (x + 0) = x + 0 + 0";

1. 0 + (x + 0) = x + 0 + 0

by (Simp_tac 1);
Level 1

0 + (x + 0) = x + 0 + 0

No subgoals!

The simplifier uses the current simpset of Arith.thy, which contains
suitable theorems like ?n + 0 = ?n and 0 + ?n = ?n.

In many cases, assumptions of a subgoal are also needed in the simplifica-
tion process. For example, x = 0 ==> x + x = 0 is solved by Asm_simp_tac

as follows:

1. x = 0 ==> x + x = 0

by (Asm_simp_tac 1);

Asm_full_simp_tac is the most powerful of this quartet of tactics but
may also loop where some of the others terminate. For example,

1. ALL x. f x = g (f (g x)) ==> f 0 = f 0 + 0

is solved by Simp_tac, but Asm_simp_tac and Asm_full_simp_tac loop be-
cause the rewrite rule f ?x = g (f (g ?x )) extracted from the assumption does

1Asm_full_simp_tac used to process the assumptions from left to right. For back-
wards compatibilty reasons only there is now Asm_lr_simp_tac that behaves like the old
Asm_full_simp_tac.
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not terminate. Isabelle notices certain simple forms of nontermination, but
not this one. Because assumptions may simplify each other, there can be very
subtle cases of nontermination. For example, invoking Asm_full_simp_tac

on

1. [| P (f x); y = x; f x = f y |] ==> Q

gives rise to the infinite reduction sequence

P (f x )
f x=f y7−→ P (f y)

y=x7−→ P (f x )
f x=f y7−→ · · ·

whereas applying the same tactic to

1. [| y = x; f x = f y; P (f x) |] ==> Q

terminates.

Using the simplifier effectively may take a bit of experimentation. Set
the trace_simp flag to get a better idea of what is going on. The resulting
output can be enormous, especially since invocations of the simplifier are
often nested (e.g. when solving conditions of rewrite rules).

9.1.2 Modifying the current simpset

Addsimps : thm list -> unit
Delsimps : thm list -> unit
Addsimprocs : simproc list -> unit
Delsimprocs : simproc list -> unit
Addcongs : thm list -> unit
Delcongs : thm list -> unit
Addsplits : thm list -> unit
Delsplits : thm list -> unit

Depending on the theory context, the Add and Del functions manipulate
basic components of the associated current simpset. Internally, all rewrite
rules have to be expressed as (conditional) meta-equalities. This form is
derived automatically from object-level equations that are supplied by the
user. Another source of rewrite rules are simplification procedures, that is
ml functions that produce suitable theorems on demand, depending on the
current redex. Congruences are a more advanced feature; see §9.2.6.

Addsimps thms; adds rewrite rules derived from thms to the current
simpset.

Delsimps thms; deletes rewrite rules derived from thms from the current
simpset.
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Addsimprocs procs; adds simplification procedures procs to the current
simpset.

Delsimprocs procs; deletes simplification procedures procs from the cur-
rent simpset.

Addcongs thms; adds congruence rules to the current simpset.

Delcongs thms; deletes congruence rules from the current simpset.

Addsplits thms; adds splitting rules to the current simpset.

Delsplits thms; deletes splitting rules from the current simpset.

When a new theory is built, its implicit simpset is initialized by the union
of the respective simpsets of its parent theories. In addition, certain theory
definition constructs (e.g. datatype and primrec in HOL) implicitly aug-
ment the current simpset. Ordinary definitions are not added automatically!

It is up the user to manipulate the current simpset further by explicitly
adding or deleting theorems and simplification procedures.

Good simpsets are hard to design. Rules that obviously simplify, like
?n + 0 = ?n, should be added to the current simpset right after they have
been proved. More specific ones (such as distributive laws, which duplicate
subterms) should be added only for specific proofs and deleted afterwards.
Conversely, sometimes a rule needs to be removed for a certain proof and
restored afterwards. The need of frequent additions or deletions may indicate
a badly designed simpset.

! The union of the parent simpsets (as described above) is not always a good
starting point for the new theory. If some ancestors have deleted simplification

rules because they are no longer wanted, while others have left those rules in, then
the union will contain the unwanted rules. After this union is formed, changes to
a parent simpset have no effect on the child simpset.

9.2 Simplification sets

The simplifier is controlled by information contained in simpsets. These
consist of several components, including rewrite rules, simplification proce-
dures, congruence rules, and the subgoaler, solver and looper tactics. The
simplifier should be set up with sensible defaults so that most simplifier calls
specify only rewrite rules or simplification procedures. Experienced users
can exploit the other components to streamline proofs in more sophisticated
manners.
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9.2.1 Inspecting simpsets

print_ss : simpset -> unit
rep_ss : simpset -> {mss : meta_simpset,

subgoal_tac: simpset -> int -> tactic,
loop_tacs : (string * (int -> tactic))list,
finish_tac : solver list,

unsafe_finish_tac : solver list}

print_ss ss; displays the printable contents of simpset ss . This includes
the rewrite rules and congruences in their internal form expressed as
meta-equalities. The names of the simplification procedures and the
patterns they are invoked on are also shown. The other parts, functions
and tactics, are non-printable.

rep_ss ss; decomposes ss as a record of its internal components, namely
the meta˙simpset, the subgoaler, the loop, and the safe and unsafe
solvers.

9.2.2 Building simpsets

empty_ss : simpset
merge_ss : simpset * simpset -> simpset

empty_ss is the empty simpset. This is not very useful under normal cir-
cumstances because it doesn’t contain suitable tactics (subgoaler etc.).
When setting up the simplifier for a particular object-logic, one will
typically define a more appropriate “almost empty” simpset. For ex-
ample, in HOL this is called HOL_basic_ss.

merge_ss (ss1, ss2) merges simpsets ss1 and ss2 by building the union of
their respective rewrite rules, simplification procedures and congru-
ences. The other components (tactics etc.) cannot be merged, though;
they are taken from either simpset2.

2Actually from ss1, but it would unwise to count on that.
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9.2.3 Accessing the current simpset

simpset : unit -> simpset
simpset_ref : unit -> simpset ref
simpset_of : theory -> simpset
simpset_ref_of : theory -> simpset ref
print_simpset : theory -> unit
SIMPSET :(simpset -> tactic) -> tactic
SIMPSET’ :(simpset -> ’a -> tactic) -> ’a -> tactic

Each theory contains a current simpset stored within a private ML refer-
ence variable. This can be retrieved and modified as follows.

simpset(); retrieves the simpset value from the current theory context.

simpset_ref(); retrieves the simpset reference variable from the current
theory context. This can be assigned to by using := in ML.

simpset_of thy; retrieves the simpset value from theory thy .

simpset_ref_of thy; retrieves the simpset reference variable from theory
thy .

print_simpset thy; prints the current simpset of theory thy in the same
way as print_ss.

SIMPSET tacf , SIMPSET’ tacf ′ are tacticals that make a tactic depend on
the implicit current simpset of the theory associated with the proof
state they are applied on.

! There is a small difference between (SIMPSET’ tacf ) and (tacf (simpset())).
For example (SIMPSET’ simp_tac) would depend on the theory of the proof

state it is applied to, while (simp_tac (simpset())) implicitly refers to the cur-
rent theory context. Both are usually the same in proof scripts, provided that
goals are only stated within the current theory. Robust programs would not count
on that, of course.

9.2.4 Rewrite rules

addsimps : simpset * thm list -> simpset infix 4
delsimps : simpset * thm list -> simpset infix 4
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Rewrite rules are theorems expressing some form of equality, for example:

Suc(?m) + ?n = ?m + Suc(?n)

?P ∧ ?P ↔ ?P

?A ∪ ?B ≡ {x . x ∈ ?A ∨ x ∈ ?B}

Conditional rewrites such as ?m < ?n =⇒ ?m/?n = 0 are also permitted; the
conditions can be arbitrary formulas.

Internally, all rewrite rules are translated into meta-equalities, theorems
with conclusion lhs ≡ rhs . Each simpset contains a function for extracting
equalities from arbitrary theorems. For example, ¬(?x ∈ {}) could be turned
into ?x ∈ {} ≡ False. This function can be installed using setmksimps but
only the definer of a logic should need to do this; see §9.7.2. The function
processes theorems added by addsimps as well as local assumptions.

ss addsimps thms adds rewrite rules derived from thms to the simpset ss .

ss delsimps thms deletes rewrite rules derived from thms from the simpset
ss .

! The simplifier will accept all standard rewrite rules: those where all unknowns
are of base type. Hence ?i + (?j + ?k) = (?i + ?j ) + ?k is OK.
It will also deal gracefully with all rules whose left-hand sides are so-called

higher-order patterns [8]. These are terms in β-normal form (this will always
be the case unless you have done something strange) where each occurrence of an
unknown is of the form ?F (x1, . . . , xn), where the xi are distinct bound variables.
Hence (∀x .?P(x )∧?Q(x ))↔ (∀x .?P(x ))∧(∀x .?Q(x )) is also OK, in both directions.

In some rare cases the rewriter will even deal with quite general rules: for
example ?f (?x ) ∈ range(?f ) = True rewrites g(a) ∈ range(g) to True, but will fail
to match g(h(b)) ∈ range(λx . g(h(x ))). However, you can replace the offending
subterms (in our case ?f (?x ), which is not a pattern) by adding new variables and
conditions: ?y = ?f (?x ) =⇒ ?y ∈ range(?f ) = True is acceptable as a conditional
rewrite rule since conditions can be arbitrary terms.

There is basically no restriction on the form of the right-hand sides. They may
not contain extraneous term or type variables, though.

9.2.5 *Simplification procedures

addsimprocs : simpset * simproc list -> simpset
delsimprocs : simpset * simproc list -> simpset

Simplification procedures are ml objects of abstract type simproc. Ba-
sically they are just functions that may produce proven rewrite rules on
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demand. They are associated with certain patterns that conceptually rep-
resent left-hand sides of equations; these are shown by print_ss. During
its operation, the simplifier may offer a simplification procedure the current
redex and ask for a suitable rewrite rule. Thus rules may be specifically
fashioned for particular situations, resulting in a more powerful mechanism
than term rewriting by a fixed set of rules.

ss addsimprocs procs adds the simplification procedures procs to the cur-
rent simpset.

ss delsimprocs procs deletes the simplification procedures procs from the
current simpset.

For example, simplification procedures nat_cancel of HOL/Arith cancel
common summands and constant factors out of several relations of sums over
natural numbers.

Consider the following goal, which after cancelling a on both sides con-
tains a factor of 2. Simplifying with the simpset of Arith.thy will do the
cancellation automatically:

1. x + a + x < y + y + 2 + a + a + a + a + a

by (Simp_tac 1);
1. x < Suc (a + (a + y))

9.2.6 *Congruence rules

addcongs : simpset * thm list -> simpset infix 4
delcongs : simpset * thm list -> simpset infix 4
addeqcongs : simpset * thm list -> simpset infix 4
deleqcongs : simpset * thm list -> simpset infix 4

Congruence rules are meta-equalities of the form

. . . =⇒ f (?x1, . . . , ?xn) ≡ f (?y1, . . . , ?yn).

This governs the simplification of the arguments of f . For example, some
arguments can be simplified under additional assumptions:

[[?P1 ↔ ?Q1; ?Q1 =⇒ ?P2 ↔ ?Q2]] =⇒ (?P1 → ?P2) ≡ (?Q1 → ?Q2)

Given this rule, the simplifier assumes Q1 and extracts rewrite rules from
it when simplifying P2. Such local assumptions are effective for rewriting
formulae such as x = 0 → y + x = y . The local assumptions are also
provided as theorems to the solver; see § 9.2.8 below.
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ss addcongs thms adds congruence rules to the simpset ss . These are de-
rived from thms in an appropriate way, depending on the underlying
object-logic.

ss delcongs thms deletes congruence rules derived from thms .

ss addeqcongs thms adds congruence rules in their internal form (conclu-
sions using meta-equality) to simpset ss . This is the basic mechanism
that addcongs is built on. It should be rarely used directly.

ss deleqcongs thms deletes congruence rules in internal form from simpset
ss .

Here are some more examples. The congruence rule for bounded quanti-
fiers also supplies contextual information, this time about the bound variable:

[[?A = ?B ;
∧

x . x ∈ ?B =⇒ ?P(x ) = ?Q(x )]] =⇒
(∀x ∈ ?A . ?P(x )) = (∀x ∈ ?B . ?Q(x ))

The congruence rule for conditional expressions can supply contextual infor-
mation for simplifying the arms:

[[?p = ?q ; ?q =⇒ ?a = ?c; ¬?q =⇒ ?b = ?d ]] =⇒ if (?p, ?a, ?b) ≡ if (?q , ?c, ?d)

A congruence rule can also prevent simplification of some arguments. Here
is an alternative congruence rule for conditional expressions:

?p = ?q =⇒ if (?p, ?a, ?b) ≡ if (?q , ?a, ?b)

Only the first argument is simplified; the others remain unchanged. This can
make simplification much faster, but may require an extra case split to prove
the goal.

9.2.7 *The subgoaler

setsubgoaler :
simpset * (simpset -> int -> tactic) -> simpset infix 4

prems_of_ss : simpset -> thm list

The subgoaler is the tactic used to solve subgoals arising out of conditional
rewrite rules or congruence rules. The default should be simplification itself.
Occasionally this strategy needs to be changed. For example, if the premise
of a conditional rule is an instance of its conclusion, as in Suc(?m) < ?n =⇒
?m < ?n, the default strategy could loop.
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ss setsubgoaler tacf sets the subgoaler of ss to tacf . The function tacf
will be applied to the current simplifier context expressed as a simpset.

prems_of_ss ss retrieves the current set of premises from simplifier context
ss . This may be non-empty only if the simplifier has been told to utilize
local assumptions in the first place, e.g. if invoked via asm_simp_tac.

As an example, consider the following subgoaler:

fun subgoaler ss =
assume_tac ORELSE’
resolve_tac (prems_of_ss ss) ORELSE’
asm_simp_tac ss;

This tactic first tries to solve the subgoal by assumption or by resolving with
with one of the premises, calling simplification only if that fails.

9.2.8 *The solver

mk_solver : string -> (thm list -> int -> tactic) -> solver
setSolver : simpset * solver -> simpset infix 4
addSolver : simpset * solver -> simpset infix 4
setSSolver : simpset * solver -> simpset infix 4
addSSolver : simpset * solver -> simpset infix 4

A solver is a tactic that attempts to solve a subgoal after simplification.
Typically it just proves trivial subgoals such as True and t = t . It could
use sophisticated means such as blast_tac, though that could make simpli-
fication expensive. To keep things more abstract, solvers are packaged up in
type solver. The only way to create a solver is via mk_solver.

Rewriting does not instantiate unknowns. For example, rewriting cannot
prove a ∈ ?A since this requires instantiating ?A. The solver, however, is
an arbitrary tactic and may instantiate unknowns as it pleases. This is the
only way the simplifier can handle a conditional rewrite rule whose condition
contains extra variables. When a simplification tactic is to be combined with
other provers, especially with the classical reasoner, it is important whether
it can be considered safe or not. For this reason a simpset contains two
solvers, a safe and an unsafe one.

The standard simplification strategy solely uses the unsafe solver, which
is appropriate in most cases. For special applications where the simplification
process is not allowed to instantiate unknowns within the goal, simplification
starts with the safe solver, but may still apply the ordinary unsafe one in
nested simplifications for conditional rules or congruences. Note that in this
way the overall tactic is not totally safe: it may instantiate unknowns that
appear also in other subgoals.
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mk_solver s tacf converts tacf into a new solver; the string s is only at-
tached as a comment and has no other significance.

ss setSSolver tacf installs tacf as the safe solver of ss .

ss addSSolver tacf adds tacf as an additional safe solver; it will be tried
after the solvers which had already been present in ss .

ss setSolver tacf installs tacf as the unsafe solver of ss .

ss addSolver tacf adds tacf as an additional unsafe solver; it will be tried
after the solvers which had already been present in ss .

The solver tactic is invoked with a list of theorems, namely assumptions
that hold in the local context. This may be non-empty only if the simplifier
has been told to utilize local assumptions in the first place, e.g. if invoked
via asm_simp_tac. The solver is also presented the full goal including its
assumptions in any case. Thus it can use these (e.g. by calling assume_tac),
even if the list of premises is not passed.

As explained in §9.2.7, the subgoaler is also used to solve the premises
of congruence rules. These are usually of the form s = ?x , where s needs to
be simplified and ?x needs to be instantiated with the result. Typically, the
subgoaler will invoke the simplifier at some point, which will eventually call
the solver. For this reason, solver tactics must be prepared to solve goals of
the form t = ?x , usually by reflexivity. In particular, reflexivity should be
tried before any of the fancy tactics like blast_tac.

It may even happen that due to simplification the subgoal is no longer
an equality. For example False ↔ ?Q could be rewritten to ¬?Q . To cover
this case, the solver could try resolving with the theorem ¬False.

! If a premise of a congruence rule cannot be proved, then the congruence is
ignored. This should only happen if the rule is conditional — that is, contains

premises not of the form t = ?x ; otherwise it indicates that some congruence rule,
or possibly the subgoaler or solver, is faulty.
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9.2.9 *The looper

setloop : simpset * (int -> tactic) -> simpset infix 4
addloop : simpset * (string * (int -> tactic)) -> simpset infix 4
delloop : simpset * string -> simpset infix 4
addsplits : simpset * thm list -> simpset infix 4
delsplits : simpset * thm list -> simpset infix 4

The looper is a list of tactics that are applied after simplification, in
case the solver failed to solve the simplified goal. If the looper succeeds, the
simplification process is started all over again. Each of the subgoals generated
by the looper is attacked in turn, in reverse order.

A typical looper is : the expansion of a conditional. Another possibility is
to apply an elimination rule on the assumptions. More adventurous loopers
could start an induction.

ss setloop tacf installs tacf as the only looper tactic of ss .

ss addloop (name, tacf ) adds tacf as an additional looper tactic with name
name; it will be tried after the looper tactics that had already been
present in ss .

ss delloop name deletes the looper tactic name from ss .

ss addsplits thms adds split tactics for thms as additional looper tactics
of ss .

ss addsplits thms deletes the split tactics for thms from the looper tactics
of ss .

The splitter replaces applications of a given function; the right-hand side
of the replacement can be anything. For example, here is a splitting rule for
conditional expressions:

?P(if (?Q , ?x , ?y))↔ (?Q → ?P(?x )) ∧ (¬?Q → ?P(?y))

Another example is the elimination operator for Cartesian products (which
happens to be called split):

?P(split(?f , ?p))↔ (∀a b . ?p = 〈a, b〉 → ?P(?f (a, b)))

For technical reasons, there is a distinction between case splitting in the
conclusion and in the premises of a subgoal. The former is done by split_tac

with rules like split_if or option.split, which do not split the subgoal,
while the latter is done by split_asm_tac with rules like split_if_asm

or option.split_asm, which split the subgoal. The operator addsplits

automatically takes care of which tactic to call, analyzing the form of the
rules given as argument.
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! Due to split_asm_tac, the simplifier may split subgoals!

Case splits should be allowed only when necessary; they are expensive
and hard to control. Here is an example of use, where split_if is the first
rule above:

by (simp_tac (simpset()
addloop ("split if", split_tac [split_if])) 1);

Users would usually prefer the following shortcut using addsplits:

by (simp_tac (simpset() addsplits [split_if]) 1);

Case-splitting on conditional expressions is usually beneficial, so it is enabled
by default in the object-logics HOL and FOL.

9.3 The simplification tactics

generic_simp_tac : bool -> bool * bool * bool ->
simpset -> int -> tactic

simp_tac : simpset -> int -> tactic
asm_simp_tac : simpset -> int -> tactic
full_simp_tac : simpset -> int -> tactic
asm_full_simp_tac : simpset -> int -> tactic
safe_asm_full_simp_tac : simpset -> int -> tactic

generic_simp_tac is the basic tactic that is underlying any actual sim-
plification work. The others are just instantiations of it. The rewriting
strategy is always strictly bottom up, except for congruence rules, which are
applied while descending into a term. Conditions in conditional rewrite rules
are solved recursively before the rewrite rule is applied.

generic_simp_tac safe (simp asm, use asm, mutual) gives direct ac-
cess to the various simplification modes:

• if safe is true, the safe solver is used as explained in §9.2.8,

• simp asm determines whether the local assumptions are simpli-
fied,

• use asm determines whether the assumptions are used as local
rewrite rules, and

• mutual determines whether assumptions can simplify each other
rather than being processed from left to right.
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This generic interface is intended for building special tools, e.g. for
combining the simplifier with the classical reasoner. It is rarely used
directly.

simp_tac, asm_simp_tac, full_simp_tac, asm_full_simp_tac are the
basic simplification tactics that work exactly like their namesakes in
§9.1, except that they are explicitly supplied with a simpset.

Local modifications of simpsets within a proof are often much cleaner by
using above tactics in conjunction with explicit simpsets, rather than their
capitalized counterparts. For example

Addsimps thms;
by (Simp_tac i);
Delsimps thms;

can be expressed more appropriately as

by (simp_tac (simpset() addsimps thms) i);

Also note that functions depending implicitly on the current theory con-
text (like capital Simp_tac and the other commands of §9.1) should be con-
sidered harmful outside of actual proof scripts. In particular, ML programs
like theory definition packages or special tactics should refer to simpsets only
explicitly, via the above tactics used in conjunction with simpset_of or the
SIMPSET tacticals.

9.4 Forward rules and conversions

simplify : simpset -> thm -> thm
asm_simplify : simpset -> thm -> thm
full_simplify : simpset -> thm -> thm
asm_full_simplify : simpset -> thm -> thm

Simplifier.rewrite : simpset -> cterm -> thm
Simplifier.asm_rewrite : simpset -> cterm -> thm
Simplifier.full_rewrite : simpset -> cterm -> thm
Simplifier.asm_full_rewrite : simpset -> cterm -> thm

The first four of these functions provide forward rules for simplification.
Their effect is analogous to the corresponding tactics described in §9.3, but
affect the whole theorem instead of just a certain subgoal. Also note that the
looper / solver process as described in §9.2.9 and §9.2.8 is omitted in forward
simplification.

The latter four are conversions, establishing proven equations of the form
t ≡ u where the l.h.s. t has been given as argument.
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! Forward simplification rules and conversions should be used rarely in ordinary
proof scripts. The main intention is to provide an internal interface to the

simplifier for special utilities.

9.5 Permutative rewrite rules

A rewrite rule is permutative if the left-hand side and right-hand side are
the same up to renaming of variables. The most common permutative rule is
commutativity: x +y = y+x . Other examples include (x−y)−z = (x−z )−y
in arithmetic and insert(x , insert(y ,A)) = insert(y , insert(x ,A)) for sets.
Such rules are common enough to merit special attention.

Because ordinary rewriting loops given such rules, the simplifier employs
a special strategy, called ordered rewriting. There is a standard lexico-
graphic ordering on terms. This should be perfectly OK in most cases, but
can be changed for special applications.

settermless : simpset * (term * term -> bool) -> simpset infix 4

ss settermless rel installs relation rel as term order in simpset ss .

A permutative rewrite rule is applied only if it decreases the given term
with respect to this ordering. For example, commutativity rewrites b + a to
a+b, but then stops because a+b is strictly less than b+a. The Boyer-Moore
theorem prover [2] also employs ordered rewriting.

Permutative rewrite rules are added to simpsets just like other rewrite
rules; the simplifier recognizes their special status automatically. They are
most effective in the case of associative-commutative operators. (Associativ-
ity by itself is not permutative.) When dealing with an AC-operator f , keep
the following points in mind:

• The associative law must always be oriented from left to right, namely
f (f (x , y), z ) = f (x , f (y , z )). The opposite orientation, if used with
commutativity, leads to looping in conjunction with the standard term
order.

• To complete your set of rewrite rules, you must add not just associa-
tivity (A) and commutativity (C) but also a derived rule, left-com-
mutativity (LC): f (x , f (y , z )) = f (y , f (x , z )).

Ordered rewriting with the combination of A, C, and LC sorts a term lexi-
cographically:

(b + c) + a
A7−→ b + (c + a)

C7−→ b + (a + c)
LC7−→ a + (b + c)
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Martin and Nipkow [7] discuss the theory and give many examples; other
algebraic structures are amenable to ordered rewriting, such as boolean rings.

9.5.1 Example: sums of natural numbers

This example is again set in HOL (see HOL/ex/NatSum). Theory Arith

contains natural numbers arithmetic. Its associated simpset contains many
arithmetic laws including distributivity of × over +, while add_ac is a list
consisting of the A, C and LC laws for + on type nat. Let us prove the
theorem

n∑
i=1

i = n × (n + 1)/2.

A functional sum represents the summation operator under the interpretation
sum f (n + 1) =

∑n
i=0 f i . We extend Arith as follows:

NatSum = Arith +
consts sum :: [nat=>nat, nat] => nat
primrec
"sum f 0 = 0"
"sum f (Suc n) = f(n) + sum f n"

end

The primrec declaration automatically adds rewrite rules for sum to the
default simpset. We now remove the nat_cancel simplification procedures
(in order not to spoil the example) and insert the AC-rules for +:

Delsimprocs nat_cancel;
Addsimps add_ac;

Our desired theorem now reads sum (λi . i) (n + 1) = n × (n + 1)/2. The
Isabelle goal has both sides multiplied by 2:

Goal "2 * sum (%i.i) (Suc n) = n * Suc n";
Level 0

2 * sum (%i. i) (Suc n) = n * Suc n

1. 2 * sum (%i. i) (Suc n) = n * Suc n

Induction should not be applied until the goal is in the simplest form:

by (Simp_tac 1);
Level 1

2 * sum (%i. i) (Suc n) = n * Suc n

1. n + (sum (%i. i) n + sum (%i. i) n) = n * n

Ordered rewriting has sorted the terms in the left-hand side. The subgoal is
now ready for induction:
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by (induct_tac "n" 1);
Level 2

2 * sum (%i. i) (Suc n) = n * Suc n

1. 0 + (sum (%i. i) 0 + sum (%i. i) 0) = 0 * 0

2. !!n. n + (sum (%i. i) n + sum (%i. i) n) = n * n

==> Suc n + (sum (%i. i) (Suc n) + sum (%i. i) (Suc n)) =

Suc n * Suc n

Simplification proves both subgoals immediately:

by (ALLGOALS Asm_simp_tac);
Level 3

2 * sum (%i. i) (Suc n) = n * Suc n

No subgoals!

Simplification cannot prove the induction step if we omit add_ac from the
simpset. Observe that like terms have not been collected:

Level 3

2 * sum (%i. i) (Suc n) = n * Suc n

1. !!n. n + sum (%i. i) n + (n + sum (%i. i) n) = n + n * n

==> n + (n + sum (%i. i) n) + (n + (n + sum (%i. i) n)) =

n + (n + (n + n * n))

Ordered rewriting proves this by sorting the left-hand side. Proving arith-
metic theorems without ordered rewriting requires explicit use of commuta-
tivity. This is tedious; try it and see!

Ordered rewriting is equally successful in proving
∑n

i=1 i3 = n2 × (n +
1)2/4.

9.5.2 Re-orienting equalities

Ordered rewriting with the derived rule symmetry can reverse equations:

val symmetry = prove_goal HOL.thy "(x=y) = (y=x)"
(fn _ => [Blast_tac 1]);

This is frequently useful. Assumptions of the form s = t , where t occurs
in the conclusion but not s , can often be brought into the right form. For
example, ordered rewriting with symmetry can prove the goal

f (a) = b ∧ f (a) = c → b = c.

Here symmetry reverses both f (a) = b and f (a) = c because f (a) is lexi-
cographically greater than b and c. These re-oriented equations, as rewrite
rules, replace b and c in the conclusion by f (a).
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Another example is the goal ¬(t = u)→ ¬(u = t). The differing orienta-
tions make this appear difficult to prove. Ordered rewriting with symmetry

makes the equalities agree. (Without knowing more about t and u we cannot
say whether they both go to t = u or u = t .) Then the simplifier can prove
the goal outright.

9.6 *Coding simplification procedures

val Simplifier.simproc: Sign.sg -> string -> string list
-> (Sign.sg -> simpset -> term -> thm option) -> simproc

val Simplifier.simproc_i: Sign.sg -> string -> term list
-> (Sign.sg -> simpset -> term -> thm option) -> simproc

Simplifier.simproc sign name lhss proc makes proc a simplification
procedure for left-hand side patterns lhss . The name just serves as
a comment. The function proc may be invoked by the simplifier for
redex positions matched by one of lhss as described below (which are
be specified as strings to be read as terms).

Simplifier.simproc_i is similar to Simplifier.simproc, but takes well-
typed terms as pattern argument.

Simplification procedures are applied in a two-stage process as follows:
The simplifier tries to match the current redex position against any one of the
lhs patterns of any simplification procedure. If this succeeds, it invokes the
corresponding ml function, passing with the current signature, local assump-
tions and the (potential) redex. The result may be either None (indicating
failure) or Some thm.

Any successful result is supposed to be a (possibly conditional) rewrite
rule t ≡ u that is applicable to the current redex. The rule will be applied
just as any ordinary rewrite rule. It is expected to be already in internal form,
though, bypassing the automatic preprocessing of object-level equivalences.

As an example of how to write your own simplification procedures, con-
sider eta-expansion of pair abstraction (see also HOL/Modelcheck/MCSyn

where this is used to provide external model checker syntax).
The HOL theory of tuples (see HOL/Prod) provides an operator split

together with some concrete syntax supporting λ (x , y) . b abstractions. As-
sume that we would like to offer a tactic that rewrites any function λ p . f p
(where p is of some pair type) to λ (x , y) . f (x , y). The corresponding rule
is:
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pair_eta_expand: (f::’a*’b=>’c) = (%(x, y). f (x, y))

Unfortunately, term rewriting using this rule directly would not terminate!
We now use the simplification procedure mechanism in order to stop the
simplifier from applying this rule over and over again, making it rewrite only
actual abstractions. The simplification procedure pair_eta_expand_proc is
defined as follows:

val pair_eta_expand_proc =
Simplifier.simproc (Theory.sign_of (the_context ()))
"pair_eta_expand" ["f::’a*’b=>’c"]
(fn _ => fn _ => fn t =>
case t of Abs _ => Some (mk_meta_eq pair_eta_expand)
| _ => None);

This is an example of using pair_eta_expand_proc:

1. P (%p::’a * ’a. fst p + snd p + z)

by (simp_tac (simpset() addsimprocs [pair_eta_expand_proc]) 1);
1. P (%(x::’a,y::’a). x + y + z)

In the above example the simplification procedure just did fine grained
control over rule application, beyond higher-order pattern matching. Usually,
procedures would do some more work, in particular prove particular theorems
depending on the current redex.

9.7 *Setting up the Simplifier

Setting up the simplifier for new logics is complicated in the general case.
This section describes how the simplifier is installed for intuitionistic first-
order logic; the code is largely taken from FOL/simpdata.ML of the Isabelle
sources.

The case splitting tactic, which resides on a separate files, is not part of
Pure Isabelle. It needs to be loaded explicitly by the object-logic as follows
(below ~~ refers to $ISABELLE_HOME):

use "~~/src/Provers/splitter.ML";

Simplification requires converting object-equalities to meta-level rewrite
rules. This demands rules stating that equal terms and equivalent formu-
lae are also equal at the meta-level. The rule declaration part of the file
FOL/IFOL.thy contains the two lines
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eq_reflection "(x=y) ==> (x==y)"
iff_reflection "(P<->Q) ==> (P==Q)"

Of course, you should only assert such rules if they are true for your par-
ticular logic. In Constructive Type Theory, equality is a ternary relation of
the form a = b ∈ A; the type A determines the meaning of the equality
essentially as a partial equivalence relation. The present simplifier cannot
be used. Rewriting in CTT uses another simplifier, which resides in the file
Provers/typedsimp.ML and is not documented. Even this does not work for
later variants of Constructive Type Theory that use intensional equality [9].

9.7.1 A collection of standard rewrite rules

We first prove lots of standard rewrite rules about the logical connectives.
These include cancellation and associative laws. We define a function that
echoes the desired law and then supplies it the prover for intuitionistic FOL:

fun int_prove_fun s =
(writeln s;
prove_goal IFOL.thy s
(fn prems => [ (cut_facts_tac prems 1),

(IntPr.fast_tac 1) ]));

The following rewrite rules about conjunction are a selection of those proved
on FOL/simpdata.ML. Later, these will be supplied to the standard simpset.

val conj_simps = map int_prove_fun
["P & True <-> P", "True & P <-> P",
"P & False <-> False", "False & P <-> False",
"P & P <-> P",
"P & ~P <-> False", "~P & P <-> False",
"(P & Q) & R <-> P & (Q & R)"];

The file also proves some distributive laws. As they can cause exponential
blowup, they will not be included in the standard simpset. Instead they are
merely bound to an ml identifier, for user reference.

val distrib_simps = map int_prove_fun
["P & (Q | R) <-> P&Q | P&R",
"(Q | R) & P <-> Q&P | R&P",
"(P | Q --> R) <-> (P --> R) & (Q --> R)"];

9.7.2 Functions for preprocessing the rewrite rules

setmksimps : simpset * (thm -> thm list) -> simpset infix 4

The next step is to define the function for preprocessing rewrite rules. This
will be installed by calling setmksimps below. Preprocessing occurs when-
ever rewrite rules are added, whether by user command or automatically.
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Preprocessing involves extracting atomic rewrites at the object-level, then
reflecting them to the meta-level.

To start, the function gen_all strips any meta-level quantifiers from the
front of the given theorem.

The function atomize analyses a theorem in order to extract atomic
rewrite rules. The head of all the patterns, matched by the wildcard _,
is the coercion function Trueprop.

fun atomize th = case concl_of th of
_ $ (Const("op &",_) $ _ $ _) => atomize(th RS conjunct1) @

atomize(th RS conjunct2)
| _ $ (Const("op -->",_) $ _ $ _) => atomize(th RS mp)
| _ $ (Const("All",_) $ _) => atomize(th RS spec)
| _ $ (Const("True",_)) => []
| _ $ (Const("False",_)) => []
| _ => [th];

There are several cases, depending upon the form of the conclusion:

• Conjunction: extract rewrites from both conjuncts.

• Implication: convert P → Q to the meta-implication P =⇒ Q and
extract rewrites from Q ; these will be conditional rewrites with the
condition P .

• Universal quantification: remove the quantifier, replacing the bound
variable by a schematic variable, and extract rewrites from the body.

• True and False contain no useful rewrites.

• Anything else: return the theorem in a singleton list.

The resulting theorems are not literally atomic — they could be disjunc-
tive, for example — but are broken down as much as possible. See the file
ZF/simpdata.ML for a sophisticated translation of set-theoretic formulae into
rewrite rules.

For standard situations like the above, there is a generic auxiliary func-
tion mk_atomize that takes a list of pairs (name, thms), where name is an
operator name and thms is a list of theorems to resolve with in case the
pattern matches, and returns a suitable atomize function.

The simplified rewrites must now be converted into meta-equalities. The
rule eq_reflection converts equality rewrites, while iff_reflection con-
verts if-and-only-if rewrites. The latter possibility can arise in two other
ways: the negative theorem ¬P is converted to P ≡ False, and any other
theorem P is converted to P ≡ True. The rules iff_reflection_F and
iff_reflection_T accomplish this conversion.
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val P_iff_F = int_prove_fun "~P ==> (P <-> False)";
val iff_reflection_F = P_iff_F RS iff_reflection;
val P_iff_T = int_prove_fun "P ==> (P <-> True)";
val iff_reflection_T = P_iff_T RS iff_reflection;

The function mk_eq converts a theorem to a meta-equality using the case
analysis described above.

fun mk_eq th = case concl_of th of
_ $ (Const("op =",_)$_$_) => th RS eq_reflection

| _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
| _ $ (Const("Not",_)$_) => th RS iff_reflection_F
| _ => th RS iff_reflection_T;

The three functions gen_all, atomize and mk_eq will be composed together
and supplied below to setmksimps.

9.7.3 Making the initial simpset

It is time to assemble these items. The list IFOL_simps contains the default
rewrite rules for intuitionistic first-order logic. The first of these is the reflex-
ive law expressed as the equivalence (a = a)↔ True; the rewrite rule a = a
is clearly useless.

val IFOL_simps =
[refl RS P_iff_T] @ conj_simps @ disj_simps @ not_simps @
imp_simps @ iff_simps @ quant_simps;

The list triv_rls contains trivial theorems for the solver. Any subgoal that
is simplified to one of these will be removed.

val notFalseI = int_prove_fun "~False";
val triv_rls = [TrueI,refl,iff_refl,notFalseI];

We also define the function mk_meta_cong to convert the conclusion of con-
gruence rules into meta-equalities.

fun mk_meta_cong rl = standard (mk_meta_eq (mk_meta_prems rl));

The basic simpset for intuitionistic FOL is FOL_basic_ss. It preprocess
rewrites using gen_all, atomize and mk_eq. It solves simplified subgoals
using triv_rls and assumptions, and by detecting contradictions. It uses
asm_simp_tac to tackle subgoals of conditional rewrites.

Other simpsets built from FOL_basic_ss will inherit these items. In
particular, IFOL_ss, which introduces IFOL_simps as rewrite rules. FOL_ss

will later extend IFOL_ss with classical rewrite rules such as ¬¬P ↔ P .
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fun unsafe_solver prems = FIRST’[resolve_tac (triv_rls @ prems),
atac, etac FalseE];

fun safe_solver prems = FIRST’[match_tac (triv_rls @ prems),
eq_assume_tac, ematch_tac [FalseE]];

val FOL_basic_ss =
empty_ss setsubgoaler asm_simp_tac

addsimprocs [defALL_regroup, defEX_regroup]
setSSolver safe_solver
setSolver unsafe_solver
setmksimps (map mk_eq o atomize o gen_all)
setmkcong mk_meta_cong;

val IFOL_ss =
FOL_basic_ss addsimps (IFOL_simps @

int_ex_simps @ int_all_simps)
addcongs [imp_cong];

This simpset takes imp_cong as a congruence rule in order to use contextual
information to simplify the conclusions of implications:

[[?P ↔ ?P ′; ?P ′ =⇒ ?Q ↔ ?Q ′]] =⇒ (?P → ?Q)↔ (?P ′ → ?Q ′)

By adding the congruence rule conj_cong, we could obtain a similar effect
for conjunctions.

9.7.4 Splitter setup

To set up case splitting, we have to call the ml functor SplitterFun,
which takes the argument signature SPLITTER_DATA. So we prove the theorem
meta_eq_to_iff below and store it, together with the mk_eq function de-
scribed above and several standard theorems, in the structure SplitterData.
Calling the functor with this data yields a new instantiation of the splitter
for our logic.

val meta_eq_to_iff = prove_goal IFOL.thy "x==y ==> x<->y"
(fn [prem] => [rewtac prem, rtac iffI 1, atac 1, atac 1]);
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structure SplitterData =
struct
structure Simplifier = Simplifier
val mk_eq = mk_eq
val meta_eq_to_iff = meta_eq_to_iff
val iffD = iffD2
val disjE = disjE
val conjE = conjE
val exE = exE
val contrapos = contrapos
val contrapos2 = contrapos2
val notnotD = notnotD
end;

structure Splitter = SplitterFun(SplitterData);



Chapter 10

The Classical Reasoner

Although Isabelle is generic, many users will be working in some extension of
classical first-order logic. Isabelle’s set theory ZF is built upon theory FOL,
while HOL conceptually contains first-order logic as a fragment. Theorem-
proving in predicate logic is undecidable, but many researchers have devel-
oped strategies to assist in this task.

Isabelle’s classical reasoner is an ml functor that accepts certain infor-
mation about a logic and delivers a suite of automatic tactics. Each tactic
takes a collection of rules and executes a simple, non-clausal proof procedure.
They are slow and simplistic compared with resolution theorem provers, but
they can save considerable time and effort. They can prove theorems such
as Pelletier’s [11] problems 40 and 41 in seconds:

(∃y . ∀x . J (y , x )↔ ¬J (x , x ))→ ¬(∀x . ∃y . ∀z . J (z , y)↔ ¬J (z , x ))

(∀z . ∃y . ∀x . F (x , y)↔ F (x , z ) ∧ ¬F (x , x ))→ ¬(∃z . ∀x . F (x , z ))

The tactics are generic. They are not restricted to first-order logic, and have
been heavily used in the development of Isabelle’s set theory. Few interactive
proof assistants provide this much automation. The tactics can be traced,
and their components can be called directly; in this manner, any proof can
be viewed interactively.

We shall first discuss the underlying principles, then present the classical
reasoner. Finally, we shall see how to instantiate it for new logics. The logics
FOL, ZF, HOL and HOLCF have it already installed.

10.1 The sequent calculus

Isabelle supports natural deduction, which is easy to use for interactive proof.
But natural deduction does not easily lend itself to automation, and has a
bias towards intuitionism. For certain proofs in classical logic, it can not be
called natural. The sequent calculus, a generalization of natural deduction,
is easier to automate.

94
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A sequent has the form Γ ` ∆, where Γ and ∆ are sets of formulae.1

The sequent
P1, . . . ,Pm ` Q1, . . . ,Qn

is valid if P1 ∧ . . . ∧ Pm implies Q1 ∨ . . . ∨ Qn . Thus P1, . . . ,Pm represent
assumptions, each of which is true, while Q1, . . . ,Qn represent alternative
goals. A sequent is basic if its left and right sides have a common formula,
as in P ,Q ` Q ,R; basic sequents are trivially valid.

Sequent rules are classified as right or left, indicating which side of the
` symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to
elimination rules. Recall the natural deduction rules for first-order logic,
from Introduction to Isabelle. The sequent calculus analogue of (→I ) is the
rule

P ,Γ` ∆,Q
Γ` ∆,P → Q

(→R)

This breaks down some implication on the right side of a sequent; Γ and
∆ stand for the sets of formulae that are unaffected by the inference. The
analogue of the pair (∨I 1) and (∨I 2) is the single rule

Γ` ∆,P ,Q
Γ` ∆,P ∨Q

(∨R)

This breaks down some disjunction on the right side, replacing it by both
disjuncts. Thus, the sequent calculus is a kind of multiple-conclusion logic.

To illustrate the use of multiple formulae on the right, let us prove the
classical theorem (P → Q) ∨ (Q → P). Working backwards, we reduce this
formula to a basic sequent:

P ,Q ` Q ,P

P ` Q , (Q → P)
(→)R

` (P → Q), (Q → P)
(→)R

` (P → Q) ∨ (Q → P)
(∨)R

This example is typical of the sequent calculus: start with the desired the-
orem and apply rules backwards in a fairly arbitrary manner. This yields
a surprisingly effective proof procedure. Quantifiers add few complications,
since Isabelle handles parameters and schematic variables. See Chapter 10
of ML for the Working Programmer [10] for further discussion.

1For first-order logic, sequents can equivalently be made from lists or multisets of
formulae.
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10.2 Simulating sequents by natural deduc-

tion

Isabelle can represent sequents directly, as in the object-logic LK. But natural
deduction is easier to work with, and most object-logics employ it. Fortu-
nately, we can simulate the sequent P1, . . . ,Pm ` Q1, . . . ,Qn by the Isabelle
formula

[[P1; . . . ; Pm ;¬Q2; . . . ;¬Qn ]] =⇒ Q1,

where the order of the assumptions and the choice of Q1 are arbitrary. Elim-
resolution plays a key role in simulating sequent proofs.

We can easily handle reasoning on the left. As discussed in Introduction
to Isabelle, elim-resolution with the rules (∨E ), (⊥E ) and (∃E ) achieves a
similar effect as the corresponding sequent rules. For the other connectives,
we use sequent-style elimination rules instead of destruction rules such as
(∧E1, 2) and (∀E ). But note that the rule (¬L) has no effect under our
representation of sequents!

Γ` ∆,P
¬P ,Γ` ∆

(¬L)

What about reasoning on the right? Introduction rules can only affect the
formula in the conclusion, namely Q1. The other right-side formulae are
represented as negated assumptions, ¬Q2, . . . , ¬Qn . In order to operate on
one of these, it must first be exchanged with Q1. Elim-resolution with the
swap rule has this effect:

[[¬P ; ¬R =⇒ P ]] =⇒ R (swap)

To ensure that swaps occur only when necessary, each introduction rule
is converted into a swapped form: it is resolved with the second premise
of (swap). The swapped form of (∧I ), which might be called (¬∧E ), is

[[¬(P ∧Q); ¬R =⇒ P ; ¬R =⇒ Q ]] =⇒ R.

Similarly, the swapped form of (→I ) is

[[¬(P → Q); [[¬R; P ]] =⇒ Q ]] =⇒ R

Swapped introduction rules are applied using elim-resolution, which deletes
the negated formula. Our representation of sequents also requires the use
of ordinary introduction rules. If we had no regard for readability, we could
treat the right side more uniformly by representing sequents as

[[P1; . . . ; Pm ;¬Q1; . . . ;¬Qn ]] =⇒ ⊥.
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10.3 Extra rules for the sequent calculus

As mentioned, destruction rules such as (∧E1, 2) and (∀E ) must be replaced
by sequent-style elimination rules. In addition, we need rules to embody
the classical equivalence between P → Q and ¬P ∨ Q . The introduction
rules (∨I 1, 2) are replaced by a rule that simulates (∨R):

(¬Q =⇒ P) =⇒ P ∨Q

The destruction rule (→E ) is replaced by

[[P → Q ; ¬P =⇒ R; Q =⇒ R]] =⇒ R.

Quantifier replication also requires special rules. In classical logic, ∃x .P is
equivalent to ¬∀x .¬P ; the rules (∃R) and (∀L) are dual:

Γ` ∆,∃x .P ,P [t/x ]
Γ` ∆,∃x .P (∃R)

P [t/x ],∀x .P ,Γ` ∆
∀x .P ,Γ` ∆

(∀L)

Thus both kinds of quantifier may be replicated. Theorems requiring multiple
uses of a universal formula are easy to invent; consider

(∀x . P(x )→ P(f (x ))) ∧ P(a)→ P(f n(a)),

for any n > 1. Natural examples of the multiple use of an existential formula
are rare; a standard one is ∃x . ∀y . P(x )→ P(y).

Forgoing quantifier replication loses completeness, but gains decidability,
since the search space becomes finite. Many useful theorems can be proved
without replication, and the search generally delivers its verdict in a reason-
able time. To adopt this approach, represent the sequent rules (∃R), (∃L)
and (∀R) by (∃I ), (∃E ) and (∀I ), respectively, and put (∀E ) into elimination
form:

[[∀x .P(x ); P(t) =⇒ Q ]] =⇒ Q (∀E2)

Elim-resolution with this rule will delete the universal formula after a single
use. To replicate universal quantifiers, replace the rule by

[[∀x .P(x ); [[P(t);∀x .P(x )]] =⇒ Q ]] =⇒ Q . (∀E3)

To replicate existential quantifiers, replace (∃I ) by

[[¬(∃x .P(x )) =⇒ P(t)]] =⇒ ∃x .P(x ).

All introduction rules mentioned above are also useful in swapped form.



CHAPTER 10. THE CLASSICAL REASONER 98

Replication makes the search space infinite; we must apply the rules with
care. The classical reasoner distinguishes between safe and unsafe rules,
applying the latter only when there is no alternative. Depth-first search may
well go down a blind alley; best-first search is better behaved in an infinite
search space. However, quantifier replication is too expensive to prove any
but the simplest theorems.

10.4 Classical rule sets

Each automatic tactic takes a classical set — a collection of rules, classified
as introduction or elimination and as safe or unsafe. In general, safe rules
can be attempted blindly, while unsafe rules must be used with care. A safe
rule must never reduce a provable goal to an unprovable set of subgoals.

The rule (∨I 1) is unsafe because it reduces P∨Q to P . Any rule is unsafe
whose premises contain new unknowns. The elimination rule (∀E2) is unsafe,
since it is applied via elim-resolution, which discards the assumption ∀x .P(x )
and replaces it by the weaker assumption P(?t). The rule (∃I ) is unsafe for
similar reasons. The rule (∀E3) is unsafe in a different sense: since it keeps
the assumption ∀x .P(x ), it is prone to looping. In classical first-order logic,
all rules are safe except those mentioned above.

The safe/unsafe distinction is vague, and may be regarded merely as a
way of giving some rules priority over others. One could argue that (∨E )
is unsafe, because repeated application of it could generate exponentially
many subgoals. Induction rules are unsafe because inductive proofs are dif-
ficult to set up automatically. Any inference is unsafe that instantiates an
unknown in the proof state — thus match_tac must be used, rather than
resolve_tac. Even proof by assumption is unsafe if it instantiates unknowns
shared with other subgoals — thus eq_assume_tac must be used, rather than
assume_tac.

10.4.1 Adding rules to classical sets

Classical rule sets belong to the abstract type claset, which supports the
following operations (provided the classical reasoner is installed!):
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empty_cs : claset
print_cs : claset -> unit
rep_cs : claset -> {safeEs: thm list, safeIs: thm list,

hazEs: thm list, hazIs: thm list,
swrappers: (string * wrapper) list,
uwrappers: (string * wrapper) list,
safe0_netpair: netpair, safep_netpair: netpair,
haz_netpair: netpair, dup_netpair: netpair}

addSIs : claset * thm list -> claset infix 4
addSEs : claset * thm list -> claset infix 4
addSDs : claset * thm list -> claset infix 4
addIs : claset * thm list -> claset infix 4
addEs : claset * thm list -> claset infix 4
addDs : claset * thm list -> claset infix 4
delrules : claset * thm list -> claset infix 4

The add operations ignore any rule already present in the claset with the
same classification (such as safe introduction). They print a warning if the
rule has already been added with some other classification, but add the rule
anyway. Calling delrules deletes all occurrences of a rule from the claset,
but see the warning below concerning destruction rules.

empty_cs is the empty classical set.

print_cs cs displays the printable contents of cs , which is the rules. All
other parts are non-printable.

rep_cs cs decomposes cs as a record of its internal components, namely
the safe introduction and elimination rules, the unsafe introduction and
elimination rules, the lists of safe and unsafe wrappers (see 10.4.2), and
the internalized forms of the rules.

cs addSIs rules adds safe introduction rules to cs .

cs addSEs rules adds safe elimination rules to cs .

cs addSDs rules adds safe destruction rules to cs .

cs addIs rules adds unsafe introduction rules to cs .

cs addEs rules adds unsafe elimination rules to cs .

cs addDs rules adds unsafe destruction rules to cs .

cs delrules rules deletes rules from cs . It prints a warning for those rules
that are not in cs .



CHAPTER 10. THE CLASSICAL REASONER 100

! If you added rule using addSDs or addDs, then you must delete it as follows:

cs delrules [make_elim rule]

This is necessary because the operators addSDs and addDs convert the destruction
rules to elimination rules by applying make_elim, and then insert them using
addSEs and addEs, respectively.

Introduction rules are those that can be applied using ordinary resolution.
The classical set automatically generates their swapped forms, which will
be applied using elim-resolution. Elimination rules are applied using elim-
resolution. In a classical set, rules are sorted by the number of new subgoals
they will yield; rules that generate the fewest subgoals will be tried first (see
§2.3.1).

For elimination and destruction rules there are variants of the add oper-
ations adding a rule in a way such that it is applied only if also its second
premise can be unified with an assumption of the current proof state:

addSE2 : claset * (string * thm) -> claset infix 4
addSD2 : claset * (string * thm) -> claset infix 4
addE2 : claset * (string * thm) -> claset infix 4
addD2 : claset * (string * thm) -> claset infix 4

! A rule to be added in this special way must be given a name, which is used
to delete it again – when desired – using delSWrappers or delWrappers, re-

spectively. This is because these add operations are implemented as wrappers (see
10.4.2 below).

10.4.2 Modifying the search step

For a given classical set, the proof strategy is simple. Perform as many safe
inferences as possible; or else, apply certain safe rules, allowing instantiation
of unknowns; or else, apply an unsafe rule. The tactics also eliminate as-
sumptions of the form x = t by substitution if they have been set up to do so
(see hyp_subst_tacs in §10.6 below). They may perform a form of Modus
Ponens: if there are assumptions P → Q and P , then replace P → Q by Q .

The classical reasoning tactics — except blast_tac! — allow you to
modify this basic proof strategy by applying two lists of arbitrary wrapper
tacticals to it. The first wrapper list, which is considered to contain safe
wrappers only, affects safe_step_tac and all the tactics that call it. The
second one, which may contain unsafe wrappers, affects the unsafe parts
of step_tac, slow_step_tac, and the tactics that call them. A wrapper
transforms each step of the search, for example by attempting other tactics
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before or after the original step tactic. All members of a wrapper list are
applied in turn to the respective step tactic.

Initially the two wrapper lists are empty, which means no modification
of the step tactics. Safe and unsafe wrappers are added to a claset with the
functions given below, supplying them with wrapper names. These names
may be used to selectively delete wrappers.

type wrapper = (int -> tactic) -> (int -> tactic);

addSWrapper : claset * (string * wrapper ) -> claset infix 4
addSbefore : claset * (string * (int -> tactic)) -> claset infix 4
addSafter : claset * (string * (int -> tactic)) -> claset infix 4
delSWrapper : claset * string -> claset infix 4

addWrapper : claset * (string * wrapper ) -> claset infix 4
addbefore : claset * (string * (int -> tactic)) -> claset infix 4
addafter : claset * (string * (int -> tactic)) -> claset infix 4
delWrapper : claset * string -> claset infix 4

addSss : claset * simpset -> claset infix 4
addss : claset * simpset -> claset infix 4

cs addSWrapper (name,wrapper) adds a new wrapper, which should yield
a safe tactic, to modify the existing safe step tactic.

cs addSbefore (name, tac) adds the given tactic as a safe wrapper, such
that it is tried before each safe step of the search.

cs addSafter (name, tac) adds the given tactic as a safe wrapper, such that
it is tried when a safe step of the search would fail.

cs delSWrapper name deletes the safe wrapper with the given name.

cs addWrapper (name,wrapper) adds a new wrapper to modify the existing
(unsafe) step tactic.

cs addbefore (name, tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated before the result of each unsafe step.

cs addafter (name, tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated after the result of each unsafe step.

cs delWrapper name deletes the unsafe wrapper with the given name.

cs addSss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, in a rather safe way, after each safe step of the
search.
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cs addss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, before the each unsafe step of the search.

Strictly speaking, the operators addss and addSss are not part of the
classical reasoner. , which are used as primitives for the automatic tactics
described in §10.5.2, are implemented as wrapper tacticals. they

! Being defined as wrappers, these operators are inappropriate for adding more
than one simpset at a time: the simpset added last overwrites any earlier ones.

When a simpset combined with a claset is to be augmented, this should done before
combining it with the claset.

10.5 The classical tactics

If installed, the classical module provides powerful theorem-proving tactics.
Most of them have capitalized analogues that use the default claset; see
§10.5.7.

10.5.1 The tableau prover

The tactic blast_tac searches for a proof using a fast tableau prover, coded
directly in ml. It then reconstructs the proof using Isabelle tactics. It is
faster and more powerful than the other classical reasoning tactics, but has
major limitations too.

• It does not use the wrapper tacticals described above, such as addss.

• It ignores types, which can cause problems in HOL. If it applies a rule
whose types are inappropriate, then proof reconstruction will fail.

• It does not perform higher-order unification, as needed by the rule
rangeI in HOL and RepFunI in ZF. There are often alternatives to
such rules, for example range_eqI and RepFun_eqI.

• Function variables may only be applied to parameters of the sub-
goal. (This restriction arises because the prover does not use higher-
order unification.) If other function variables are present then the
prover will fail with the message Function Var’s argument not a

bound variable.

• Its proof strategy is more general than fast_tac’s but can be slower.
If blast_tac fails or seems to be running forever, try fast_tac and
the other tactics described below.
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blast_tac : claset -> int -> tactic
Blast.depth_tac : claset -> int -> int -> tactic
Blast.trace : bool ref initially false

The two tactics differ on how they bound the number of unsafe steps used
in a proof. While blast_tac starts with a bound of zero and increases it
successively to 20, Blast.depth_tac applies a user-supplied search bound.

blast_tac cs i tries to prove subgoal i , increasing the search bound using
iterative deepening [6].

Blast.depth_tac cs lim i tries to prove subgoal i using a search bound
of lim. Sometimes a slow proof using blast_tac can be made much
faster by supplying the successful search bound to this tactic instead.

set Blast.trace; causes the tableau prover to print a trace of its search.
At each step it displays the formula currently being examined and
reports whether the branch has been closed, extended or split.

10.5.2 Automatic tactics

type clasimpset = claset * simpset;
auto_tac : clasimpset -> tactic
force_tac : clasimpset -> int -> tactic
auto : unit -> unit
force : int -> unit

The automatic tactics attempt to prove goals using a combination of simpli-
fication and classical reasoning.

auto_tac (cs , ss) is intended for situations where there are a lot of mostly
trivial subgoals; it proves all the easy ones, leaving the ones it cannot
prove. (Unfortunately, attempting to prove the hard ones may take a
long time.)

force_tac (cs , ss) i is intended to prove subgoal i completely. It tries to
apply all fancy tactics it knows about, performing a rather exhaustive
search.

They must be supplied both a simpset and a claset; therefore they are most
easily called as Auto_tac and Force_tac, which use the default claset and
simpset (see §10.5.7 below). For interactive use, the shorthand auto();

abbreviates by Auto_tac; while force 1; abbreviates by (Force_tac 1);
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10.5.3 Semi-automatic tactics

clarify_tac : claset -> int -> tactic
clarify_step_tac : claset -> int -> tactic
clarsimp_tac : clasimpset -> int -> tactic

Use these when the automatic tactics fail. They perform all the obvious
logical inferences that do not split the subgoal. The result is a simpler subgoal
that can be tackled by other means, such as by instantiating quantifiers
yourself.

clarify_tac cs i performs a series of safe steps on subgoal i by repeatedly
calling clarify_step_tac.

clarify_step_tac cs i performs a safe step on subgoal i . No splitting step
is applied; for example, the subgoal A∧B is left as a conjunction. Proof
by assumption, Modus Ponens, etc., may be performed provided they
do not instantiate unknowns. Assumptions of the form x = t may be
eliminated. The user-supplied safe wrapper tactical is applied.

clarsimp_tac cs i acts like clarify_tac, but also does simplification with
the given simpset. Note that if the simpset includes a splitter for the
premises, the subgoal may still be split.

10.5.4 Other classical tactics

fast_tac : claset -> int -> tactic
best_tac : claset -> int -> tactic
slow_tac : claset -> int -> tactic
slow_best_tac : claset -> int -> tactic

These tactics attempt to prove a subgoal using sequent-style reasoning. Un-
like blast_tac, they construct proofs directly in Isabelle. Their effect is
restricted (by SELECT_GOAL) to one subgoal; they either prove this subgoal
or fail. The slow_ versions conduct a broader search.2

The best-first tactics are guided by a heuristic function: typically, the
total size of the proof state. This function is supplied in the functor call that
sets up the classical reasoner.

fast_tac cs i applies step_tac using depth-first search to prove subgoal i .

best_tac cs i applies step_tac using best-first search to prove subgoal i .

2They may, when backtracking from a failed proof attempt, undo even the step of
proving a subgoal by assumption.



CHAPTER 10. THE CLASSICAL REASONER 105

slow_tac cs i applies slow_step_tac using depth-first search to prove sub-
goal i .

slow_best_tac cs i applies slow_step_tac with best-first search to prove
subgoal i .

10.5.5 Depth-limited automatic tactics

depth_tac : claset -> int -> int -> tactic
deepen_tac : claset -> int -> int -> tactic

These work by exhaustive search up to a specified depth. Unsafe rules are
modified to preserve the formula they act on, so that it be used repeatedly.
They can prove more goals than fast_tac can but are much slower, for
example if the assumptions have many universal quantifiers.

The depth limits the number of unsafe steps. If you can estimate the
minimum number of unsafe steps needed, supply this value as m to save
time.

depth_tac cs m i tries to prove subgoal i by exhaustive search up to
depth m.

deepen_tac cs m i tries to prove subgoal i by iterative deepening. It calls
depth_tac repeatedly with increasing depths, starting with m.

10.5.6 Single-step tactics

safe_step_tac : claset -> int -> tactic
safe_tac : claset -> tactic
inst_step_tac : claset -> int -> tactic
step_tac : claset -> int -> tactic
slow_step_tac : claset -> int -> tactic

The automatic proof procedures call these tactics. By calling them yourself,
you can execute these procedures one step at a time.

safe_step_tac cs i performs a safe step on subgoal i . The safe wrapper
tacticals are applied to a tactic that may include proof by assump-
tion or Modus Ponens (taking care not to instantiate unknowns), or
substitution.

safe_tac cs repeatedly performs safe steps on all subgoals. It is determin-
istic, with at most one outcome.
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inst_step_tac cs i is like safe_step_tac, but allows unknowns to be in-
stantiated.

step_tac cs i is the basic step of the proof procedure. The unsafe wrapper
tacticals are applied to a tactic that tries safe_tac, inst_step_tac,
or applies an unsafe rule from cs .

slow_step_tac resembles step_tac, but allows backtracking between using
safe rules with instantiation (inst_step_tac) and using unsafe rules.
The resulting search space is larger.

10.5.7 The current claset

Each theory is equipped with an implicit current claset . This is a default
set of classical rules. The underlying idea is quite similar to that of a current
simpset described in §9.1; please read that section, including its warnings.

The tactics

Blast_tac : int -> tactic
Auto_tac : tactic
Force_tac : int -> tactic
Fast_tac : int -> tactic
Best_tac : int -> tactic
Deepen_tac : int -> int -> tactic
Clarify_tac : int -> tactic
Clarify_step_tac : int -> tactic
Clarsimp_tac : int -> tactic
Safe_tac : tactic
Safe_step_tac : int -> tactic
Step_tac : int -> tactic

make use of the current claset. For example, Blast_tac is defined as

fun Blast_tac i st = blast_tac (claset()) i st;

and gets the current claset, only after it is applied to a proof state. The
functions

AddSIs, AddSEs, AddSDs, AddIs, AddEs, AddDs: thm list -> unit

are used to add rules to the current claset. They work exactly like their lower
case counterparts, such as addSIs. Calling

Delrules : thm list -> unit

deletes rules from the current claset.
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10.5.8 Accessing the current claset

the functions to access the current claset are analogous to the functions for
the current simpset, so please see 9.2.3 for a description.

claset : unit -> claset
claset_ref : unit -> claset ref
claset_of : theory -> claset
claset_ref_of : theory -> claset ref
print_claset : theory -> unit
CLASET :(claset -> tactic) -> tactic
CLASET’ :(claset -> ’a -> tactic) -> ’a -> tactic
CLASIMPSET :(clasimpset -> tactic) -> tactic
CLASIMPSET’ :(clasimpset -> ’a -> tactic) -> ’a -> tactic

10.5.9 Other useful tactics

contr_tac : int -> tactic
mp_tac : int -> tactic
eq_mp_tac : int -> tactic
swap_res_tac : thm list -> int -> tactic

These can be used in the body of a specialized search.

contr_tac i solves subgoal i by detecting a contradiction among two as-
sumptions of the form P and ¬P , or fail. It may instantiate unknowns.
The tactic can produce multiple outcomes, enumerating all possible
contradictions.

mp_tac i is like contr_tac, but also attempts to perform Modus Ponens
in subgoal i . If there are assumptions P → Q and P , then it replaces
P → Q by Q . It may instantiate unknowns. It fails if it can do nothing.

eq_mp_tac i is like mp_tac i, but may not instantiate unknowns — thus, it
is safe.

swap_res_tac thms i refines subgoal i of the proof state using thms, which
should be a list of introduction rules. First, it attempts to prove the
goal using assume_tac or contr_tac. It then attempts to apply each
rule in turn, attempting resolution and also elim-resolution with the
swapped form.

10.5.10 Creating swapped rules

swapify : thm list -> thm list
joinrules : thm list * thm list -> (bool * thm) list



CHAPTER 10. THE CLASSICAL REASONER 108

swapify thms returns a list consisting of the swapped versions of thms, re-
garded as introduction rules.

joinrules (intrs, elims) joins introduction rules, their swapped versions,
and elimination rules for use with biresolve_tac. Each rule is paired
with false (indicating ordinary resolution) or true (indicating elim-
resolution).

10.6 Setting up the classical reasoner

Isabelle’s classical object-logics, including FOL and HOL, have the classical
reasoner already set up. When defining a new classical logic, you should set
up the reasoner yourself. It consists of the ml functor ClassicalFun, which
takes the argument signature CLASSICAL_DATA:

signature CLASSICAL_DATA =
sig
val mp : thm
val not_elim : thm
val swap : thm
val sizef : thm -> int
val hyp_subst_tacs : (int -> tactic) list
end;

Thus, the functor requires the following items:

mp should be the Modus Ponens rule [[?P → ?Q ; ?P ]] =⇒ ?Q .

not_elim should be the contradiction rule [[¬?P ; ?P ]] =⇒ ?R.

swap should be the swap rule [[¬?P ; ¬?R =⇒ ?P ]] =⇒ ?R.

sizef is the heuristic function used for best-first search. It should esti-
mate the size of the remaining subgoals. A good heuristic function
is size_of_thm, which measures the size of the proof state. Another
size function might ignore certain subgoals (say, those concerned with
type-checking). A heuristic function might simply count the subgoals.

hyp_subst_tacs is a list of tactics for substitution in the hypotheses, typi-
cally created by HypsubstFun (see Chapter 8). This list can, of course,
be empty. The tactics are assumed to be safe!

The functor is not at all sensitive to the formalization of the object-logic. It
does not even examine the rules, but merely applies them according to its
fixed strategy. The functor resides in Provers/classical.ML in the Isabelle
sources.



CHAPTER 10. THE CLASSICAL REASONER 109

10.7 Setting up the combination with the

simplifier

To combine the classical reasoner and the simplifier, we simply call the ml
functor ClasimpFun that assembles the parts as required. It takes a structure
(of signature CLASIMP_DATA) as argment, which can be contructed on the fly:

structure Clasimp = ClasimpFun
(structure Simplifier = Simplifier

and Classical = Classical
and Blast = Blast);
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filt_resolve_tac, 7
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print_thm, 17
priorities, 43
productions, 42

copy, 42, 50
proof terms, 30–34

checking, 32
parsing, 33
partial, 32
printing, 33
reconstructing, 32

proofs, 31
prop type, 40
prth, 17
prthq, 17
prths, 17
prune_params_tac, 4
PThm, 31

quantifiers, 45
quit, 1

read_axm, 39
read_cterm, 39
read_instantiate, 19
read_instantiate_sg, 19
rearrange_prems, 21
reflexive, 26
rename_params_rule, 30
rep_cs, 99
rep_cterm, 39
rep_ctyp, 41
rep_ss, 74
rep_thm, 22
REPEAT, 9, 10
REPEAT1, 10
REPEAT_DETERM, 9
REPEAT_DETERM_N, 9
REPEAT_FIRST, 15
REPEAT_SOME, 15
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res_inst_tac, 5
reserved words, 59
reset_path, 35
resolution, 18, 28

without lifting, 29
resolve_tac, 98
rev_eq_reflection theorem, 68
rev_mp theorem, 68
rewrite rules, 75–76

permutative, 84–87
rewrite_goals_rule, 19
rewrite_goals_tac, 3, 19
rewrite_rule, 19
rewrite_tac, 3
rewriting

object-level, see simplification
ordered, 84
syntactic, 53–60

RL, 18
RLN, 18
rotate_prems, 20
rotate_tac, 4
RS, 18
RSN, 18
rule_by_tactic, 4, 20
rules

converting destruction to elimi-
nation, 20

Safe_step_tac, 106
safe_step_tac, 100, 105
Safe_tac, 106
safe_tac, 105
search, 8

tacticals, 11–13
SELECT_GOAL, 3, 14
sequent calculus, 94
setloop, 81
setmksimps, 76, 89, 91
setSolver, 80, 91
setSSolver, 80, 91

setsubgoaler, 79, 91
settermless, 84
show_path, 35
show_sorts, 52, 61
show_types, 52, 56, 63
Sign.certify_term, 39
Sign.certify_typ, 41
Sign.string_of_term, 38
Sign.string_of_typ, 40
sign_of_thm, 21
signatures, 38–40
Simp_tac, 70
simp_tac, 83
simplification, 70–93

conversions, 83
forward rules, 83
from classical reasoner, 102
setting up, 88
setting up the splitter, 92
tactics, 82

simplification sets, 73
Simplifier.asm_full_rewrite, 83
Simplifier.asm_rewrite, 83
Simplifier.full_rewrite, 83
Simplifier.rewrite, 83
Simplifier.simproc, 87
Simplifier.simproc_i, 87
simplify, 83
SIMPSET, 75
simpset

current, 70, 75
simpset, 75
SIMPSET’, 75
simpset_of, 75
simpset_ref, 75
simpset_ref_of, 75
size_of_thm, 12, 13, 108
sizef, 108
slow_best_tac, 105
slow_step_tac, 100, 106
slow_tac, 105
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SOLVE, 13
SOMEGOAL, 15
sort hypotheses, 22, 24
ssubst theorem, 66
stac, 66
standard, 20
Step_tac, 106
step_tac, 100, 106
string_of_cterm, 38
string_of_ctyp, 40
string_of_thm, 18
strip_shyps, 22
strip_shyps_warning, 22
subgoal_tac, 2
subgoals_of_brl, 6
subgoals_tac, 2
subst theorem, 65, 68
substitution

rules, 65
swap theorem, 108
swap_res_tac, 107
swapify, 108
sym theorem, 66, 68
symmetric, 26
syntax

transformations, 48–63
Syntax.ast ML type, 48
Syntax.mark_boundT, 63
Syntax.trace_ast, 57
Syntax.variant_abs’, 63

tacticals, 8–16
conditional, 12
deterministic, 12
for filtering, 11
for restriction to a subgoal, 14
identities for, 10
joining a list of tactics, 9
joining tactic functions, 16
joining two tactics, 8
repetition, 9

scanning for subgoals, 15
searching, 11, 12

tactics, 2–7
filtering results of, 11
for composition, 5
for contradiction, 107
for inserting facts, 2
for Modus Ponens, 107
meta-rewriting, 3
resolution, 5, 6
restricting to a subgoal, 14
simplification, 82
substitution, 65–69

TERM, 38
term ML type, 36, 51
terms, 36

certified, 38
made from ASTs, 51
printing of, 38

TFree, 40
THEN, 8, 10, 15
THEN’, 16
THEN_BEST_FIRST, 12
theorems, 17–34

dependencies, 32
equality of, 13
joining by resolution, 18
of pure theory, 4
printing of, 17
size of, 13
standardizing, 20
taking apart, 21

theories, 35–41
reading, 35

theory_of_thm, 21
thin_refl theorem, 68
thin_tac, 4
THM exception, 18, 23, 29
thm ML type, 17
Thm.instantiate, 27
thm_deps, 32
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tid nonterminal, 50, 57
token class, 63
token translations, 63–64
token_translation, 63
tpairs_of, 21
trace_BEST_FIRST, 12
trace_DEPTH_FIRST, 11
trace_goalno_tac, 15
trace_REPEAT, 10
trace_simp, 71
tracing

of classical prover, 103
of macros, 57
of searching tacticals, 11, 12
of simplification, 72
of unification, 23

transfer, 36
transitive, 26
translations, 60–63

parse, 45, 51
parse AST, 49, 50
print, 45
print AST, 53

translations section, 55
trivial, 29
TRY, 9, 10
TRYALL, 15
TVar, 40
tvar nonterminal, 50, 57
typ ML type, 39
Type, 40
type type, 43
type constraints, 45, 52
type constructors, 40
type unknowns, 40

freezing/thawing of, 28
type variables, 40
types, 39

certified, 40
printing of, 40

unknowns, 36

Var, 36, 51
var nonterminal, 50, 57
Variable, 48
variables

bound, 36
free, 36

variant_abs, 37
varifyT, 28

with_path, 35

xnum nonterminal, 50, 57
xstr nonterminal, 50, 57

zero_var_indexes, 20
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