
Defining Recursive Functions in Isabelle/HOL

Alexander Krauss

Abstract

This tutorial describes the use of the new function package, which
provides general recursive function definitions for Isabelle/HOL. We start
with very simple examples and then gradually move on to more advanced
topics such as manual termination proofs, nested recursion, partiality, tail
recursion and congruence rules.

1 Introduction

Starting from Isabelle 2007, new facilities for recursive function definitions [2]
are available. They provide better support for general recursive definitions than
previous packages. But despite all tool support, function definitions can some-
times be a difficult thing.

This tutorial is an example-guided introduction to the practical use of the
package and related tools. It should help you get started with defining functions
quickly. For the more difficult definitions we will discuss what problems can
arise, and how they can be solved.

We assume that you have mastered the fundamentals of Isabelle/HOL and
are able to write basic specifications and proofs. To start out with Isabelle in
general, consult the Isabelle/HOL tutorial [4].

Structure of this tutorial. Section 2 introduces the syntax and basic op-
eration of the fun command, which provides full automation with reasonable
default behavior. The impatient reader can stop after that section, and consult
the remaining sections only when needed. Section 3 introduces the more ver-
bose function command which gives fine-grained control. This form should be
used whenever the short form fails. After that we discuss more specialized is-
sues: termination, mutual, nested and higher-order recursion, partiality, pattern
matching and others.

Some background. Following the LCF tradition, the package is realized as
a definitional extension: Recursive definitions are internally transformed into a
non-recursive form, such that the function can be defined using standard defi-
nition facilities. Then the recursive specification is derived from the primitive
definition. This is a complex task, but it is fully automated and mostly trans-
parent to the user. Definitional extensions are valuable because they are con-
servative by construction: The “new” concept of general wellfounded recursion
is completely reduced to existing principles.

1

2 FUNCTION DEFINITIONS FOR DUMMIES 2

The new function command, and its short form fun have mostly replaced
the traditional recdef command [5]. They solve a few of technical issues around
recdef, and allow definitions which were not previously possible.

2 Function Definitions for Dummies

In most cases, defining a recursive function is just as simple as other definitions:

fun fib :: "nat ⇒ nat"

where
"fib 0 = 1"

| "fib (Suc 0) = 1"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

The syntax is rather self-explanatory: We introduce a function by giving
its name, its type, and a set of defining recursive equations. If we leave out
the type, the most general type will be inferred, which can sometimes lead to
surprises: Since both 1 and + are overloaded, we would end up with fib :: nat

⇒ ’a::{one,plus}.

The function always terminates, since its argument gets smaller in every re-
cursive call. Since HOL is a logic of total functions, termination is a fundamental
requirement to prevent inconsistencies1. Isabelle tries to prove termination au-
tomatically when a definition is made. In §4, we will look at cases where this
fails and see what to do then.

2.1 Pattern matching

Like in functional programming, we can use pattern matching to define func-
tions. At the moment we will only consider constructor patterns, which only
consist of datatype constructors and variables. Furthermore, patterns must be
linear, i.e. all variables on the left hand side of an equation must be distinct. In
§6 we discuss more general pattern matching.

If patterns overlap, the order of the equations is taken into account. The
following function inserts a fixed element between any two elements of a list:

fun sep :: "’a ⇒ ’a list ⇒ ’a list"

where
"sep a (x#y#xs) = x # a # sep a (y # xs)"

| "sep a xs = xs"

Overlapping patterns are interpreted as “increments” to what is already
there: The second equation is only meant for the cases where the first one does
not match. Consequently, Isabelle replaces it internally by the remaining cases,
making the patterns disjoint:

thm sep.simps

sep a (x # y # xs) = x # a # sep a (y # xs)

sep a [] = []

sep a [v] = [v]

1From the “definition” f(n) = f(n) + 1 we could prove 0 = 1 by subtracting f(n) on
both sides.

3 FUN VS. FUNCTION 3

The equations from function definitions are automatically used in simplification:

lemma "sep 0 [1, 2, 3] = [1, 0, 2, 0, 3]"
by simp

2.2 Induction

Isabelle provides customized induction rules for recursive functions. These rules
follow the recursive structure of the definition. Here is the rule sep.induct

arising from the above definition of sep:

[[
∧
a x y xs. ?P a (y # xs) =⇒ ?P a (x # y # xs);

∧
a. ?P a [];

∧
a v. ?P

a [v]]]
=⇒ ?P ?a0.0 ?a1.0

We have a step case for list with at least two elements, and two base cases
for the zero- and the one-element list. Here is a simple proof about sep and map

lemma "map f (sep x ys) = sep (f x) (map f ys)"

apply (induct x ys rule: sep.induct)

We get three cases, like in the definition.

1.
∧
a x y xs.

map f (sep a (y # xs)) = sep (f a) (map f (y # xs)) =⇒
map f (sep a (x # y # xs)) = sep (f a) (map f (x # y # xs))

2.
∧
a. map f (sep a []) = sep (f a) (map f [])

3.
∧
a v. map f (sep a [v]) = sep (f a) (map f [v])

apply auto

done

With the fun command, you can define about 80% of the functions that
occur in practice. The rest of this tutorial explains the remaining 20%.

3 fun vs. function

The fun command provides a convenient shorthand notation for simple function
definitions. In this mode, Isabelle tries to solve all the necessary proof obliga-
tions automatically. If any proof fails, the definition is rejected. This can either
mean that the definition is indeed faulty, or that the default proof procedures
are just not smart enough (or rather: not designed) to handle the definition.

By expanding the abbreviation to the more verbose function command,
these proof obligations become visible and can be analyzed or solved manually.
The expansion from fun to function is as follows:

fun f :: τ
where

equations
...

 ≡

function (sequential) f :: τ
where

equations
...

by pat_completeness auto

termination by lexicographic_order

Some details have now become explicit:

4 TERMINATION 4

1. The sequential option enables the preprocessing of pattern overlaps
which we already saw. Without this option, the equations must already
be disjoint and complete. The automatic completion only works with
constructor patterns.

2. A function definition produces a proof obligation which expresses com-
pleteness and compatibility of patterns (we talk about this later). The
combination of the methods pat_completeness and auto is used to solve
this proof obligation.

3. A termination proof follows the definition, started by the termination
command. This will be explained in §4.

Whenever a fun command fails, it is usually a good idea to expand the syntax
to the more verbose function form, to see what is actually going on.

4 Termination

The method lexicographic_order is the default method for termination proofs.
It can prove termination of a certain class of functions by searching for a suitable
lexicographic combination of size measures. Of course, not all functions have
such a simple termination argument. For them, we can specify the termination
relation manually.

4.1 The relation method

Consider the following function, which sums up natural numbers up to N, using
a counter i:

function sum :: "nat ⇒ nat ⇒ nat"

where
"sum i N = (if i > N then 0 else i + sum (Suc i) N)"

by pat_completeness auto

The lexicographic_order method fails on this example, because none of the
arguments decreases in the recursive call, with respect to the standard size
ordering. To prove termination manually, we must provide a custom wellfounded
relation.

The termination argument for sum is based on the fact that the difference
between i and N gets smaller in every step, and that the recursion stops when i

is greater than N. Phrased differently, the expression N + 1 - i always decreases.
We can use this expression as a measure function suitable to prove termina-

tion.

termination sum

apply (relation "measure (λ(i,N). N + 1 - i)")

The termination command sets up the termination goal for the specified
function sum. If the function name is omitted, it implicitly refers to the last
function definition.

The relation method takes a relation of type (’a × ’a) set, where ’a is the
argument type of the function. If the function has multiple curried arguments,
then these are packed together into a tuple, as it happened in the above example.

4 TERMINATION 5

The predefined function "measure :: (’a ⇒ nat) ⇒ (’a × ’a) set" con-
structs a wellfounded relation from a mapping into the natural numbers (a
measure function).

After the invocation of relation, we must prove that (a) the relation we
supplied is wellfounded, and (b) that the arguments of recursive calls indeed
decrease with respect to the relation:

1. wf (measure (λ(i, N). N + 1 - i))

2.
∧
i N. ¬ N < i =⇒ ((Suc i, N), i, N) ∈ measure (λ(i, N). N + 1 - i)

These goals are all solved by auto:

apply auto

done

Let us complicate the function a little, by adding some more recursive calls:

function foo :: "nat ⇒ nat ⇒ nat"

where
"foo i N = (if i > N

then (if N = 0 then 0 else foo 0 (N - 1))
else i + foo (Suc i) N)"

by pat_completeness auto

When i has reached N, it starts at zero again and N is decremented. This
corresponds to a nested loop where one index counts up and the other down.
Termination can be proved using a lexicographic combination of two measures,
namely the value of N and the above difference. The measures combinator gen-
eralizes measure by taking a list of measure functions.

termination
by (relation "measures [λ(i, N). N, λ(i,N). N + 1 - i]") auto

4.2 How lexicographic_order works

To see how the automatic termination proofs work, let’s look at an example
where it fails2:

fun fails :: "nat ⇒ nat list ⇒ nat"

where
"fails a [] = a"

| "fails a (x#xs) = fails (x + a) (x#xs)"

Isabelle responds with the following error:

*** Unfinished subgoals:

*** (a, 1, <):

*** 1.
∧
x. x = 0

*** (a, 1, <=):

*** 1. False

*** (a, 2, <):

*** 1. False

*** Calls:

*** a) (a, x # xs) -->> (x + a, x # xs)

2For a detailed discussion of the termination prover, see [1]

5 MUTUAL RECURSION 6

*** Measures:

*** 1) λx. size (fst x)

*** 2) λx. size (snd x)

*** Result matrix:

*** 1 2

*** a: ? <=

*** Could not find lexicographic termination order.

*** At command "fun".

The key to this error message is the matrix at the bottom. The rows of that
matrix correspond to the different recursive calls (In our case, there is just one).
The columns are the function’s arguments (expressed through different measure
functions, which map the argument tuple to a natural number).

The contents of the matrix summarize what is known about argument de-
scents: The second argument has a weak descent (<=) at the recursive call, and
for the first argument nothing could be proved, which is expressed by ?. In
general, there are the values <, <= and ?.

For the failed proof attempts, the unfinished subgoals are also printed. Look-
ing at these will often point to a missing lemma.

4.3 The size_change method

Some termination goals that are beyond the powers of lexicographic_order can
be solved automatically by the more powerful size_change method, which uses a
variant of the size-change principle, together with some other techniques. While
the details are discussed elsewhere[3], here are a few typical situations where
lexicographic_order has difficulties and size_change may be worth a try:

• Arguments are permuted in a recursive call.

• Several mutually recursive functions with multiple arguments.

• Unusual control flow (e.g., when some recursive calls cannot occur in se-
quence).

Loading the theory Multiset makes the size_change method a bit stronger:
it can then use multiset orders internally.

5 Mutual Recursion

If two or more functions call one another mutually, they have to be defined in
one step. Here are even and odd:

function even :: "nat ⇒ bool"

and odd :: "nat ⇒ bool"

where
"even 0 = True"

| "odd 0 = False"

| "even (Suc n) = odd n"

| "odd (Suc n) = even n"

by pat_completeness auto

5 MUTUAL RECURSION 7

To eliminate the mutual dependencies, Isabelle internally creates a single
function operating on the sum type nat + nat. Then, even and odd are defined
as projections. Consequently, termination has to be proved simultaneously for
both functions, by specifying a measure on the sum type:

termination
by (relation "measure (λx. case x of Inl n ⇒ n | Inr n ⇒ n)") auto

We could also have used lexicographic_order, which supports mutual recur-
sive termination proofs to a certain extent.

5.1 Induction for mutual recursion

When functions are mutually recursive, proving properties about them generally
requires simultaneous induction. The induction rule even_odd.induct generated
from the above definition reflects this.

Let us prove something about even and odd:

lemma even_odd_mod2:
"even n = (n mod 2 = 0)"
"odd n = (n mod 2 = 1)"

We apply simultaneous induction, specifying the induction variable for both
goals, separated by and:

apply (induct n and n rule: even_odd.induct)

We get four subgoals, which correspond to the clauses in the definition of
even and odd:

1. even 0 = (0 mod 2 = 0)
2. odd 0 = (0 mod 2 = 1)
3.

∧
n. odd n = (n mod 2 = 1) =⇒ even (Suc n) = (Suc n mod 2 = 0)

4.
∧
n. even n = (n mod 2 = 0) =⇒ odd (Suc n) = (Suc n mod 2 = 1)

Simplification solves the first two goals, leaving us with two statements about
the mod operation to prove:

apply simp_all

1.
∧
n. odd n = (n mod 2 = Suc 0) =⇒ (n mod 2 = Suc 0) = (Suc n mod 2 =

0)
2.

∧
n. even n = (n mod 2 = 0) =⇒ (n mod 2 = 0) = (Suc n mod 2 = Suc 0)

These can be handled by Isabelle’s arithmetic decision procedures.

apply arith

apply arith

done

In proofs like this, the simultaneous induction is really essential: Even if we
are just interested in one of the results, the other one is necessary to strengthen
the induction hypothesis. If we leave out the statement about odd and just write
True instead, the same proof fails:

lemma failed_attempt:

"even n = (n mod 2 = 0)"

6 GENERAL PATTERN MATCHING 8

"True"

apply (induct n rule: even_odd.induct)

Now the third subgoal is a dead end, since we have no useful induction hypoth-
esis available:

1. even 0 = (0 mod 2 = 0)
2. True

3.
∧
n. True =⇒ even (Suc n) = (Suc n mod 2 = 0)

4.
∧
n. even n = (n mod 2 = 0) =⇒ True

oops

6 General pattern matching

6.1 Avoiding automatic pattern splitting

Up to now, we used pattern matching only on datatypes, and the patterns
were always disjoint and complete, and if they weren’t, they were made disjoint
automatically like in the definition of sep in §2.1.

This automatic splitting can significantly increase the number of equations
involved, and this is not always desirable. The following example shows the
problem:

Suppose we are modeling incomplete knowledge about the world by a three-
valued datatype, which has values T, F and X for true, false and uncertain propo-
sitions, respectively.

datatype P3 = T | F | X

Then the conjunction of such values can be defined as follows:

fun And :: "P3 ⇒ P3 ⇒ P3"
where
"And T p = p"

| "And p T = p"

| "And p F = F"

| "And F p = F"

| "And X X = X"

This definition is useful, because the equations can directly be used as sim-
plification rules. But the patterns overlap: For example, the expression And T

T is matched by both the first and the second equation. By default, Isabelle
makes the patterns disjoint by splitting them up, producing instances:

thm And.simps

And T ?p = ?p

And F T = F

And X T = X

And F F = F

And X F = F

And F X = F

And X X = X

There are several problems with this:

6 GENERAL PATTERN MATCHING 9

1. If the datatype has many constructors, there can be an explosion of equa-
tions. For And, we get seven instead of five equations, which can be toler-
ated, but this is just a small example.

2. Since splitting makes the equations “less general”, they do not always
match in rewriting. While the term And x F can be simplified to F with
the original equations, a (manual) case split on x is now necessary.

3. The splitting also concerns the induction rule And.induct. Instead of five
premises it now has seven, which means that our induction proofs will
have more cases.

4. In general, it increases clarity if we get the same definition back which we
put in.

If we do not want the automatic splitting, we can switch it off by leaving
out the sequential option. However, we will have to prove that our pattern
matching is consistent3:

function And2 :: "P3 ⇒ P3 ⇒ P3"
where
"And2 T p = p"

| "And2 p T = p"

| "And2 p F = F"

| "And2 F p = F"

| "And2 X X = X"

Now let’s look at the proof obligations generated by a function definition. In
this case, they are:

1.
∧
P x. [[

∧
p. x = (T, p) =⇒ P;

∧
p. x = (p, T) =⇒ P;

∧
p. x = (p, F)

=⇒ P; ∧
p. x = (F, p) =⇒ P; x = (X, X) =⇒ P]]

=⇒ P

2.
∧
p pa. (T, p) = (T, pa) =⇒ p = pa

3.
∧
p pa. (T, p) = (pa, T) =⇒ p = pa

4.
∧
p pa. (T, p) = (pa, F) =⇒ p = F

5.
∧
p pa. (T, p) = (F, pa) =⇒ p = F

6.
∧
p. (T, p) = (X, X) =⇒ p = X

7.
∧
p pa. (p, T) = (pa, T) =⇒ p = pa

8.
∧
p pa. (p, T) = (pa, F) =⇒ p = F

9.
∧
p pa. (p, T) = (F, pa) =⇒ p = F

10.
∧
p. (p, T) = (X, X) =⇒ p = X

...

The first subgoal expresses the completeness of the patterns. It has the form
of an elimination rule and states that every x of the function’s input type must
match at least one of the patterns4. If the patterns just involve datatypes, we
can solve it with the pat_completeness method:

3This prevents us from defining something like f x = True and f x = False simultane-
ously.

4Completeness could be equivalently stated as a disjunction of existential state-
ments: (∃ p. x = (T, p)) ∨ (∃ p. x = (p, T)) ∨ (∃ p. x = (p, F)) ∨ (∃ p. x
= (F, p)) ∨ x = (X, X), and you can use the method atomize_elim to get that form
instead.

6 GENERAL PATTERN MATCHING 10

apply pat_completeness

The remaining subgoals express pattern compatibility. We do allow that an
input value matches multiple patterns, but in this case, the result (i.e. the right
hand sides of the equations) must also be equal. For each pair of two patterns,
there is one such subgoal. Usually this needs injectivity of the constructors,
which is used automatically by auto.

by auto

6.2 Non-constructor patterns

Most of Isabelle’s basic types take the form of inductive datatypes, and usu-
ally pattern matching works on the constructors of such types. However, this
need not be always the case, and the function command handles other kind of
patterns, too.

One well-known instance of non-constructor patterns are so-called n + k-
patterns, which are a little controversial in the functional programming world.
Here is the initial fibonacci example with n + k -patterns:

function fib2 :: "nat ⇒ nat"

where
"fib2 0 = 1"

| "fib2 1 = 1"
| "fib2 (n + 2) = fib2 n + fib2 (Suc n)"

This kind of matching is again justified by the proof of pattern completeness
and compatibility. The proof obligation for pattern completeness states that
every natural number is either 0, 1 or n + 2:

1.
∧
P x. [[x = 0 =⇒ P; x = 1 =⇒ P;

∧
n. x = n + 2 =⇒ P]] =⇒ P

This is an arithmetic triviality, but unfortunately the arith method cannot
handle this specific form of an elimination rule. However, we can use the method
atomize_elim to do an ad-hoc conversion to a disjunction of existentials, which
can then be solved by the arithmetic decision procedure. Pattern compatibility
and termination are automatic as usual.

apply atomize_elim

apply arith

apply auto

done
termination by lexicographic_order

We can stretch the notion of pattern matching even more. The following
function is not a sensible functional program, but a perfectly valid mathematical
definition:

function ev :: "nat ⇒ bool"

where
"ev (2 * n) = True"

| "ev (2 * n + 1) = False"

apply atomize_elim

by arith+

termination by (relation "{}") simp

6 GENERAL PATTERN MATCHING 11

This general notion of pattern matching gives you a certain freedom in writ-
ing down specifications. However, as always, such freedom should be used with
care:

If we leave the area of constructor patterns, we have effectively departed
from the world of functional programming. This means that it is no longer
possible to use the code generator, and expect it to generate ML code for our
definitions. Also, such a specification might not work very well together with
simplification. Your mileage may vary.

6.3 Conditional equations

The function package also supports conditional equations, which are similar
to guards in a language like Haskell. Here is Euclid’s algorithm written with
conditional patterns5:

function gcd :: "nat ⇒ nat ⇒ nat"

where
"gcd x 0 = x"

| "gcd 0 y = y"

| "x < y =⇒ gcd (Suc x) (Suc y) = gcd (Suc x) (y - x)"

| "¬ x < y =⇒ gcd (Suc x) (Suc y) = gcd (x - y) (Suc y)"

by (atomize_elim, auto, arith)

termination by lexicographic_order

By now, you can probably guess what the proof obligations for the pattern
completeness and compatibility look like.

Again, functions with conditional patterns are not supported by the code
generator.

6.4 Pattern matching on strings

As strings (as lists of characters) are normal datatypes, pattern matching on
them is possible, but somewhat problematic. Consider the following definition:

fun check :: "string ⇒ bool"

where
"check (’’good’’) = True"

| "check s = False"

An invocation of the above fun command does not terminate. What is the
problem? Strings are lists of characters, and characters are a datatype with a
lot of constructors. Splitting the catch-all pattern thus leads to an explosion of
cases, which cannot be handled by Isabelle.

There are two things we can do here. Either we write an explicit if on the
right hand side, or we can use conditional patterns:

function check :: "string ⇒ bool"

where
"check (’’good’’) = True"

| "s 6= ’’good’’ =⇒ check s = False"

by auto

5Note that the patterns are also overlapping in the base case

7 PARTIALITY 12

7 Partiality

In HOL, all functions are total. A function f applied to x always has the
value f x, and there is no notion of undefinedness. This is why we have to do
termination proofs when defining functions: The proof justifies that the function
can be defined by wellfounded recursion.

However, the function package does support partiality to a certain extent.
Let’s look at the following function which looks for a zero of a given function f.

function findzero :: "(nat ⇒ nat) ⇒ nat ⇒ nat"

where
"findzero f n = (if f n = 0 then n else findzero f (Suc n))"

by pat_completeness auto

Clearly, any attempt of a termination proof must fail. And without that, we do
not get the usual rules findzero.simps and findzero.induct. So what was the
definition good for at all?

7.1 Domain predicates

The trick is that Isabelle has not only defined the function findzero, but also
a predicate findzero_dom that characterizes the values where the function ter-
minates: the domain of the function. If we treat a partial function just as a
total function with an additional domain predicate, we can derive simplification
and induction rules as we do for total functions. They are guarded by domain
conditions and are called psimps and pinduct:

findzero_dom (?f, ?n) =⇒
findzero ?f ?n = (if ?f ?n = 0 then ?n else findzero ?f

(Suc ?n))

(findzero.psimps)

[[findzero_dom (?a0.0, ?a1.0);∧
f n. [[findzero_dom (f, n); f n 6= 0 =⇒ ?P f (Suc n)]]

=⇒ ?P f n]]
=⇒ ?P ?a0.0 ?a1.0

(findzero.pinduct)

Remember that all we are doing here is use some tricks to make a total
function appear as if it was partial. We can still write the term findzero (λx. 1)

0 and like any other term of type nat it is equal to some natural number, although
we might not be able to find out which one. The function is underdefined.

But it is defined enough to prove something interesting about it. We can
prove that if findzero f n terminates, it indeed returns a zero of f:

lemma findzero_zero: "findzero_dom (f, n) =⇒ f (findzero f n) = 0"

We apply induction as usual, but using the partial induction rule:

apply (induct f n rule: findzero.pinduct)

This gives the following subgoals:

1.
∧
f n. [[findzero_dom (f, n); f n 6= 0 =⇒ f (findzero f (Suc n)) = 0]]

=⇒ f (findzero f n) = 0

The hypothesis in our lemma was used to satisfy the first premise in the induc-
tion rule. However, we also get findzero_dom (f, n) as a local assumption in

7 PARTIALITY 13

lemma [[findzero-dom (f , n); x ∈ {n ..< findzero f n}]] =⇒ f x 6= 0
proof (induct rule: findzero.pinduct)

fix f n assume dom: findzero-dom (f , n)
and IH : [[f n 6= 0; x ∈ {Suc n ..< findzero f (Suc n)}]]

=⇒ f x 6= 0
and x-range: x ∈ {n ..< findzero f n}

have f n 6= 0
proof

assume f n = 0
with dom have findzero f n = n by (simp add : findzero.psimps)
with x-range show False by auto

qed

from x-range have x = n ∨ x ∈ {Suc n ..< findzero f n} by auto
thus f x 6= 0
proof

assume x = n
with 〈f n 6= 0〉 show ?thesis by simp

next
assume x ∈ {Suc n ..< findzero f n}
with dom and 〈f n 6= 0〉 have x ∈ {Suc n ..< findzero f (Suc

n)} by (simp add : findzero.psimps)
with IH and 〈f n 6= 0〉

show ?thesis by simp
qed

qed

Figure 1: A proof about a partial function

the induction step. This allows unfolding findzero f n using the psimps rule,
and the rest is trivial.

apply (simp add: findzero.psimps)

done

Proofs about partial functions are often not harder than for total functions.
Fig. 1 shows a slightly more complicated proof written in Isar. It is verbose
enough to show how partiality comes into play: From the partial induction, we
get an additional domain condition hypothesis. Observe how this condition is
applied when calls to findzero are unfolded.

7.2 Partial termination proofs

Now that we have proved some interesting properties about our function, we
should turn to the domain predicate and see if it is actually true for some values.
Otherwise we would have just proved lemmas with False as a premise.

Essentially, we need some introduction rules for findzero_dom. The function
package can prove such domain introduction rules automatically. But since they
are not used very often (they are almost never needed if the function is total),
this functionality is disabled by default for efficiency reasons. So we have to
go back and ask for them explicitly by passing the (domintros) option to the
function package:

7 PARTIALITY 14

lemma findzero-termination:
assumes x ≥ n and f x = 0
shows findzero-dom (f , n)

proof −
have base: findzero-dom (f , x)

by (rule findzero.domintros) (simp add :〈f x = 0〉)

have step:
∧

i . findzero-dom (f , Suc i)
=⇒ findzero-dom (f , i)
by (rule findzero.domintros) simp

from 〈x ≥ n〉 show ?thesis
proof (induct rule:inc-induct)

show findzero-dom (f , x) by (rule base)
next

fix i assume findzero-dom (f , Suc i)
thus findzero-dom (f , i) by (rule step)

qed
qed

Figure 2: Termination proof for findzero

function (domintros) findzero :: "(nat ⇒ nat) ⇒ nat ⇒ nat"

where
. . .

Now the package has proved an introduction rule for findzero_dom:

thm findzero.domintros

(0 < ?f ?n =⇒ findzero_dom (?f, Suc ?n)) =⇒ findzero_dom (?f, ?n)

Domain introduction rules allow to show that a given value lies in the domain
of a function, if the arguments of all recursive calls are in the domain as well.
They allow to do a “single step” in a termination proof. Usually, you want to
combine them with a suitable induction principle.

Since our function increases its argument at recursive calls, we need an
induction principle which works “backwards”. We will use inc_induct, which
allows to do induction from a fixed number “downwards”:

[[?i ≤ ?j; ?P ?j;
∧
i. [[i < ?j; ?P (Suc i)]] =⇒ ?P i]] =⇒ ?P ?i

(inc_induct)

Figure 2 gives a detailed Isar proof of the fact that findzero terminates if
there is a zero which is greater or equal to n. First we derive two useful rules
which will solve the base case and the step case of the induction. The induction
is then straightforward, except for the unusual induction principle.

Again, the proof given in Fig. 2 has a lot of detail in order to explain the
principles. Using more automation, we can also have a short proof:

lemma findzero_termination_short:

assumes zero: "x >= n"

7 PARTIALITY 15

assumes [simp]: "f x = 0"
shows "findzero_dom (f, n)"

using zero

by (induct rule:inc_induct) (auto intro: findzero.domintros)

It is simple to combine the partial correctness result with the termination lemma:

lemma findzero_total_correctness:

"f x = 0 =⇒ f (findzero f 0) = 0"
by (blast intro: findzero_zero findzero_termination)

7.3 Definition of the domain predicate

Sometimes it is useful to know what the definition of the domain predicate looks
like. Actually, findzero_dom is just an abbreviation:

findzero_dom ≡ accp findzero_rel

The domain predicate is the accessible part of a relation findzero_rel, which
was also created internally by the function package. findzero_rel is just a
normal inductive predicate, so we can inspect its definition by looking at the
introduction rules findzero_rel.intros. In our case there is just a single rule:

?f ?n 6= 0 =⇒ findzero_rel (?f, Suc ?n) (?f, ?n)

The predicate findzero_rel describes the recursion relation of the function
definition. The recursion relation is a binary relation on the arguments of the
function that relates each argument to its recursive calls. In general, there is
one introduction rule for each recursive call.

The predicate findzero_dom is the accessible part of that relation. An argu-
ment belongs to the accessible part, if it can be reached in a finite number of
steps (cf. its definition in Wellfounded.thy).

Since the domain predicate is just an abbreviation, you can use lemmas for
accp and findzero_rel directly. Some lemmas which are occasionally useful are
accpI, accp_downward, and of course the introduction and elimination rules for
the recursion relation findzero.intros and findzero.cases.

7.4 A Useful Special Case: Tail recursion

The domain predicate is our trick that allows us to model partiality in a world
of total functions. The downside of this is that we have to carry it around
all the time. The termination proof above allowed us to replace the abstract
findzero_dom (f, n) by the more concrete n ≤ x ∧ f x = 0, but the condition
is still there and can only be discharged for special cases. In particular, the
domain predicate guards the unfolding of our function, since it is there as a
condition in the psimp rules.

Now there is an important special case: We can actually get rid of the
condition in the simplification rules, if the function is tail-recursive. The reason
is that for all tail-recursive equations there is a total function satisfying them,
even if they are non-terminating.

The function package internally does the right construction and can derive
the unconditional simp rules, if we ask it to do so. Luckily, our findzero function

8 NESTED RECURSION 16

is tail-recursive, so we can just go back and add another option to the function
command:

function (domintros, tailrec) findzero :: "(nat ⇒ nat) ⇒ nat ⇒ nat"

where
. . .

Now, we actually get unconditional simplification rules, even though the func-
tion is partial:

thm findzero.simps

findzero ?f ?n = (if ?f ?n = 0 then ?n else findzero ?f (Suc ?n))

Of course these would make the simplifier loop, so we better remove them from
the simpset:

declare findzero.simps[simp del]

Getting rid of the domain conditions in the simplification rules is not only
useful because it simplifies proofs. It is also required in order to use Isabelle’s
code generator to generate ML code from a function definition. Since the code
generator only works with equations, it cannot be used with psimp rules. Thus,
in order to generate code for partial functions, they must be defined as a tail
recursion. Luckily, many functions have a relatively natural tail recursive defi-
nition.

8 Nested recursion

Recursive calls which are nested in one another frequently cause complications,
since their termination proof can depend on a partial correctness property of
the function itself.

As a small example, we define the “nested zero” function:

function nz :: "nat ⇒ nat"

where
"nz 0 = 0"

| "nz (Suc n) = nz (nz n)"

by pat_completeness auto

If we attempt to prove termination using the identity measure on naturals,
this fails:

termination
apply (relation "measure (λn. n)")

apply auto

We get stuck with the subgoal

1.
∧
n. nz_dom n =⇒ nz n < Suc n

Of course this statement is true, since we know that nz is the zero function.
And in fact we have no problem proving this property by induction.

lemma nz_is_zero: "nz_dom n =⇒ nz n = 0"

9 HIGHER-ORDER RECURSION 17

function f 91 :: nat ⇒ nat
where

f 91 n = (if 100 < n then n − 10 else f 91 (f 91 (n + 11)))
by pat-completeness auto

lemma f 91-estimate:
assumes trm: f 91-dom n
shows n < f 91 n + 11

using trm by induct (auto simp: f 91.psimps)

termination
proof

let ?R = measure (λx . 101 − x)
show wf ?R ..

fix n :: nat assume ¬ 100 < n — Assumptions for both calls

thus (n + 11, n) ∈ ?R by simp — Inner call

assume inner-trm: f 91-dom (n + 11) — Outer call
with f 91-estimate have n + 11 < f 91 (n + 11) + 11 .
with 〈¬ 100 < n〉 show (f 91 (n + 11), n) ∈ ?R by simp

qed

Figure 3: McCarthy’s 91-function

by (induct rule:nz.pinduct) (auto simp: nz.psimps)

We formulate this as a partial correctness lemma with the condition nz_dom

n. This allows us to prove it with the pinduct rule before we have proved
termination. With this lemma, the termination proof works as expected:

termination
by (relation "measure (λn. n)") (auto simp: nz_is_zero)

As a general strategy, one should prove the statements needed for termina-
tion as a partial property first. Then they can be used to do the termination
proof. This also works for less trivial examples. Figure 3 defines the 91-function,
a well-known challenge problem due to John McCarthy, and proves its termina-
tion.

9 Higher-Order Recursion

Higher-order recursion occurs when recursive calls are passed as arguments to
higher-order combinators such as map, filter etc. As an example, imagine a
datatype of n-ary trees:

datatype ’a tree =

Leaf ’a

| Branch "’a tree list"

We can define a function which swaps the left and right subtrees recursively,
using the list functions rev and map:

9 HIGHER-ORDER RECURSION 18

fun mirror :: "’a tree ⇒ ’a tree"

where
"mirror (Leaf n) = Leaf n"

| "mirror (Branch l) = Branch (rev (map mirror l))"

Although the definition is accepted without problems, let us look at the
termination proof:

termination proof

As usual, we have to give a wellfounded relation, such that the arguments
of the recursive calls get smaller. But what exactly are the arguments of the
recursive calls when mirror is given as an argument to map? Isabelle gives us the
subgoals

1. wf ?R

2.
∧
l x. x ∈ set l =⇒ (x, Branch l) ∈ ?R

So the system seems to know that map only applies the recursive call mirror
to elements of l, which is essential for the termination proof.

This knowledge about map is encoded in so-called congruence rules, which
are special theorems known to the function command. The rule for map is

[[?xs = ?ys;
∧
x. x ∈ set ?ys =⇒ ?f x = ?g x]] =⇒ map ?f ?xs = map ?g ?ys

You can read this in the following way: Two applications of map are equal, if
the list arguments are equal and the functions coincide on the elements of the
list. This means that for the value map f l we only have to know how f behaves
on the elements of l.

Usually, one such congruence rule is needed for each higher-order construct
that is used when defining new functions. In fact, even basic functions like If

and Let are handled by this mechanism. The congruence rule for If states that
the then branch is only relevant if the condition is true, and the else branch
only if it is false:

[[?b = ?c; ?c =⇒ ?x = ?u; ¬ ?c =⇒ ?y = ?v]]
=⇒ (if ?b then ?x else ?y) = (if ?c then ?u else ?v)

Congruence rules can be added to the function package by giving them the
fundef_cong attribute.

The constructs that are predefined in Isabelle, usually come with the respec-
tive congruence rules. But if you define your own higher-order functions, you
may have to state and prove the required congruence rules yourself, if you want
to use your functions in recursive definitions.

9.1 Congruence Rules and Evaluation Order

Higher order logic differs from functional programming languages in that it has
no built-in notion of evaluation order. A program is just a set of equations, and
it is not specified how they must be evaluated.

However for the purpose of function definition, we must talk about evaluation
order implicitly, when we reason about termination. Congruence rules express
that a certain evaluation order is consistent with the logical definition.

REFERENCES 19

Consider the following function.

function f :: "nat ⇒ bool"

where
"f n = (n = 0 ∨ f (n - 1))"

For this definition, the termination proof fails. The default configuration
specifies no congruence rule for disjunction. We have to add a congruence rule
that specifies left-to-right evaluation order:

[[?P = ?P’; ¬ ?P’ =⇒ ?Q = ?Q’]] =⇒ (?P ∨ ?Q) = (?P’ ∨ ?Q’) (disj_cong)

Now the definition works without problems. Note how the termination proof
depends on the extra condition that we get from the congruence rule.

However, as evaluation is not a hard-wired concept, we could just turn ev-
erything around by declaring a different congruence rule. Then we can make
the reverse definition:

lemma disj_cong2[fundef_cong]:
"(¬ Q’ =⇒ P = P’) =⇒ (Q = Q’) =⇒ (P ∨ Q) = (P’ ∨ Q’)"

by blast

fun f’ :: "nat ⇒ bool"

where
"f’ n = (f’ (n - 1) ∨ n = 0)"

These examples show that, in general, there is no “best” set of congruence rules.
However, such tweaking should rarely be necessary in practice, as most of

the time, the default set of congruence rules works well.

References

[1] Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow. Finding lexicographic
orders for termination proofs in Isabelle/HOL. In K. Schneider and J. Brandt,
editors, Theorem Proving in Higher Order Logics: TPHOLs 2007, volume 4732 of
Lecture Notes in Computer Science, pages 38–53. Springer-Verlag, 2007.

[2] Alexander Krauss. Partial recursive functions in Higher-Order Logic. In
U. Furbach and N. Shankar, editors, Automated Reasoning: IJCAR 2006, volume
4130 of Lecture Notes in Computer Science, pages 589–603. Springer-Verlag, 2006.

[3] Alexander Krauss. Automating Recursive Definitions and Termination Proofs in
Higher-Order Logic. PhD thesis, Institut für Informatik, Technische Universität
München, Germany, 2009.

[4] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[5] Konrad Slind. Function definition in higher order logic. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics:
TPHOLs ’96, volume 1125 of Lecture Notes in Computer Science, pages 381–397.
Springer-Verlag, 1996.

	Introduction
	Function Definitions for Dummies
	Pattern matching
	Induction

	fun vs. function
	Termination
	The relation method
	How lexicographicorder works
	The sizechange method

	Mutual Recursion
	Induction for mutual recursion

	General pattern matching
	Avoiding automatic pattern splitting
	Non-constructor patterns
	Conditional equations
	Pattern matching on strings

	Partiality
	Domain predicates
	Partial termination proofs
	Definition of the domain predicate
	A Useful Special Case: Tail recursion

	Nested recursion
	Higher-Order Recursion
	Congruence Rules and Evaluation Order

