
λ →

∀
=Isa

be
lle

β
α

Isabelle’s Logics

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel1

30 January 2011

1Markus Wenzel made numerous improvements. Sara Kalvala contributed
Chap. 3. Philippe de Groote wrote the first version of the logic LK. Tobias Nip-
kow developed LCF and Cube. Martin Coen developed Modal with assistance from
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Preface

Several logics come with Isabelle. Many of them are sufficiently developed
to serve as comfortable reasoning environments. They are also good starting
points for defining new logics. Each logic is distributed with sample proofs,
some of which are described in this document.

HOL is currently the best developed Isabelle object-logic, including an
extensive library of (concrete) mathematics, and various packages for ad-
vanced definitional concepts (like (co-)inductive sets and types, well-founded
recursion etc.). The distribution also includes some large applications. See
the separate manual Isabelle’s Logics: HOL. There is also a comprehensive
tutorial on Isabelle/HOL available.

ZF provides another starting point for applications, with a slightly less
developed library than HOL. ZF’s definitional packages are similar to those
of HOL. Untyped ZF set theory provides more advanced constructions for
sets than simply-typed HOL. ZF is built on FOL (first-order logic), both are
described in a separate manual Isabelle’s Logics: FOL and ZF [10].

There are some further logics distributed with Isabelle:

CCL is Martin Coen’s Classical Computational Logic, which is the basis of a
preliminary method for deriving programs from proofs [1]. It is built
upon classical FOL.

LCF is a version of Scott’s Logic for Computable Functions, which is also
implemented by the lcf system [11]. It is built upon classical FOL.

HOLCF is a version of lcf, defined as an extension of HOL. See [8] for more
details on HOLCF.

CTT is a version of Martin-Löf’s Constructive Type Theory [9], with exten-
sional equality. Universes are not included.

Cube is Barendregt’s λ-cube.

The directory Sequents contains several logics based upon the sequent
calculus. Sequents have the form A1, . . . ,Am ` B1, . . . ,Bn ; rules are applied
using associative matching.
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LK is classical first-order logic as a sequent calculus.

Modal implements the modal logics T , S4, and S43.

ILL implements intuitionistic linear logic.

The logics CCL, LCF, Modal, ILL and Cube are undocumented. All object-
logics’ sources are distributed with Isabelle (see the directory src). They are
also available for browsing on the WWW at

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
http://isabelle.in.tum.de/library/

Note that this is not necessarily consistent with your local sources!

Do not read the Isabelle’s Logics manuals before reading Isabelle/HOL —
The Tutorial or Introduction to Isabelle, and performing some Isabelle proofs.
Consult the Reference Manual for more information on tactics, packages, etc.

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
http://isabelle.in.tum.de/library/


Chapter 1

Syntax definitions

The syntax of each logic is presented using a context-free grammar. These
grammars obey the following conventions:

• identifiers denote nonterminal symbols

• typewriter font denotes terminal symbols

• parentheses (. . .) express grouping

• constructs followed by a Kleene star, such as id∗ and (. . .)∗ can be
repeated 0 or more times

• alternatives are separated by a vertical bar, |

• the symbol for alphanumeric identifiers is id

• the symbol for scheme variables is var

To reduce the number of nonterminals and grammar rules required, Isabelle’s
syntax module employs priorities, or precedences. Each grammar rule is
given by a mixfix declaration, which has a priority, and each argument place
has a priority. This general approach handles infix operators that associate
either to the left or to the right, as well as prefix and binding operators.

In a syntactically valid expression, an operator’s arguments never involve
an operator of lower priority unless brackets are used. Consider first-order
logic, where ∃ has lower priority than ∨, which has lower priority than ∧.
There, P ∧ Q ∨ R abbreviates (P ∧ Q) ∨ R rather than P ∧ (Q ∨ R). Also,
∃x .P ∨Q abbreviates ∃x . (P ∨Q) rather than (∃x .P)∨Q . Note especially
that P ∨ (∃x . Q) becomes syntactically invalid if the brackets are removed.

A binder is a symbol associated with a constant of type (σ ⇒ τ) ⇒ τ ′.
For instance, we may declare ∀ as a binder for the constant All , which has
type (α⇒ o)⇒ o. This defines the syntax ∀x . t to mean All(λx . t). We can
also write ∀x1 . . . xm . t to abbreviate ∀x1 . . . .∀xm . t ; this is possible for any
constant provided that τ and τ ′ are the same type. The Hilbert description
operator εx . P x has type (α ⇒ bool) ⇒ α and normally binds only one
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CHAPTER 1. SYNTAX DEFINITIONS 4

variable. ZF’s bounded quantifier ∀x ∈ A . P(x ) cannot be declared as a
binder because it has type [i , i ⇒ o] ⇒ o. The syntax for binders allows
type constraints on bound variables, as in

∀(x ::α) (y ::β) z ::γ . Q(x , y , z )

To avoid excess detail, the logic descriptions adopt a semi-formal style.
Infix operators and binding operators are listed in separate tables, which
include their priorities. Grammar descriptions do not include numeric pri-
orities; instead, the rules appear in order of decreasing priority. This should
suffice for most purposes; for full details, please consult the actual syntax
definitions in the .thy files.

Each nonterminal symbol is associated with some Isabelle type. For ex-
ample, the formulae of first-order logic have type o. Every Isabelle expression
of type o is therefore a formula. These include atomic formulae such as P ,
where P is a variable of type o, and more generally expressions such as
P(t , u), where P , t and u have suitable types. Therefore, ‘expression of
type o’ is listed as a separate possibility in the grammar for formulae.



Chapter 2

First-Order Sequent Calculus

The theory LK implements classical first-order logic through Gentzen’s se-
quent calculus (see Gallier [4] or Takeuti [13]). Resembling the method of
semantic tableaux, the calculus is well suited for backwards proof. Asser-
tions have the form Γ ` ∆, where Γ and ∆ are lists of formulae. Associative
unification, simulated by higher-order unification, handles lists (§2.7 presents
details, if you are interested).

The logic is many-sorted, using Isabelle’s type classes. The class of first-
order terms is called term. No types of individuals are provided, but ex-
tensions can define types such as nat::term and type constructors such as
list::(term)term. Below, the type variable α ranges over class term; the
equality symbol and quantifiers are polymorphic (many-sorted). The type of
formulae is o, which belongs to class logic.

LK implements a classical logic theorem prover that is nearly as powerful
as the generic classical reasoner. The simplifier is now available too.

To work in LK, start up Isabelle specifying Sequents as the object-logic.
Once in Isabelle, change the context to theory LK.thy:

isabelle Sequents
context LK.thy;

Modal logic and linear logic are also available, but unfortunately they are
not documented.

2.1 Syntax and rules of inference

Figure 2.1 gives the syntax for LK, which is complicated by the representation
of sequents. Type sobj ⇒ sobj represents a list of formulae.

The definite description operator ιx . P [x ] stands for some a satisfy-
ing P [a], if one exists and is unique. Since all terms in LK denote something,
a description is always meaningful, but we do not know its value unless P [x ]
defines it uniquely. The Isabelle notation is THE x. P [x ]. The correspond-
ing rule (Fig. 2.4) does not entail the Axiom of Choice because it requires
uniqueness.

5



CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 6

name meta-type description
Trueprop [sobj ⇒ sobj , sobj ⇒ sobj ]⇒ prop coercion to prop

Seqof [o, sobj ]⇒ sobj singleton sequence
Not o ⇒ o negation (¬)

True o tautology (>)
False o absurdity (⊥)

Constants

symbol name meta-type priority description
ALL All (α⇒ o)⇒ o 10 universal quantifier (∀)
EX Ex (α⇒ o)⇒ o 10 existential quantifier (∃)
THE The (α⇒ o)⇒ α 10 definite description (ι)

Binders

symbol meta-type priority description
= [α, α]⇒ o Left 50 equality (=)
& [o, o]⇒ o Right 35 conjunction (∧)
| [o, o]⇒ o Right 30 disjunction (∨)

--> [o, o]⇒ o Right 25 implication (→)
<-> [o, o]⇒ o Right 25 biconditional (↔)

Infixes

external internal description
Γ |- ∆ Trueprop(Γ, ∆) sequent Γ ` ∆

Translations

Figure 2.1: Syntax of LK
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prop = sequence |- sequence

sequence = elem (, elem)∗

| empty

elem = $ term
| formula
| <<sequence>>

formula = expression of type o
| term = term
| ~ formula
| formula & formula
| formula | formula
| formula --> formula
| formula <-> formula
| ALL id id∗ . formula
| EX id id∗ . formula
| THE id . formula

Figure 2.2: Grammar of LK
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basic $H, P, $G |- $E, P, $F

contRS $H |- $E, $S, $S, $F ==> $H |- $E, $S, $F
contLS $H, $S, $S, $G |- $E ==> $H, $S, $G |- $E

thinRS $H |- $E, $F ==> $H |- $E, $S, $F
thinLS $H, $G |- $E ==> $H, $S, $G |- $E

cut [| $H |- $E, P; $H, P |- $E |] ==> $H |- $E

Structural rules

refl $H |- $E, a=a, $F
subst $H(a), $G(a) |- $E(a) ==> $H(b), a=b, $G(b) |- $E(b)

Equality rules

Figure 2.3: Basic Rules of LK

Conditional expressions are available with the notation

if formula then term else term.

Figure 2.2 presents the grammar of LK. Traditionally, Γ and ∆ are meta-
variables for sequences. In Isabelle’s notation, the prefix $ on a term makes
it range over sequences. In a sequent, anything not prefixed by $ is taken as
a formula.

The notation <<sequence>> stands for a sequence of formulæ. For exam-
ple, you can declare the constant imps to consist of two implications:

consts P,Q,R :: o
constdefs imps :: seq’=>seq’

"imps == <<P --> Q, Q --> R>>"

Then you can use it in axioms and goals, for example
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True_def True == False-->False
iff_def P<->Q == (P-->Q) & (Q-->P)

conjR [| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F
conjL $H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E

disjR $H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F
disjL [| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E

impR $H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F
impL [| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E

notR $H, P |- $E, $F ==> $H |- $E, ~P, $F
notL $H, $G |- $E, P ==> $H, ~P, $G |- $E

FalseL $H, False, $G |- $E

allR (!!x. $H|- $E, P(x), $F) ==> $H|- $E, ALL x. P(x), $F
allL $H, P(x), $G, ALL x. P(x) |- $E ==> $H, ALL x. P(x), $G|- $E

exR $H|- $E, P(x), $F, EX x. P(x) ==> $H|- $E, EX x. P(x), $F
exL (!!x. $H, P(x), $G|- $E) ==> $H, EX x. P(x), $G|- $E

The [| $H |- $E, P(a), $F; !!x. $H, P(x) |- $E, x=a, $F |] ==>
$H |- $E, P(THE x. P(x)), $F

Logical rules

Figure 2.4: Rules of LK



CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 10

thinR $H |- $E, $F ==> $H |- $E, P, $F
thinL $H, $G |- $E ==> $H, P, $G |- $E

contR $H |- $E, P, P, $F ==> $H |- $E, P, $F
contL $H, P, P, $G |- $E ==> $H, P, $G |- $E

symR $H |- $E, $F, a=b ==> $H |- $E, b=a, $F
symL $H, $G, b=a |- $E ==> $H, a=b, $G |- $E

transR [| $H|- $E, $F, a=b; $H|- $E, $F, b=c |]
==> $H|- $E, a=c, $F

TrueR $H |- $E, True, $F

iffR [| $H, P |- $E, Q, $F; $H, Q |- $E, P, $F |]
==> $H |- $E, P<->Q, $F

iffL [| $H, $G |- $E, P, Q; $H, Q, P, $G |- $E |]
==> $H, P<->Q, $G |- $E

allL_thin $H, P(x), $G |- $E ==> $H, ALL x. P(x), $G |- $E
exR_thin $H |- $E, P(x), $F ==> $H |- $E, EX x. P(x), $F

the_equality [| $H |- $E, P(a), $F;
!!x. $H, P(x) |- $E, x=a, $F |]

==> $H |- $E, (THE x. P(x)) = a, $F

Figure 2.5: Derived rules for LK

Goalw [imps_def] "P, $imps |- R";
Level 0

P, $imps |- R

1. P, P --> Q, Q --> R |- R

by (Fast_tac 1);
Level 1

P, $imps |- R

No subgoals!

Figures 2.3 and 2.4 present the rules of theory LK. The connective ↔ is
defined using ∧ and →. The axiom for basic sequents is expressed in a form
that provides automatic thinning: redundant formulae are simply ignored.
The other rules are expressed in the form most suitable for backward proof;
exchange and contraction rules are not normally required, although they are
provided anyway.

Figure 2.5 presents derived rules, including rules for ↔. The weakened
quantifier rules discard each quantification after a single use; in an automatic



CHAPTER 2. FIRST-ORDER SEQUENT CALCULUS 11

proof procedure, they guarantee termination, but are incomplete. Multiple
use of a quantifier can be obtained by a contraction rule, which in backward
proof duplicates a formula. The tactic res_inst_tac can instantiate the
variable ?P in these rules, specifying the formula to duplicate. See theory
Sequents/LK0 in the sources for complete listings of the rules and derived
rules.

To support the simplifier, hundreds of equivalences are proved for
the logical connectives and for if-then-else expressions. See the file
Sequents/simpdata.ML.

2.2 Automatic Proof

LK instantiates Isabelle’s simplifier. Both equality (=) and the biconditional
(↔) may be used for rewriting. The tactic Simp_tac refers to the default
simpset (simpset()). With sequents, the full_ and asm_ forms of the sim-
plifier are not required; all the formulae in the sequent will be simplified.
The left-hand formulae are taken as rewrite rules. (Thus, the behaviour is
what you would normally expect from calling Asm_full_simp_tac.)

For classical reasoning, several tactics are available:

Safe_tac : int -> tactic
Step_tac : int -> tactic
Fast_tac : int -> tactic
Best_tac : int -> tactic
Pc_tac : int -> tactic

These refer not to the standard classical reasoner but to a separate one
provided for the sequent calculus. Two commands are available for adding
new sequent calculus rules, safe or unsafe, to the default “theorem pack”:

Add_safes : thm list -> unit
Add_unsafes : thm list -> unit

To control the set of rules for individual invocations, lower-case versions of
all these primitives are available. Sections 2.8 and 2.9 give full details.

2.3 Tactics for the cut rule

According to the cut-elimination theorem, the cut rule can be eliminated
from proofs of sequents. But the rule is still essential. It can be used to
structure a proof into lemmas, avoiding repeated proofs of the same formula.
More importantly, the cut rule cannot be eliminated from derivations of rules.
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For example, there is a trivial cut-free proof of the sequent P ∧ Q ` Q ∧ P .
Noting this, we might want to derive a rule for swapping the conjuncts in a
right-hand formula:

Γ ` ∆,P ∧Q

Γ ` ∆,Q ∧ P

The cut rule must be used, for P ∧Q is not a subformula of Q∧P . Most cuts
directly involve a premise of the rule being derived (a meta-assumption). In
a few cases, the cut formula is not part of any premise, but serves as a bridge
between the premises and the conclusion. In such proofs, the cut formula is
specified by calling an appropriate tactic.

cutR_tac : string -> int -> tactic
cutL_tac : string -> int -> tactic

These tactics refine a subgoal into two by applying the cut rule. The cut
formula is given as a string, and replaces some other formula in the sequent.

cutR_tac P i reads an LK formula P , and applies the cut rule to subgoal i .
It then deletes some formula from the right side of subgoal i , replacing
that formula by P .

cutL_tac P i reads an LK formula P , and applies the cut rule to subgoal i .
It then deletes some formula from the left side of the new subgoal i +1,
replacing that formula by P .

All the structural rules — cut, contraction, and thinning — can be applied
to particular formulae using res_inst_tac.

2.4 Tactics for sequents

forms_of_seq : term -> term list
could_res : term * term -> bool
could_resolve_seq : term * term -> bool
filseq_resolve_tac : thm list -> int -> int -> tactic

Associative unification is not as efficient as it might be, in part because the
representation of lists defeats some of Isabelle’s internal optimisations. The
following operations implement faster rule application, and may have other
uses.

forms_of_seq t returns the list of all formulae in the sequent t , removing
sequence variables.
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could_res (t,u) tests whether two formula lists could be resolved. List
t is from a premise or subgoal, while u is from the conclusion of an
object-rule. Assuming that each formula in u is surrounded by sequence
variables, it checks that each conclusion formula is unifiable (using
could_unify) with some subgoal formula.

could_resolve_seq (t,u) tests whether two sequents could be resolved.
Sequent t is a premise or subgoal, while u is the conclusion of an
object-rule. It simply calls could_res twice to check that both the left
and the right sides of the sequents are compatible.

filseq_resolve_tac thms maxr i uses filter_thms could_resolve to
extract the thms that are applicable to subgoal i . If more than
maxr theorems are applicable then the tactic fails. Otherwise it
calls resolve_tac. Thus, it is the sequent calculus analogue of
filt_resolve_tac.

2.5 A simple example of classical reasoning

The theorem ` ∃y . ∀x . P(y)→ P(x ) is a standard example of the classical
treatment of the existential quantifier. Classical reasoning is easy using LK,
as you can see by comparing this proof with the one given in the FOL man-
ual [10]. From a logical point of view, the proofs are essentially the same;
the key step here is to use exR rather than the weaker exR_thin.

Goal "|- EX y. ALL x. P(y)-->P(x)";
Level 0

|- EX y. ALL x. P(y) --> P(x)

1. |- EX y. ALL x. P(y) --> P(x)

by (resolve_tac [exR] 1);
Level 1

|- EX y. ALL x. P(y) --> P(x)

1. |- ALL x. P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

There are now two formulae on the right side. Keeping the existential one in
reserve, we break down the universal one.
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by (resolve_tac [allR] 1);
Level 2

|- EX y. ALL x. P(y) --> P(x)

1. !!x. |- P(?x) --> P(x), EX x. ALL xa. P(x) --> P(xa)

by (resolve_tac [impR] 1);
Level 3

|- EX y. ALL x. P(y) --> P(x)

1. !!x. P(?x) |- P(x), EX x. ALL xa. P(x) --> P(xa)

Because LK is a sequent calculus, the formula P(?x ) does not become an
assumption; instead, it moves to the left side. The resulting subgoal cannot
be instantiated to a basic sequent: the bound variable x is not unifiable with
the unknown ?x .

by (resolve_tac [basic] 1);
by: tactic failed

We reuse the existential formula using exR_thin, which discards it; we shall
not need it a third time. We again break down the resulting formula.

by (resolve_tac [exR_thin] 1);
Level 4

|- EX y. ALL x. P(y) --> P(x)

1. !!x. P(?x) |- P(x), ALL xa. P(?x7(x)) --> P(xa)

by (resolve_tac [allR] 1);
Level 5

|- EX y. ALL x. P(y) --> P(x)

1. !!x xa. P(?x) |- P(x), P(?x7(x)) --> P(xa)

by (resolve_tac [impR] 1);
Level 6

|- EX y. ALL x. P(y) --> P(x)

1. !!x xa. P(?x), P(?x7(x)) |- P(x), P(xa)

Subgoal 1 seems to offer lots of possibilities. Actually the only useful step is
instantiating ?x7 to λx . x , transforming ?x7(x ) into x .

by (resolve_tac [basic] 1);
Level 7

|- EX y. ALL x. P(y) --> P(x)

No subgoals!

This theorem can be proved automatically. Because it involves quantifier
duplication, we employ best-first search:

Goal "|- EX y. ALL x. P(y)-->P(x)";
Level 0

|- EX y. ALL x. P(y) --> P(x)

1. |- EX y. ALL x. P(y) --> P(x)

by (best_tac LK_dup_pack 1);
Level 1

|- EX y. ALL x. P(y) --> P(x)

No subgoals!
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2.6 A more complex proof

Many of Pelletier’s test problems for theorem provers [12] can be solved auto-
matically. Problem 39 concerns set theory, asserting that there is no Russell
set — a set consisting of those sets that are not members of themselves:

` ¬(∃x . ∀y . y ∈ x ↔ y 6∈ y)

This does not require special properties of membership; we may generalize
x ∈ y to an arbitrary predicate F (x , y). The theorem, which is trivial for
Fast_tac, has a short manual proof. See the directory Sequents/LK for
many more examples.

We set the main goal and move the negated formula to the left.

Goal "|- ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))";
Level 0

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. |- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

by (resolve_tac [notR] 1);
Level 1

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. EX x. ALL y. F(y,x) <-> ~ F(y,y) |-

The right side is empty; we strip both quantifiers from the formula on the
left.

by (resolve_tac [exL] 1);
Level 2

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. ALL y. F(y,x) <-> ~ F(y,y) |-

by (resolve_tac [allL_thin] 1);
Level 3

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. F(?x2(x),x) <-> ~ F(?x2(x),?x2(x)) |-

The rule iffL says, if P ↔ Q then P and Q are either both true or both
false. It yields two subgoals.

by (resolve_tac [iffL] 1);
Level 4

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))

2. !!x. ~ F(?x2(x),?x2(x)), F(?x2(x),x) |-

We must instantiate ?x2, the shared unknown, to satisfy both subgoals. Be-
ginning with subgoal 2, we move a negated formula to the left and create a
basic sequent.
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by (resolve_tac [notL] 2);
Level 5

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(?x2(x),x), ~ F(?x2(x),?x2(x))

2. !!x. F(?x2(x),x) |- F(?x2(x),?x2(x))

by (resolve_tac [basic] 2);
Level 6

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. |- F(x,x), ~ F(x,x)

Thanks to the instantiation of ?x2, subgoal 1 is obviously true.

by (resolve_tac [notR] 1);
Level 7

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

1. !!x. F(x,x) |- F(x,x)

by (resolve_tac [basic] 1);
Level 8

|- ~ (EX x. ALL y. F(y,x) <-> ~ F(y,y))

No subgoals!

2.7 *Unification for lists

Higher-order unification includes associative unification as a special case, by
an encoding that involves function composition [5, page 37]. To represent
lists, let C be a new constant. The empty list is λx . x , while [t1, t2, . . . , tn ]
is represented by

λx . C (t1,C (t2, . . . ,C (tn , x ))).

The unifiers of this with λx . ?f (?g(x )) give all the ways of expressing
[t1, t2, . . . , tn ] as the concatenation of two lists.

Unlike orthodox associative unification, this technique can represent cer-
tain infinite sets of unifiers by flex-flex equations. But note that the term
λx .C (t , ?a) does not represent any list. Flex-flex constraints containing such
garbage terms may accumulate during a proof.

This technique lets Isabelle formalize sequent calculus rules, where the
comma is the associative operator:

Γ,P ,Q ,∆ ` Θ

Γ,P ∧Q ,∆ ` Θ
(∧-left)

Multiple unifiers occur whenever this is resolved against a goal containing
more than one conjunction on the left.

LK exploits this representation of lists. As an alternative, the sequent
calculus can be formalized using an ordinary representation of lists, with a
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logic program for removing a formula from a list. Amy Felty has applied this
technique using the language λProlog [3].

Explicit formalization of sequents can be tiresome. But it gives precise
control over contraction and weakening, and is essential to handle relevant
and linear logics.

2.8 *Packaging sequent rules

The sequent calculi come with simple proof procedures. These are incomplete
but are reasonably powerful for interactive use. They expect rules to be
classified as safe or unsafe. A rule is safe if applying it to a provable goal
always yields provable subgoals. If a rule is safe then it can be applied
automatically to a goal without destroying our chances of finding a proof.
For instance, all the standard rules of the classical sequent calculus lk are
safe. An unsafe rule may render the goal unprovable; typical examples are
the weakened quantifier rules allL_thin and exR_thin.

Proof procedures use safe rules whenever possible, using an unsafe rule as
a last resort. Those safe rules are preferred that generate the fewest subgoals.
Safe rules are (by definition) deterministic, while the unsafe rules require a
search strategy, such as backtracking.

A pack is a pair whose first component is a list of safe rules and whose
second is a list of unsafe rules. Packs can be extended in an obvious way
to allow reasoning with various collections of rules. For clarity, LK declares
pack as an ml datatype, although is essentially a type synonym:

datatype pack = Pack of thm list * thm list;

Pattern-matching using constructor Pack can inspect a pack’s contents.
Packs support the following operations:

pack : unit -> pack
pack_of : theory -> pack
empty_pack : pack
prop_pack : pack
LK_pack : pack
LK_dup_pack : pack
add_safes : pack * thm list -> pack infix 4
add_unsafes : pack * thm list -> pack infix 4

pack returns the pack attached to the current theory.

pack_of thy returns the pack attached to theory thy .

empty_pack is the empty pack.
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prop_pack contains the propositional rules, namely those for ∧, ∨, ¬, →
and ↔, along with the rules basic and refl. These are all safe.

LK_pack extends prop_pack with the safe rules allR and exL and the unsafe
rules allL_thin and exR_thin. Search using this is incomplete since
quantified formulae are used at most once.

LK_dup_pack extends prop_pack with the safe rules allR and exL and the
unsafe rules allL and exR. Search using this is complete, since quan-
tified formulae may be reused, but frequently fails to terminate. It is
generally unsuitable for depth-first search.

pack add_safes rules adds some safe rules to the pack pack .

pack add_unsafes rules adds some unsafe rules to the pack pack .

2.9 *Proof procedures

The LK proof procedure is similar to the classical reasoner described in the
Reference Manual . In fact it is simpler, since it works directly with sequents
rather than simulating them. There is no need to distinguish introduction
rules from elimination rules, and of course there is no swap rule. As always,
Isabelle’s classical proof procedures are less powerful than resolution theorem
provers. But they are more natural and flexible, working with an open-ended
set of rules.

Backtracking over the choice of a safe rule accomplishes nothing: applying
them in any order leads to essentially the same result. Backtracking may be
necessary over basic sequents when they perform unification. Suppose that 0,
1, 2, 3 are constants in the subgoals

P(0),P(1),P(2) ` P(?a)
P(0),P(2),P(3) ` P(?a)
P(1),P(3),P(2) ` P(?a)

The only assignment that satisfies all three subgoals is ?a 7→ 2, and this can
only be discovered by search. The tactics given below permit backtracking
only over axioms, such as basic and refl; otherwise they are deterministic.

2.9.1 Method A

reresolve_tac : thm list -> int -> tactic
repeat_goal_tac : pack -> int -> tactic
pc_tac : pack -> int -> tactic

These tactics use a method developed by Philippe de Groote. A subgoal
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is refined and the resulting subgoals are attempted in reverse order. For
some reason, this is much faster than attempting the subgoals in order. The
method is inherently depth-first.

At present, these tactics only work for rules that have no more than two
premises. They fail — return no next state — if they can do nothing.

reresolve_tac thms i repeatedly applies the thms to subgoal i and the
resulting subgoals.

repeat_goal_tac pack i applies the safe rules in the pack to a goal and
the resulting subgoals. If no safe rule is applicable then it applies an
unsafe rule and continues.

pc_tac pack i applies repeat_goal_tac using depth-first search to solve
subgoal i .

2.9.2 Method B

safe_tac : pack -> int -> tactic
step_tac : pack -> int -> tactic
fast_tac : pack -> int -> tactic
best_tac : pack -> int -> tactic

These tactics are analogous to those of the generic classical reasoner. They
use ‘Method A’ only on safe rules. They fail if they can do nothing.

safe_goal_tac pack i applies the safe rules in the pack to a goal and the
resulting subgoals. It ignores the unsafe rules.

step_tac pack i either applies safe rules (using safe_goal_tac) or applies
one unsafe rule.

fast_tac pack i applies step_tac using depth-first search to solve sub-
goal i . Despite its name, it is frequently slower than pc_tac.

best_tac pack i applies step_tac using best-first search to solve subgoal i .
It is particularly useful for quantifier duplication (using LK_dup_pack).



Chapter 3

Defining A Sequent-Based
Logic

The Isabelle theory Sequents.thy provides facilities for using sequent nota-
tion in users’ object logics. This theory allows users to easily interface the
surface syntax of sequences with an underlying representation suitable for
higher-order unification.

3.1 Concrete syntax of sequences

Mathematicians and logicians have used sequences in an informal way much
before proof systems such as Isabelle were created. It seems sensible to allow
people using Isabelle to express sequents and perform proofs in this same
informal way, and without requiring the theory developer to spend a lot of
time in ml programming.

By using Sequents.thy appropriately, a logic developer can allow users
to refer to sequences in several ways:

• A sequence variable is any alphanumeric string with the first character
being a $ sign. So, consider the sequent $A |- B, where $A is intended
to match a sequence of zero or more items.

• A sequence with unspecified sub-sequences and unspecified or individ-
ual items is written as a comma-separated list of regular variables (rep-
resenting items), particular items, and sequence variables, as in

$A, B, C, $D(x) |- E

Here both $A and $D(x) are allowed to match any subsequences of
items on either side of the two items that match B and C . Moreover,
the sequence matching $D(x) may contain occurrences of x .

• An empty sequence can be represented by a blank space, as in
|- true.

20
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These syntactic constructs need to be assimilated into the object theory
being developed. The type that we use for these visible objects is given the
name seq. A seq is created either by the empty space, a seqobj or a seqobj

followed by a seq, with a comma between them. A seqobj is either an item
or a variable representing a sequence. Thus, a theory designer can specify
a function that takes two sequences and returns a meta-level proposition by
giving it the Isabelle type [seq, seq] => prop.

This is all part of the concrete syntax, but one may wish to exploit Isa-
belle’s higher-order abstract syntax by actually having a different, more pow-
erful internal syntax.

3.2 Basis

One could opt to represent sequences as first-order objects (such as simple
lists), but this would not allow us to use many facilities Isabelle provides
for matching. By using a slightly more complex representation, users of the
logic can reap many benefits in facilities for proofs and ease of reading logical
terms.

A sequence can be represented as a function — a constructor for fur-
ther sequences — by defining a binary abstract function Seq0’ with type
[o,seq’]=>seq’, and translating a sequence such as A, B, C into

%s. Seq0’(A, SeqO’(B, SeqO’(C, s)))

This sequence can therefore be seen as a constructor for further sequences.
The constructor Seq0’ is never given a value, and therefore it is not possible
to evaluate this expression into a basic value.

Furthermore, if we want to represent the sequence A, $B, C, we note
that $B already represents a sequence, so we can use B itself to refer to the
function, and therefore the sequence can be mapped to the internal form:
%s. SeqO’(A, B(SeqO’(C, s))).

So, while we wish to continue with the standard, well-liked external rep-
resentation of sequences, we can represent them internally as functions of
type seq’=>seq’.

3.3 Object logics

Recall that object logics are defined by mapping elements of particular types
to the Isabelle type prop, usually with a function called Trueprop. So, an ob-
ject logic proposition P is matched to the Isabelle proposition Trueprop(P).
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The name of the function is often hidden, so the user just sees P. Isabelle
is eager to make types match, so it inserts Trueprop automatically when an
object of type prop is expected. This mechanism can be observed in most of
the object logics which are direct descendants of Pure.

In order to provide the desired syntactic facilities for sequent calculi,
rather than use just one function that maps object-level propositions to
meta-level propositions, we use two functions, and separate internal from
the external representation.

These functions need to be given a type that is appropriate for the partic-
ular form of sequents required: single or multiple conclusions. So multiple-
conclusion sequents (used in the LK logic) can be specified by the following
two definitions, which are lifted from the inbuilt Sequents/LK.thy:

Trueprop :: two_seqi
"@Trueprop" :: two_seqe ("((_)/ |- (_))" [6,6] 5)

where the types used are defined in Sequents.thy as abbreviations:

two_seqi = [seq’=>seq’, seq’=>seq’] => prop
two_seqe = [seq, seq] => prop

The next step is to actually create links into the low-level parsing and
pretty-printing mechanisms, which map external and internal representa-
tions. These functions go below the user level and capture the underlying
structure of Isabelle terms in ml. Fortunately the theory developer need not
delve in this level; Sequents.thy provides the necessary facilities. All the
theory developer needs to add in the ml section is a specification of the two
translation functions:

ML
val parse_translation = [("@Trueprop",Sequents.two_seq_tr "Trueprop")];
val print_translation = [("Trueprop",Sequents.two_seq_tr’ "@Trueprop")];

In summary: in the logic theory being developed, the developer needs to
specify the types for the internal and external representation of the sequences,
and use the appropriate parsing and pretty-printing functions.

3.4 What’s in Sequents.thy

Theory Sequents.thy makes many declarations that you need to know
about:

1. The Isabelle types given below, which can be used for the constants
that map object-level sequents and meta-level propositions:
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single_seqe = [seq,seqobj] => prop
single_seqi = [seq’=>seq’,seq’=>seq’] => prop
two_seqi = [seq’=>seq’, seq’=>seq’] => prop
two_seqe = [seq, seq] => prop
three_seqi = [seq’=>seq’, seq’=>seq’, seq’=>seq’] => prop
three_seqe = [seq, seq, seq] => prop
four_seqi = [seq’=>seq’, seq’=>seq’, seq’=>seq’, seq’=>seq’] => prop
four_seqe = [seq, seq, seq, seq] => prop

The single_ and two_ sets of mappings for internal and external rep-
resentations are the ones used for, say single and multiple conclusion
sequents. The other functions are provided to allow rules that manip-
ulate more than two functions, as can be seen in the inbuilt object
logics.

2. An auxiliary syntactic constant has been defined that directly maps a
sequence to its internal representation:

"@Side" :: seq=>(seq’=>seq’) ("<<(_)>>")

Whenever a sequence (such as << A, $B, $C>>) is entered using this
syntax, it is translated into the appropriate internal representation.
This form can be used only where a sequence is expected.

3. The ml functions single tr, two seq tr, three seq tr, four seq

tr for parsing, that is, the translation from external to internal
form. Analogously there are single tr’, two seq tr’, three seq

tr’, four seq tr’ for pretty-printing, that is, the translation from in-
ternal to external form. These functions can be used in the ml section
of a theory file to specify the translations to be used. As an example
of use, note that in LK.thy we declare two identifiers:

val parse_translation =
[("@Trueprop",Sequents.two_seq_tr "Trueprop")];

val print_translation =
[("Trueprop",Sequents.two_seq_tr’ "@Trueprop")];

The given parse translation will be applied whenever a @Trueprop con-
stant is found, translating using two_seq_tr and inserting the constant
Trueprop. The pretty-printing translation is applied analogously; a
term that contains Trueprop is printed as a @Trueprop.
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Constructive Type Theory

Martin-Löf’s Constructive Type Theory [7, 9] can be viewed at many different
levels. It is a formal system that embodies the principles of intuitionistic
mathematics; it embodies the interpretation of propositions as types; it is a
vehicle for deriving programs from proofs.

Thompson’s book [14] gives a readable and thorough account of Type
Theory. Nuprl is an elaborate implementation [2]. alf is a more recent tool
that allows proof terms to be edited directly [6].

Isabelle’s original formulation of Type Theory was a kind of sequent cal-
culus, following Martin-Löf [7]. It included rules for building the context,
namely variable bindings with their types. A typical judgement was

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1)]

This sequent calculus was not satisfactory because assumptions like ‘suppose
A is a type’ or ‘suppose B(x ) is a type for all x in A’ could not be formalized.

The theory CTT implements Constructive Type Theory, using natural
deduction. The judgement above is expressed using

∧
and =⇒:∧

x1 . . . xn .[[x1 ∈ A1; x2 ∈ A2(x1); · · · xn ∈ An(x1, . . . , xn−1)]] =⇒
a(x1, . . . , xn) ∈ A(x1, . . . , xn)

Assumptions can use all the judgement forms, for instance to express that B
is a family of types over A:∧

x . x ∈ A =⇒ B(x ) type

To justify the CTT formulation it is probably best to appeal directly to the
semantic explanations of the rules [7], rather than to the rules themselves.
The order of assumptions no longer matters, unlike in standard Type Theory.
Contexts, which are typical of many modern type theories, are difficult to
represent in Isabelle. In particular, it is difficult to enforce that all the
variables in a context are distinct.

The theory does not use polymorphism. Terms in CTT have type i , the
type of individuals. Types in CTT have type t .

24
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name meta-type description
Type t → prop judgement form

Eqtype [t , t ]→ prop judgement form
Elem [i , t ]→ prop judgement form

Eqelem [i , i , t ]→ prop judgement form
Reduce [i , i ]→ prop extra judgement form

N t natural numbers type
0 i constructor

succ i → i constructor
rec [i , i , [i , i ]→ i ]→ i eliminator

Prod [t , i → t ]→ t general product type
lambda (i → i)→ i constructor

Sum [t , i → t ]→ t general sum type
pair [i , i ]→ i constructor

split [i , [i , i ]→ i ]→ i eliminator
fst snd i → i projections

inl inr i → i constructors for +
when [i , i → i , i → i ]→ i eliminator for +

Eq [t , i , i ]→ t equality type
eq i constructor

F t empty type
contr i → i eliminator

T t singleton type
tt i constructor

Figure 4.1: The constants of CTT
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CTT supports all of Type Theory apart from list types, well-ordering
types, and universes. Universes could be introduced à la Tarski, adding new
constants as names for types. The formulation à la Russell, where types
denote themselves, is only possible if we identify the meta-types i and t.
Most published formulations of well-ordering types have difficulties involving
extensionality of functions; I suggest that you use some other method for
defining recursive types. List types are easy to introduce by declaring new
rules.

CTT uses the 1982 version of Type Theory, with extensional equality. The
computation a = b ∈ A and the equality c ∈ Eq(A, a, b) are interchangeable.
Its rewriting tactics prove theorems of the form a = b ∈ A. It could be
modified to have intensional equality, but rewriting tactics would have to
prove theorems of the form c ∈ Eq(A, a, b) and the computation rules might
require a separate simplifier.

4.1 Syntax

The constants are shown in Fig. 4.1. The infixes include the function appli-
cation operator (sometimes called ‘apply’), and the 2-place type operators.
Note that meta-level abstraction and application, λx . b and f (a), differ from
object-level abstraction and application, lam x. b and b‘a. A CTT func-
tion f is simply an individual as far as Isabelle is concerned: its Isabelle type
is i , not say i ⇒ i .

The notation for CTT (Fig. 4.2) is based on that of Nordström et al. [9].
The empty type is called F and the one-element type is T ; other finite types
are built as T + T + T , etc.

Quantification is expressed by sums
∑

x∈A B [x ] and products
∏

x∈A B [x ].
Instead of Sum(A,B) and Prod(A,B) we may write SUM x:A. B [x ] and
PROD x:A. B [x ]. For example, we may write

SUM y:B. PROD x:A. C(x,y) for Sum(B, %y. Prod(A, %x. C(x,y)))

The special cases as A*B and A-->B abbreviate general sums and products
over a constant family.1 Isabelle accepts these abbreviations in parsing and
uses them whenever possible for printing.

1Unlike normal infix operators, * and --> merely define abbreviations; there are no
constants op * and op -->.
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symbol name meta-type priority description
lam lambda (i ⇒ o)⇒ i 10 λ-abstraction

Binders

symbol meta-type priority description
‘ [i , i ]→ i Left 55 function application
+ [t , t ]→ t Right 30 sum of two types

Infixes

external internal standard notation
PROD x:A . B [x ] Prod(A, λx . B [x ]) product

∏
x∈A B [x ]

SUM x:A . B [x ] Sum(A, λx . B [x ]) sum
∑

x∈A B [x ]
A --> B Prod(A, λx . B) function space A→ B

A * B Sum(A, λx . B) binary product A× B

Translations

prop = type type

| type = type
| term : type
| term = term : type

type = expression of type t
| PROD id : type . type
| SUM id : type . type

term = expression of type i
| lam id id∗ . term
| < term , term >

Grammar

Figure 4.2: Syntax of CTT
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refl_type A type ==> A = A
refl_elem a : A ==> a = a : A

sym_type A = B ==> B = A
sym_elem a = b : A ==> b = a : A

trans_type [| A = B; B = C |] ==> A = C
trans_elem [| a = b : A; b = c : A |] ==> a = c : A

equal_types [| a : A; A = B |] ==> a : B
equal_typesL [| a = b : A; A = B |] ==> a = b : B

subst_type [| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type
subst_typeL [| a = c : A; !!z. z:A ==> B(z) = D(z)

|] ==> B(a) = D(c)

subst_elem [| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)
subst_elemL [| a = c : A; !!z. z:A ==> b(z) = d(z) : B(z)

|] ==> b(a) = d(c) : B(a)

refl_red Reduce(a,a)
red_if_equal a = b : A ==> Reduce(a,b)
trans_red [| a = b : A; Reduce(b,c) |] ==> a = c : A

Figure 4.3: General equality rules
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NF N type

NI0 0 : N
NI_succ a : N ==> succ(a) : N
NI_succL a = b : N ==> succ(a) = succ(b) : N

NE [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(p, a, %u v. b(u,v)) : C(p)

NEL [| p = q : N; a = c : C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v)=d(u,v): C(succ(u))

|] ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)

NC0 [| a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(0, a, %u v. b(u,v)) = a : C(0)

NC_succ [| p: N; a: C(0);
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u))

|] ==> rec(succ(p), a, %u v. b(u,v)) =
b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))

zero_ne_succ [| a: N; 0 = succ(a) : N |] ==> 0: F

Figure 4.4: Rules for type N

ProdF [| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type
ProdFL [| A = C; !!x. x:A ==> B(x) = D(x) |] ==>

PROD x:A. B(x) = PROD x:C. D(x)

ProdI [| A type; !!x. x:A ==> b(x):B(x)
|] ==> lam x. b(x) : PROD x:A. B(x)

ProdIL [| A type; !!x. x:A ==> b(x) = c(x) : B(x)
|] ==> lam x. b(x) = lam x. c(x) : PROD x:A. B(x)

ProdE [| p : PROD x:A. B(x); a : A |] ==> p‘a : B(a)
ProdEL [| p=q: PROD x:A. B(x); a=b : A |] ==> p‘a = q‘b : B(a)

ProdC [| a : A; !!x. x:A ==> b(x) : B(x)
|] ==> (lam x. b(x)) ‘ a = b(a) : B(a)

ProdC2 p : PROD x:A. B(x) ==> (lam x. p‘x) = p : PROD x:A. B(x)

Figure 4.5: Rules for the product type
∏

x∈A B [x ]
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SumF [| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type
SumFL [| A = C; !!x. x:A ==> B(x) = D(x)

|] ==> SUM x:A. B(x) = SUM x:C. D(x)

SumI [| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)
SumIL [| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)

SumE [| p: SUM x:A. B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(p, %x y. c(x,y)) : C(p)

SumEL [| p=q : SUM x:A. B(x);
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)

|] ==> split(p, %x y. c(x,y)) = split(q, %x y. d(x,y)) : C(p)

SumC [| a: A; b: B(a);
!!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>)

|] ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)

fst_def fst(a) == split(a, %x y. x)
snd_def snd(a) == split(a, %x y. y)

Figure 4.6: Rules for the sum type
∑

x∈A B [x ]

4.2 Rules of inference

The rules obey the following naming conventions. Type formation rules have
the suffix F. Introduction rules have the suffix I. Elimination rules have the
suffix E. Computation rules, which describe the reduction of eliminators, have
the suffix C. The equality versions of the rules (which permit reductions on
subterms) are called long rules; their names have the suffix L. Introduction
and computation rules are often further suffixed with constructor names.

Figure 4.3 presents the equality rules. Most of them are straightforward:
reflexivity, symmetry, transitivity and substitution. The judgement Reduce

does not belong to Type Theory proper; it has been added to implement
rewriting. The judgement Reduce(a, b) holds when a = b : A holds. It also
holds when a and b are syntactically identical, even if they are ill-typed,
because rule refl_red does not verify that a belongs to A.

The Reduce rules do not give rise to new theorems about the standard
judgements. The only rule with Reduce in a premise is trans_red, whose
other premise ensures that a and b (and thus c) are well-typed.

Figure 4.4 presents the rules for N , the type of natural numbers. They
include zero_ne_succ, which asserts 0 6= n + 1. This is the fourth Peano
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PlusF [| A type; B type |] ==> A+B type
PlusFL [| A = C; B = D |] ==> A+B = C+D

PlusI_inl [| a : A; B type |] ==> inl(a) : A+B
PlusI_inlL [| a = c : A; B type |] ==> inl(a) = inl(c) : A+B

PlusI_inr [| A type; b : B |] ==> inr(b) : A+B
PlusI_inrL [| A type; b = d : B |] ==> inr(b) = inr(d) : A+B

PlusE [| p: A+B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(p, %x. c(x), %y. d(y)) : C(p)

PlusEL [| p = q : A+B;
!!x. x: A ==> c(x) = e(x) : C(inl(x));
!!y. y: B ==> d(y) = f(y) : C(inr(y))

|] ==> when(p, %x. c(x), %y. d(y)) =
when(q, %x. e(x), %y. f(y)) : C(p)

PlusC_inl [| a: A;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))

PlusC_inr [| b: B;
!!x. x:A ==> c(x): C(inl(x));
!!y. y:B ==> d(y): C(inr(y))

|] ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))

Figure 4.7: Rules for the binary sum type A + B

FF F type
FE [| p: F; C type |] ==> contr(p) : C
FEL [| p = q : F; C type |] ==> contr(p) = contr(q) : C

TF T type
TI tt : T
TE [| p : T; c : C(tt) |] ==> c : C(p)
TEL [| p = q : T; c = d : C(tt) |] ==> c = d : C(p)
TC p : T ==> p = tt : T)

Figure 4.8: Rules for types F and T



CHAPTER 4. CONSTRUCTIVE TYPE THEORY 32

EqF [| A type; a : A; b : A |] ==> Eq(A,a,b) type
EqFL [| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)
EqI a = b : A ==> eq : Eq(A,a,b)
EqE p : Eq(A,a,b) ==> a = b : A
EqC p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)

Figure 4.9: Rules for the equality type Eq(A, a, b)

replace_type [| B = A; a : A |] ==> a : B
subst_eqtyparg [| a=c : A; !!z. z:A ==> B(z) type |] ==> B(a)=B(c)

subst_prodE [| p: Prod(A,B); a: A; !!z. z: B(a) ==> c(z): C(z)
|] ==> c(p‘a): C(p‘a)

SumIL2 [| c=a : A; d=b : B(a) |] ==> <c,d> = <a,b> : Sum(A,B)

SumE_fst p : Sum(A,B) ==> fst(p) : A

SumE_snd [| p: Sum(A,B); A type; !!x. x:A ==> B(x) type
|] ==> snd(p) : B(fst(p))

Figure 4.10: Derived rules for CTT

axiom and cannot be derived without universes [7, page 91].
The constant rec constructs proof terms when mathematical induction,

rule NE, is applied. It can also express primitive recursion. Since rec can be
applied to higher-order functions, it can even express Ackermann’s function,
which is not primitive recursive [14, page 104].

Figure 4.5 shows the rules for general product types, which include func-
tion types as a special case. The rules correspond to the predicate calculus
rules for universal quantifiers and implication. They also permit reasoning
about functions, with the rules of a typed λ-calculus.

Figure 4.6 shows the rules for general sum types, which include binary
product types as a special case. The rules correspond to the predicate cal-
culus rules for existential quantifiers and conjunction. They also permit
reasoning about ordered pairs, with the projections fst and snd.

Figure 4.7 shows the rules for binary sum types. They correspond to
the predicate calculus rules for disjunction. They also permit reasoning
about disjoint sums, with the injections inl and inr and case analysis oper-
ator when.

Figure 4.8 shows the rules for the empty and unit types, F and T . They
correspond to the predicate calculus rules for absurdity and truth.
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Figure 4.9 shows the rules for equality types. If a = b ∈ A is provable
then eq is a canonical element of the type Eq(A, a, b), and vice versa. These
rules define extensional equality; the most recent versions of Type Theory
use intensional equality [9].

Figure 4.10 presents the derived rules. The rule subst_prodE is derived
from prodE, and is easier to use in backwards proof. The rules SumE_fst

and SumE_snd express the typing of fst and snd; together, they are roughly
equivalent to SumE with the advantage of creating no parameters. Section 4.12
below demonstrates these rules in a proof of the Axiom of Choice.

All the rules are given in η-expanded form. For instance, every occur-
rence of λu v . b(u, v) could be abbreviated to b in the rules for N . The
expanded form permits Isabelle to preserve bound variable names during
backward proof. Names of bound variables in the conclusion (here, u and v)
are matched with corresponding bound variables in the premises.

4.3 Rule lists

The Type Theory tactics provide rewriting, type inference, and logical rea-
soning. Many proof procedures work by repeatedly resolving certain Type
Theory rules against a proof state. CTT defines lists — each with type
thm list — of related rules.

form_rls contains formation rules for the types N , Π, Σ, +, Eq , F , and T .

formL_rls contains long formation rules for Π, Σ, +, and Eq . (For other
types use refl_type.)

intr_rls contains introduction rules for the types N , Π, Σ, +, and T .

intrL_rls contains long introduction rules for N , Π, Σ, and +. (For T use
refl_elem.)

elim_rls contains elimination rules for the types N , Π, Σ, +, and F . The
rules for Eq and T are omitted because they involve no eliminator.

elimL_rls contains long elimination rules for N , Π, Σ, +, and F .

comp_rls contains computation rules for the types N , Π, Σ, and +. Those
for Eq and T involve no eliminator.

basic_defs contains the definitions of fst and snd.
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4.4 Tactics for subgoal reordering

test_assume_tac : int -> tactic
typechk_tac : thm list -> tactic
equal_tac : thm list -> tactic
intr_tac : thm list -> tactic

Blind application of CTT rules seldom leads to a proof. The elimination
rules, especially, create subgoals containing new unknowns. These subgoals
unify with anything, creating a huge search space. The standard tactic
filt_resolve_tac (see the Reference Manual) fails for goals that are too
flexible; so does the CTT tactic test_assume_tac. Used with the tactical
REPEAT_FIRST they achieve a simple kind of subgoal reordering: the less flex-
ible subgoals are attempted first. Do some single step proofs, or study the
examples below, to see why this is necessary.

test_assume_tac i uses assume_tac to solve the subgoal by assumption,
but only if subgoal i has the form a ∈ A and the head of a is not an
unknown. Otherwise, it fails.

typechk_tac thms uses thms with formation, introduction, and elimination
rules to check the typing of constructions. It is designed to solve goals
of the form a ∈ ?A, where a is rigid and ?A is flexible; thus it performs
type inference. The tactic can also solve goals of the form A type.

equal_tac thms uses thms with the long introduction and elimination rules
to solve goals of the form a = b ∈ A, where a is rigid. It is intended
for deriving the long rules for defined constants such as the arithmetic
operators. The tactic can also perform type-checking.

intr_tac thms uses thms with the introduction rules to break down a type.
It is designed for goals like ?a ∈ A where ?a is flexible and A rigid.
These typically arise when trying to prove a proposition A, expressed
as a type.

4.5 Rewriting tactics

rew_tac : thm list -> tactic
hyp_rew_tac : thm list -> tactic

Object-level simplification is accomplished through proof, using the CTT

equality rules and the built-in rewriting functor TSimpFun.2 The rewrites

2This should not be confused with Isabelle’s main simplifier; TSimpFun is only useful
for CTT and similar logics with type inference rules. At present it is undocumented.
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include the computation rules and other equations. The long versions of
the other rules permit rewriting of subterms and subtypes. Also used are
transitivity and the extra judgement form Reduce. Meta-level simplification
handles only definitional equality.

rew_tac thms applies thms and the computation rules as left-to-right
rewrites. It solves the goal a = b ∈ A by rewriting a to b. If b is
an unknown then it is assigned the rewritten form of a. All subgoals
are rewritten.

hyp_rew_tac thms is like rew_tac, but includes as rewrites any equations
present in the assumptions.

4.6 Tactics for logical reasoning

Interpreting propositions as types lets CTT express statements of intuition-
istic logic. However, Constructive Type Theory is not just another syntax
for first-order logic. There are fundamental differences.

Can assumptions be deleted after use? Not every occurrence of a type
represents a proposition, and Type Theory assumptions declare variables. In
first-order logic, ∨-elimination with the assumption P∨Q creates one subgoal
assuming P and another assuming Q , and P ∨ Q can be deleted safely. In
Type Theory, +-elimination with the assumption z ∈ A + B creates one
subgoal assuming x ∈ A and another assuming y ∈ B (for arbitrary x and
y). Deleting z ∈ A + B when other assumptions refer to z may render the
subgoal unprovable: arguably, meaningless.

Isabelle provides several tactics for predicate calculus reasoning in CTT:

mp_tac : int -> tactic
add_mp_tac : int -> tactic
safestep_tac : thm list -> int -> tactic
safe_tac : thm list -> int -> tactic
step_tac : thm list -> int -> tactic
pc_tac : thm list -> int -> tactic

These are loosely based on the intuitionistic proof procedures of FOL. For the
reasons discussed above, a rule that is safe for propositional reasoning may
be unsafe for type-checking; thus, some of the ‘safe’ tactics are misnamed.

mp_tac i searches in subgoal i for assumptions of the form f ∈ Π(A,B)
and a ∈ A, where A may be found by unification. It replaces f ∈
Π(A,B) by z ∈ B(a), where z is a new parameter. The tactic can
produce multiple outcomes for each suitable pair of assumptions. In
short, mp_tac performs Modus Ponens among the assumptions.
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add_mp_tac i is like mp_tac i but retains the assumption f ∈ Π(A,B). It
avoids information loss but obviously loops if repeated.

safestep_tac thms i attacks subgoal i using formation rules and certain
other ‘safe’ rules (FE, ProdI, SumE, PlusE), calling mp_tac when appro-
priate. It also uses thms , which are typically premises of the rule being
derived.

safe_tac thms i attempts to solve subgoal i by means of backtracking,
using safestep_tac.

step_tac thms i tries to reduce subgoal i using safestep_tac, then tries
unsafe rules. It may produce multiple outcomes.

pc_tac thms i tries to solve subgoal i by backtracking, using step_tac.

4.7 A theory of arithmetic

Arith is a theory of elementary arithmetic. It proves the properties of ad-
dition, multiplication, subtraction, division, and remainder, culminating in
the theorem

a mod b + (a/b)× b = a.

Figure 4.11 presents the definitions and some of the key theorems, including
commutative, distributive, and associative laws.

The operators #+, -, |-|, #*, mod and div stand for sum, difference,
absolute difference, product, remainder and quotient, respectively. Since
Type Theory has only primitive recursion, some of their definitions may be
obscure.

The difference a−b is computed by taking b predecessors of a, where the
predecessor function is λv . rec(v , 0, λx y . x ).

The remainder a mod b counts up to a in a cyclic fashion, using 0 as the
successor of b−1. Absolute difference is used to test the equality succ(v) = b.

The quotient a/b is computed by adding one for every number x such
that 0 ≤ x ≤ a and x mod b = 0.

4.8 The examples directory

This directory contains examples and experimental proofs in CTT.

CTT/ex/typechk.ML contains simple examples of type-checking and type de-
duction.
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symbol meta-type priority description
#* [i , i ]⇒ i Left 70 multiplication
div [i , i ]⇒ i Left 70 division
mod [i , i ]⇒ i Left 70 modulus
#+ [i , i ]⇒ i Left 65 addition
- [i , i ]⇒ i Left 65 subtraction

|-| [i , i ]⇒ i Left 65 absolute difference

add_def a#+b == rec(a, b, %u v. succ(v))
diff_def a-b == rec(b, a, %u v. rec(v, 0, %x y. x))
absdiff_def a|-|b == (a-b) #+ (b-a)
mult_def a#*b == rec(a, 0, %u v. b #+ v)

mod_def a mod b ==
rec(a, 0, %u v. rec(succ(v) |-| b, 0, %x y. succ(v)))

div_def a div b ==
rec(a, 0, %u v. rec(succ(u) mod b, succ(v), %x y. v))

add_typing [| a:N; b:N |] ==> a #+ b : N
addC0 b:N ==> 0 #+ b = b : N
addC_succ [| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N

add_assoc [| a:N; b:N; c:N |] ==>
(a #+ b) #+ c = a #+ (b #+ c) : N

add_commute [| a:N; b:N |] ==> a #+ b = b #+ a : N

mult_typing [| a:N; b:N |] ==> a #* b : N
multC0 b:N ==> 0 #* b = 0 : N
multC_succ [| a:N; b:N |] ==> succ(a) #* b = b #+ (a#*b) : N
mult_commute [| a:N; b:N |] ==> a #* b = b #* a : N

add_mult_dist [| a:N; b:N; c:N |] ==>
(a #+ b) #* c = (a #* c) #+ (b #* c) : N

mult_assoc [| a:N; b:N; c:N |] ==>
(a #* b) #* c = a #* (b #* c) : N

diff_typing [| a:N; b:N |] ==> a - b : N
diffC0 a:N ==> a - 0 = a : N
diff_0_eq_0 b:N ==> 0 - b = 0 : N
diff_succ_succ [| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N
diff_self_eq_0 a:N ==> a - a = 0 : N
add_inverse_diff [| a:N; b:N; b-a=0 : N |] ==> b #+ (a-b) = a : N

Figure 4.11: The theory of arithmetic
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CTT/ex/elim.ML contains some examples from Martin-Löf [7], proved using
pc_tac.

CTT/ex/equal.ML contains simple examples of rewriting.

CTT/ex/synth.ML demonstrates the use of unknowns with some trivial ex-
amples of program synthesis.

4.9 Example: type inference

Type inference involves proving a goal of the form a ∈ ?A, where a is a term
and ?A is an unknown standing for its type. The type, initially unknown,
takes shape in the course of the proof. Our example is the predecessor func-
tion on the natural numbers.

Goal "lam n. rec(n, 0, %x y. x) : ?A";
Level 0

lam n. rec(n,0,%x y. x) : ?A

1. lam n. rec(n,0,%x y. x) : ?A

Since the term is a Constructive Type Theory λ-abstraction (not to be
confused with a meta-level abstraction), we apply the rule ProdI, for Π-
introduction. This instantiates ?A to a product type of unknown domain
and range.

by (resolve_tac [ProdI] 1);
Level 1

lam n. rec(n,0,%x y. x) : PROD x:?A1. ?B1(x)

1. ?A1 type

2. !!n. n : ?A1 ==> rec(n,0,%x y. x) : ?B1(n)

Subgoal 1 is too flexible. It can be solved by instantiating ?A1 to any type,
but most instantiations will invalidate subgoal 2. We therefore tackle the
latter subgoal. It asks the type of a term beginning with rec, which can be
found by N -elimination.

by (eresolve_tac [NE] 2);
Level 2

lam n. rec(n,0,%x y. x) : PROD x:N. ?C2(x,x)

1. N type

2. !!n. 0 : ?C2(n,0)

3. !!n x y. [| x : N; y : ?C2(n,x) |] ==> x : ?C2(n,succ(x))

Subgoal 1 is no longer flexible: we now know ?A1 is the type of natural
numbers. However, let us continue proving nontrivial subgoals. Subgoal 2
asks, what is the type of 0?
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by (resolve_tac [NI0] 2);
Level 3

lam n. rec(n,0,%x y. x) : N --> N

1. N type

2. !!n x y. [| x : N; y : N |] ==> x : N

The type ?A is now fully determined. It is the product type
∏

x∈N N , which
is shown as the function type N → N because there is no dependence on x .
But we must prove all the subgoals to show that the original term is validly
typed. Subgoal 2 is provable by assumption and the remaining subgoal falls
by N -formation.

by (assume_tac 2);
Level 4

lam n. rec(n,0,%x y. x) : N --> N

1. N type

by (resolve_tac [NF] 1);
Level 5

lam n. rec(n,0,%x y. x) : N --> N

No subgoals!

Calling typechk_tac can prove this theorem in one step.
Even if the original term is ill-typed, one can infer a type for it, but

unprovable subgoals will be left. As an exercise, try to prove the following
invalid goal:

Goal "lam n. rec(n, 0, %x y. tt) : ?A";

4.10 An example of logical reasoning

Logical reasoning in Type Theory involves proving a goal of the form ?a ∈ A,
where type A expresses a proposition and ?a stands for its proof term, a value
of type A. The proof term is initially unknown and takes shape during the
proof.

Our example expresses a theorem about quantifiers in a sorted logic:

∃x ∈ A . P(x ) ∨Q(x )

(∃x ∈ A . P(x )) ∨ (∃x ∈ A . Q(x ))

By the propositions-as-types principle, this is encoded using Σ and + types.
A special case of it expresses a distributive law of Type Theory:

A× (B + C )

(A× B) + (A× C )
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Generalizing this from × to Σ, and making the typing conditions explicit,
yields the rule we must derive:

A type

[x ∈ A]
....

B(x ) type

[x ∈ A]
....

C (x ) type p ∈ ∑
x∈A B(x ) + C (x )

?a ∈ (
∑

x∈A B(x )) + (
∑

x∈A C (x ))

To begin, we bind the rule’s premises — returned by the goal command —
to the ml variable prems.

val prems = Goal
"[| A type; \

\ !!x. x:A ==> B(x) type; \
\ !!x. x:A ==> C(x) type; \
\ p: SUM x:A. B(x) + C(x) \
\ |] ==> ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))";
Level 0

?a : (SUM x:A. B(x)) + (SUM x:A. C(x))

1. ?a : (SUM x:A. B(x)) + (SUM x:A. C(x))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"?x : A ==> C(?x) type [!!x. x : A ==> C(x) type]",

"p : SUM x:A. B(x) + C(x) [p : SUM x:A. B(x) + C(x)]"]

: thm list

The last premise involves the sum type Σ. Since it is a premise rather than
the assumption of a goal, it cannot be found by eresolve_tac. We could
insert it (and the other atomic premise) by calling

cut_facts_tac prems 1;

A forward proof step is more straightforward here. Let us resolve the Σ-
elimination rule with the premises using RL. This inference yields one result,
which we supply to resolve_tac.

by (resolve_tac (prems RL [SumE]) 1);
Level 1

split(p,?c1) : (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y.

[| x : A; y : B(x) + C(x) |] ==>

?c1(x,y) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The subgoal has two new parameters, x and y . In the main goal, ?a has
been instantiated with a split term. The assumption y ∈ B(x ) + C (x ) is
eliminated next, causing a case split and creating the parameter xa. This
inference also inserts when into the main goal.
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by (eresolve_tac [PlusE] 1);
Level 2

split(p,%x y. when(y,?c2(x,y),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa.

[| x : A; xa : B(x) |] ==>

?c2(x,y,xa) : (SUM x:A. B(x)) + (SUM x:A. C(x))

2. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

To complete the proof object for the main goal, we need to instantiate the
terms ?c2(x , y , xa) and ?d2(x , y , xa). We attack subgoal 1 by a +-introduction
rule; since the goal assumes xa ∈ B(x ), we take the left injection (inl).

by (resolve_tac [PlusI_inl] 1);
Level 3

split(p,%x y. when(y,%xa. inl(?a3(x,y,xa)),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a3(x,y,xa) : SUM x:A. B(x)

2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

3. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

A new subgoal 2 has appeared, to verify that
∑

x∈A C (x ) is a type. Continu-
ing to work on subgoal 1, we apply the Σ-introduction rule. This instantiates
the term ?a3(x , y , xa); the main goal now contains an ordered pair, whose
components are two new unknowns.

by (resolve_tac [SumI] 1);
Level 4

split(p,%x y. when(y,%xa. inl(<?a4(x,y,xa),?b4(x,y,xa)>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> ?a4(x,y,xa) : A

2. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(?a4(x,y,xa))

3. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

4. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

The two new subgoals both hold by assumption. Observe how the unknowns
?a4 and ?b4 are instantiated throughout the proof state.

by (assume_tac 1);
Level 5

split(p,%x y. when(y,%xa. inl(<x,?b4(x,y,xa)>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))
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1. !!x y xa. [| x : A; xa : B(x) |] ==> ?b4(x,y,xa) : B(x)

2. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

3. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

by (assume_tac 1);
Level 6

split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y xa. [| x : A; xa : B(x) |] ==> SUM x:A. C(x) type

2. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

Subgoal 1 is an example of a well-formedness subgoal [2]. Such subgoals
are usually trivial; this one yields to typechk_tac, given the current list of
premises.

by (typechk_tac prems);
Level 7

split(p,%x y. when(y,%xa. inl(<x,xa>),?d2(x,y)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

1. !!x y ya.

[| x : A; ya : C(x) |] ==>

?d2(x,y,ya) : (SUM x:A. B(x)) + (SUM x:A. C(x))

This subgoal is the other case from the +-elimination above, and can be
proved similarly. Quicker is to apply pc_tac. The main goal finally gets a
fully instantiated proof object.

by (pc_tac prems 1);
Level 8

split(p,%x y. when(y,%xa. inl(<x,xa>),%y. inr(<x,y>)))

: (SUM x:A. B(x)) + (SUM x:A. C(x))

No subgoals!

Calling pc_tac after the first Σ-elimination above also proves this theorem.

4.11 Example: deriving a currying functional

In simply-typed languages such as ml, a currying functional has the type

(A× B → C )→ (A→ (B → C )).

Let us generalize this to the dependent types Σ and Π. The functional takes
a function f that maps z : Σ(A,B) to C (z ); the resulting function maps
x ∈ A and y ∈ B(x ) to C (〈x , y〉).
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Formally, there are three typing premises. A is a type; B is an A-indexed
family of types; C is a family of types indexed by Σ(A,B). The goal is
expressed using PROD f to ensure that the parameter corresponding to the
functional’s argument is really called f ; Isabelle echoes the type using -->

because there is no explicit dependence upon f .

val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \

\ !!z. z: (SUM x:A. B(x)) ==> C(z) type \
\ |] ==> ?a : PROD f: (PROD z : (SUM x:A . B(x)) . C(z)). \
\ (PROD x:A . PROD y:B(x) . C(<x,y>))";
Level 0

?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))

1. ?a : (PROD z:SUM x:A. B(x). C(z)) -->

(PROD x:A. PROD y:B(x). C(<x,y>))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"?z : SUM x:A. B(x) ==> C(?z) type

[!!z. z : SUM x:A. B(x) ==> C(z) type]"] : thm list

This is a chance to demonstrate intr_tac. Here, the tactic repeatedly applies
Π-introduction and proves the rather tiresome typing conditions.

Note that ?a becomes instantiated to three nested λ-abstractions. It
would be easier to read if the bound variable names agreed with the param-
eters in the subgoal. Isabelle attempts to give parameters the same names
as corresponding bound variables in the goal, but this does not always work.
In any event, the goal is logically correct.

by (intr_tac prems);
Level 1

lam x xa xb. ?b7(x,xa,xb)

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

1. !!f x y.

[| f : PROD z:SUM x:A. B(x). C(z); x : A; y : B(x) |] ==>

?b7(f,x,y) : C(<x,y>)

Using Π-elimination, we solve subgoal 1 by applying the function f .

by (eresolve_tac [ProdE] 1);
Level 2

lam x xa xb. x ‘ <xa,xb>

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

1. !!f x y. [| x : A; y : B(x) |] ==> <x,y> : SUM x:A. B(x)

Finally, we verify that the argument’s type is suitable for the function appli-
cation. This is straightforward using introduction rules.
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by (intr_tac prems);
Level 3

lam x xa xb. x ‘ <xa,xb>

: (PROD z:SUM x:A. B(x). C(z)) --> (PROD x:A. PROD y:B(x). C(<x,y>))

No subgoals!

Calling pc_tac would have proved this theorem in one step; it can also prove
an example by Martin-Löf, related to ∨-elimination [7, page 58].

4.12 Example: proving the Axiom of Choice

Suppose we have a function h ∈ ∏
x∈A

∑
y∈B(x) C (x , y), which takes x ∈ A to

some y ∈ B(x ) paired with some z ∈ C (x , y). Interpreting propositions as
types, this asserts that for all x ∈ A there exists y ∈ B(x ) such that C (x , y).
The Axiom of Choice asserts that we can construct a function f ∈ ∏

x∈A B(x )
such that C (x , f ‘x ) for all x ∈ A, where the latter property is witnessed by
a function g ∈ ∏

x∈A C (x , f ‘x ).
In principle, the Axiom of Choice is simple to derive in Constructive Type

Theory. The following definitions work:

f ≡ fst ◦ h

g ≡ snd ◦ h

But a completely formal proof is hard to find. The rules can be applied
in countless ways, yielding many higher-order unifiers. The proof can get
bogged down in the details. But with a careful selection of derived rules
(recall Fig. 4.10) and the type-checking tactics, we can prove the theorem in
nine steps.

val prems = Goal
"[| A type; !!x. x:A ==> B(x) type; \

\ !!x y.[| x:A; y:B(x) |] ==> C(x,y) type \
\ |] ==> ?a : PROD h: (PROD x:A. SUM y:B(x). C(x,y)). \
\ (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f‘x))";
Level 0

?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. ?a : (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

val prems = ["A type [A type]",

"?x : A ==> B(?x) type [!!x. x : A ==> B(x) type]",

"[| ?x : A; ?y : B(?x) |] ==> C(?x, ?y) type

[!!x y. [| x : A; y : B(x) |] ==> C(x, y) type]"]

: thm list

First, intr_tac applies introduction rules and performs routine type-
checking. This instantiates ?a to a construction involving a λ-abstraction
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and an ordered pair. The pair’s components are themselves λ-abstractions
and there is a subgoal for each.

by (intr_tac prems);
Level 1

lam x. <lam xa. ?b7(x,xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b7(h,x) : B(x)

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. ?b7(h,x)) ‘ x)

Subgoal 1 asks to find the choice function itself, taking x ∈ A to some
?b7(h, x ) ∈ B(x ). Subgoal 2 asks, given x ∈ A, for a proof object ?b8(h, x ) to
witness that the choice function’s argument and result lie in the relation C .
This latter task will take up most of the proof.

by (eresolve_tac [ProdE RS SumE_fst] 1);
Level 2

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x. x : A ==> x : A

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. fst(h ‘ x)) ‘ x)

Above, we have composed fst with the function h. Unification has deduced
that the function must be applied to x ∈ A. We have our choice function.

by (assume_tac 1);
Level 3

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,(lam x. fst(h ‘ x)) ‘ x)

Before we can compose snd with h, the arguments of C must be simplified.
The derived rule replace_type lets us replace a type by any equivalent type,
shown below as the schematic term ?A13(h, x ):

by (resolve_tac [replace_type] 1);
Level 4

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))
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1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

C(x,(lam x. fst(h ‘ x)) ‘ x) = ?A13(h,x)

2. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : ?A13(h,x)

The derived rule subst_eqtyparg lets us simplify a type’s argument (by
currying, C (x ) is a unary type operator):

by (resolve_tac [subst_eqtyparg] 1);
Level 5

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

(lam x. fst(h ‘ x)) ‘ x = ?c14(h,x) : ?A14(h,x)

2. !!h x z.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?A14(h,x) |] ==>

C(x,z) type

3. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,?c14(h,x))

Subgoal 1 requires simply β-contraction, which is the rule ProdC. The term
?c14(h, x ) in the last subgoal receives the contracted result.

by (resolve_tac [ProdC] 1);
Level 6

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

x : ?A15(h,x)

2. !!h x xa.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

xa : ?A15(h,x) |] ==>

fst(h ‘ xa) : ?B15(h,x,xa)

3. !!h x z.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A;

z : ?B15(h,x,x) |] ==>

C(x,z) type

4. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,fst(h ‘ x))

Routine type-checking goals proliferate in Constructive Type Theory, but
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typechk_tac quickly solves them. Note the inclusion of SumE_fst along
with the premises.

by (typechk_tac (SumE_fst::prems));
Level 7

lam x. <lam xa. fst(x ‘ xa),lam xa. ?b8(x,xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x.

[| h : PROD x:A. SUM y:B(x). C(x,y); x : A |] ==>

?b8(h,x) : C(x,fst(h ‘ x))

We are finally ready to compose snd with h.

by (eresolve_tac [ProdE RS SumE_snd] 1);
Level 8

lam x. <lam xa. fst(x ‘ xa),lam xa. snd(x ‘ xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

1. !!h x. x : A ==> x : A

2. !!h x. x : A ==> B(x) type

3. !!h x xa. [| x : A; xa : B(x) |] ==> C(x,xa) type

The proof object has reached its final form. We call typechk_tac to finish
the type-checking.

by (typechk_tac prems);
Level 9

lam x. <lam xa. fst(x ‘ xa),lam xa. snd(x ‘ xa)>

: (PROD x:A. SUM y:B(x). C(x,y)) -->

(SUM f:PROD x:A. B(x). PROD x:A. C(x,f ‘ x))

No subgoals!

It might be instructive to compare this proof with Martin-Löf’s forward proof
of the Axiom of Choice [7, page 50].
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