
5
Functions and Infinite Data

The most powerful techniques of functional programming are those that treat
functions as data. Most functional languages give function values full rights,
free of arbitrary restrictions. Like other values, functions may be arguments and
results of other functions and may belong to pairs, lists and trees.

Procedural languages like Fortran and Pascal accept this idea as far as is con-
venient for the compiler writer. Functions may be arguments: say, the compar-
ison to be used in sorting or a numerical function to be integrated. Even this
restricted case is important.

A function is higher-order (or a functional) if it operates on other functions.
For instance, the functional map applies a function to every element of a list,
creating a new list. A sufficiently rich collection of functionals can express
all functions without using variables. Functionals can be designed to construct
parsers (see Chapter 9) and theorem proving strategies (see Chapter 10).

Infinite lists, whose elements are evaluated upon demand, can be implemented
using functions as data. The tail of a lazy list is a function that, if called, pro-
duces another lazy list. A lazy list can be infinitely long and any finite number
of its elements can be evaluated.

Chapter outline
The first half presents the essential programming techniques involving

functions as data. The second half serves as an extended, practical example.
Lazy lists can be represented in ML (despite its strict evaluation rule) by means
of function values.

The chapter contains the following sections:
Functions as values. The fn notation can express a function without giving it

a name. Any function of two arguments can be expressed as a ‘curried’ function
of one argument, whose result is another function. Simple examples of higher-
order functions include polymorphic sorting functions and numerical operators.

General-purpose functionals. Higher-order functional programming largely
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174 5 Functions and Infinite Data

consists of using certain well-known functionals, which operate on lists or other
recursive datatypes.

Sequences, or infinite lists. The basic mechanism for obtaining laziness in ML

is demonstrated using standard examples. A harder problem is to combine a list
of lists of integers into a single list of integers — if the input lists are infinite,
they must be combined fairly such that no integers are lost.

Search strategies and infinite lists. The possibly infinite set of solutions to a
search problem can be generated as a lazy list. The consumer of the solutions
can be designed independently of the producer, which may employ any suitable
search strategy.

Functions as values
Functions in ML are abstract values: they can be created; they can be

applied to an argument; they can belong to other data structures. Nothing else is
allowed. A function is given by patterns and expressions but taken as a ‘black
box’ that transforms arguments to results.

5.1 Anonymous functions with fn notation
An ML function need not have a name. If x is a variable (of type σ ) and

E is an expression (of type τ ) then the expression

fn x => E

denotes a function of type σ → τ . Its argument is x and its body is E . Pattern-
matching is allowed: the expression

fn P1 => E1 | · · · | Pn => En

denotes the function defined by the patterns P1, . . . , Pn . It has the same meaning
as the let expression

let fun f (P1) = E1 | · · · | f (Pn ) = En in f end

provided f does not appear in the expressions E1, . . . , En . The fn syntax cannot
express recursion.

For example, fn n=>n*2 is a function that doubles an integer. It can be
applied to an argument; it can be given a name by a val declaration.

(fn n=>n*2)(9);
> 18 : int
val double = fn n=>n*2;
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> val double = fn : int -> int

Many ML constructs are defined in terms of the fn notation. The conditional
expression

if E then E1 else E2

abbreviates the function application

(fn true => E1 | false => E2) (E)

The case expression is translated similarly.

Exercise 5.1 Express these functions using fn notation.

fun square(x) : real = x*x;

fun cons (x,y) = x::y;

fun null [] = true
| null (_::_) = false;

Exercise 5.2 Modify these function declarations to use val instead of fun:

fun area (r) = pi*r*r;

fun title(name) = "The Duke of " ˆ name;

fun lengthvec (x,y) = Math.sqrt(x*x + y*y);

5.2 Curried functions
A function can have only one argument. Hitherto, functions with mul-

tiple arguments have taken them as a tuple. Multiple arguments can also be
realized by a function that returns another function as its result. This device is
called currying after the logician H. B. Curry.1 Consider the function

fun prefix pre =
let fun cat post = preˆpost
in cat end;

> val prefix = fn : string -> (string -> string)

Using fn notation, prefix is the function

fn pre => (fn post => pre ˆ post)

Given a string pre, the result of prefix is a function that concatenates pre to the
front of its argument. For instance, prefix "Sir " is the function

1 It has been credited to Schönfinkel, but Schönfinkeling has never caught on.
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fn post => "Sir " ˆ post

It may be applied to a string:

prefix "Sir ";
> fn : string -> string
it "James Tyrrell";
> "Sir James Tyrrell" : string

Dispensing with it , both function applications may be done at once:

(prefix "Sir ") "James Tyrrell";
> "Sir James Tyrrell" : string

This is a function call where the function is computed by an expression, namely
prefix "Sir ".

Note that prefix behaves like a function of two arguments. It is a curried
function. We now have two ways of declaring a function with arguments of
types σ1 and σ2 and result of type τ . A function over pairs has type (σ1×σ2)→

τ . A curried function has type σ1 → (σ2 → τ).
A curried function permits partial application. Applied to its first argument

(of type σ1) its result is a function of type σ2 → τ . This function may have a
general use: say, for addressing Knights.

val knightify = prefix "Sir ";
> val knightify = fn : string -> string
knightify "William Catesby";
> "Sir William Catesby" : string
knightify "Richard Ratcliff";
> "Sir Richard Ratcliff" : string

Other illustrious personages can be addressed similarly:

val dukify = prefix "The Duke of ";
> val dukify = fn : string -> string
dukify "Clarence";
> "The Duke of Clarence" : string
val lordify = prefix "Lord ";
> val lordify = fn : string -> string
lordify "Stanley";
> "Lord Stanley" : string

Syntax for curried functions. The functions above are declared by val, not
fun. A fun declaration must have explicit arguments. There may be several
arguments, separated by spaces, for a curried function. Here is an equivalent
declaration of prefix :
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fun prefix pre post = preˆpost;
> val prefix = fn : string -> (string -> string)

A function call has the form E E1, where E is an expression that denotes a
function. Since

E E1 E2 · · · En abbreviates (· · · ((E E1)E2) · · · )En

we may write prefix "Sir " "James Tyrrell" without parentheses.
The expressions are evaluated from left to right.

The type of prefix , namely string → (string → string), may be written
without parentheses: the symbol→ associates to the right.

Recursion. Curried functions may be recursive. Calling replist n x makes the
list consisting of n copies of x :

fun replist n x = if n=0 then [] else x :: replist (n-1) x;
> val replist = fn : int -> ’a -> ’a list
replist 3 true;
> [true, true, true] : bool list

Recursion works by the usual evaluation rules, even with currying. The result
of replist 3 is the function

fn x => if 3 = 0 then [] else x :: replist (3− 1) x

Applying this to true produces the expression

true :: replist 2 true

As evaluation continues, two further recursive calls yield

true :: true :: true :: replist 0 true

The final call returns nil and the overall result is [true, true, true].

An analogy with arrays. The choice between pairing and currying is analogous
to the choice, in Pascal, between a 2-dimensional array and nested arrays.

A: array [1..20, 1..30] of integer
B: array [1..20] of array [1..30] of integer

The former array is subscripted A[i , j ], the latter as B [i ][j ]. Nested arrays permit
partial subscripting: B [i ] is a 1-dimensional array.
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Exercise 5.3 What functions result from partial application of the following
curried functions? (Do not try them at the machine.)

fun plus i j : int = i+j;
fun lesser a b : real = if a<b then a else b;
fun pair x y = (x,y);
fun equals x y = (x=y);

Exercise 5.4 Is there any practical difference between the following two decla-
rations of the function f ? Assume that the function g and the curried function h
are given.

fun f x y = h (g x) y;
fun f x = h (g x);

5.3 Functions in data structures
Functions and concrete datatypes play complementary rôles in a data

structure. Lists and trees provide the outer framework and organize the infor-
mation, while functions hold potential computations. Although functions are
represented by finite programs in the computer, we can often treat them as infi-
nite objects.

Pairs and lists may contain functions as their components:2

(concat, Math.sin);
> (fn, fn) : (string list -> string) * (real -> real)
[op+, op-, op*, op div, op mod, Int.max, Int.min];
> [fn, fn, fn, fn, fn] : (int * int -> int) list

Functions stored in a data structure can be extracted and applied.

val titlefns = [dukify,lordify,knightify];
> val titlefns = [fn, fn, fn] : (string -> string) list
hd titlefns "Gloucester";
> "The Duke of Gloucester" : string

This is a curried function call: hd titlefns returns the function dukify . The
polymorphic function hd has, in this example, the type

(string → string)list → (string → string).

A binary search tree containing functions might be useful in a desk calculator
program. The functions are addressed by name.

2 Recall that the keyword op yields the value of an infix operator, as a function.
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val funtree = Dict.insert(Dict.insert(Dict.insert(Lf , "sin", Math.sin),
"cos", Math.cos),

"atan", Math.atan);
> val funtree =
> Br (("sin", fn),
> Br (("cos", fn), Br (("atan", fn), Lf, Lf), Lf),
> Lf) : (real -> real) Dict.t
Dict.lookup (funtree,"cos") 0.0;
> 1.0 : real

The functions stored in the tree must have the same type, here real → real .
Although different types can be combined into one datatype, this can be incon-
venient. As mentioned at the end of Section 4.6, type exn can be regarded as
including all types. A more flexible type for the functions is exn list → exn .

Exercise 5.5 What type does the polymorphic function Dict.lookup have in
the example above?

5.4 Functions as arguments and results
The sorting functions of Chapter 3 are coded to sort real numbers. They

can be generalized to an arbitrary ordered type by passing the ordering predi-
cate (≤) as an argument. Here is a polymorphic function for insertion sort:

fun insort lessequal =
let fun ins (x, []) = [x]

| ins (x, y::ys) =
if lessequal(x,y) then x::y::ys

else y :: ins (x,ys)
fun sort [] = []
| sort (x::xs) = ins (x, sort xs)

in sort end;
> val insort = fn
> : (’a * ’a -> bool) -> ’a list -> ’a list

Functions ins and sort are declared locally, referring to lessequal . Though it
may not be obvious, insort is a curried function. Given an argument of type τ×
τ → bool it returns the function sort , which has type τ list → τ list . The types
of the ordering and the list elements must agree.

Integers can now be sorted. (Although the operator <= is overloaded, its type
is constrained by the list of integers.)

insort (op<=) [5,3,7,5,9,8];
> [3, 5, 5, 7, 8, 9] : int list

Passing the relation ≥ for lessequal gives a decreasing sort:
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insort (op>=) [5,3,7,5,9,8];
> [9, 8, 7, 5, 5, 3] : int list

Pairs of strings can be sorted using lexicographic ordering:

fun leqs tringpair ((a,b), (c,d): string*string) =
a<c orelse (a=c andalso b<=d);

> val leq_stringpair = fn
> : (string * string) * (string * string) -> bool

We sort a list of (family name, forename) pairs:

insort leqs tringpair
[("Herbert","Walter"), ("Plantagenet","Richard"),
("Plantagenet","Edward"), ("Brandon","William"),
("Tyrrell","James"), ("Herbert","John") ];

> [("Brandon", "William"), ("Herbert", "John"),
> ("Herbert", "Walter"), ("Plantagenet", "Edward"),
> ("Plantagenet", "Richard"), ("Tyrrell", "James")]
> : (string * string) list

Functions are frequently passed as arguments in numerical computing. The
following functional computes the summation

∑m−1
i=0 f (i). For efficiency, it uses

an iterative function that refers to the arguments f and m:

fun summation f m =
let fun sum (i,z) : real =

if i=m then z else sum (i+1, z+(f i))
in sum(0, 0.0) end;

> val summation = fn : (int -> real) -> int -> real

The fn notation works well with functionals. Here it eliminates the need to
declare a squaring function prior to computing the sum

∑9
k=0 k 2:

summation (fn k => real(k*k)) 10;
> 285.0 : real

The double sum
∑m−1

i=0
∑n−1

j=0 g(i , j ) is computed by

summation (fn i => summation (fn j => g(i,j)) n) m;

This serves as a translation of the
∑

-notation into ML; the index variables i
and j are bound by fn. The inner summation,

∑n−1
j=0 g(i , j ), is a function of i .

The function over j is the partial application of g to i .
The partial application can be simplified by summing over a curried func-

tion h instead of g . The double sum
∑m−1

i=0
∑n−1

j=0 h i j is computed by
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summation (fn i => summation (h i) n) m;

Observe that summation f has the same type as f , namely int → real , and that∑m−1
i=0

∑i−1
j=0 f (j ) may be computed by summation (summation f )m .

Polymorphic val declarations. Because a function can be the result of a com-
putation, you might expect declarations such as the following to be legal:

val list5 = replist 5;
> val list5 = fn : ’a -> ’a list
val f = hd [hd];
> val f = fn : ’a list -> ’a

They were indeed legal in earlier versions of ML, but now trigger a message such as
‘Non-value in polymorphic declaration.’ This restriction has to do with references;
Section 8.3 explains the details. Changing the function declaration val f = E to

fun f x = E x

renders it acceptable. The change is harmless unless computing E has side-effects, or
is expensive.

The restriction affects all polymorphic val declarations, not just those of functions.
Recall that typing E at top level abbreviates typing val it = E . For instance, we
may not type hd [[]].

Exercise 5.6 Write a polymorphic function for top-down merge sort, passing
the ordering predicate (≤) as an argument.

Exercise 5.7 Write a functional to compute the minimum value minm−1
i=0 f (i)

of a function f , where m is any given positive integer. Use the functional to
express the two-dimensional minimum minm−1

i=0 minn−1
j=0 g(i , j ), for positive in-

tegers m and n .

General-purpose functionals
Functional programmers often use higher-order functions to express

programs clearly and concisely. Functionals to process lists have been popu-
lar since the early days of Lisp, appearing in infinite variety and under many
names. They express operations that otherwise would require separate recursive
function declarations. Similar recursive functionals can be defined for trees.

A comprehensive set of functionals provides an abstract language for express-
ing other functions. After reading this section, you may find it instructive to re-
view previous chapters and simplify the function definitions using functionals.
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5.5 Sections
Imagine applying an infix operator to only one operand, either left or

right, leaving the other operand unspecified. This defines a function of one
argument, called a section. Here are some examples in the notation of Bird and
Wadler (1988):

• ("Sir "ˆ) is the function knightify
• (/2.0) is the function ‘divide by 2’

Sections can be added to ML (rather crudely) by the functionals secl and secr :

fun secl x f y = f (x,y);
> val secl = fn : ’a -> (’a * ’b -> ’c) -> ’b -> ’c
fun secr f y x = f (x,y);
> val secr = fn : (’a * ’b -> ’c) -> ’b -> ’a -> ’c

These functionals are typically used with infix functions and op, but may be
applied to any function of suitable type. Here are some left sections:

val knightify = (secl "Sir " opˆ);
> val knightify = fn : string -> string
knightify "Geoffrey";
> "Sir Geoffrey" : string
val recip = (secl 1.0 op/);
> val recip = fn : real -> real
recip 5.0;
> 0.2 : real

Here is a right section for division by 2:

val halve = (secr op/ 2.0);
> val halve = fn : real -> real
halve 7.0;
> 3.5 : real

Exercise 5.8 Is there any similarity between sections and curried functions?

Exercise 5.9 What functions do the following sections yield? Recall that take
removes elements from the head of a list (Section 3.4) while inter forms the
intersection of two lists (Section 3.15).

secr op@ ["Richard"]
secl ["heed", "of", "yonder", "dog!"] List.take
secr List.take 3
secl ["his", "venom", "tooth"] inter
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5.6 Combinators
The theory of the λ-calculus is in part concerned with expressions known

as combinators. Many combinators can be coded in ML as higher-order func-
tions, and have practical applications.

Composition. The infix o (yes, the letter ‘o’) denotes function composition. The
standard library declares it as follows:

infix o;
fun (f o g) x = f (g x);
> val o = fn : (’b -> ’c) * (’a -> ’b) -> ’a -> ’c

Composition is familiar to mathematicians; f ◦ g is the function that applies g ,
then f , to its argument. Composition can express many functions, especially
using sections. For instance, the functions

fn x => ˜(Math.sqrt x)
fn a => "beginning" ˆ a ˆ "end"
fn x => 2.0 / (x-1.0)

can be expressed without mentioning their argument:

˜ o Math.sqrt
(secl "beginning" opˆ) o (secr opˆ "end")
(secl 2.0 op/) o (secr op- 1.0)

To compute the sum
∑9

k=0

√
k , the functions Math.sqrt and real (which con-

verts integers to reals) are composed. Composition is more readable than fn no-
tation:

summation (Math.sqrt o real) 10;

The combinators S , K and I . The identity combinator, I , simply returns its
argument:

fun I x = x;
> val I = fn : ’a -> ’a

Composition of a function with I has no effect:

knightify o I o (prefix "William ") o I;
> fn : string -> string
it "Catesby";
> "Sir William Catesby" : string

The combinator K makes constant functions. Given x it makes the function that
always returns x :
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fun K x y = x;
> val K = fn : ’a -> ’b -> ’a

For a contrived demonstration of constant functions, let us compute the prod-
uct m × z by the repeated addition

∑m−1
i=0 z :

summation (K 7.0) 5;
> 35.0 : real

The combinator S is a general form of composition:

fun S x y z = x z (y z);
> val S = fn : (’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c

Every function in the λ-calculus can be expressed using just S and K — with no
variables! David Turner (1979) has exploited this celebrated fact to obtain lazy
evaluation: since no variables are involved, no mechanism is required for bind-
ing their values. Virtually all lazy functional compilers employ some refinement
of this technique.

Here is a remarkable example of the expressiveness of S and K . The identity
function I can be defined as S K K :

S K K 17;
> 17 : int

Exercise 5.10 Write the computation steps of S K K 17.

Exercise 5.11 Suppose we are given an expression E consisting of infix oper-
ators, constants and variables, with one occurrence of the variable x . Describe
a method for expressing the function fn x=>E using I , sections and composi-
tion instead of fn.

5.7 The list functionals map and filter
The functional map applies a function to every element of a list, return-

ing a list of the function’s results:

map f [x1, . . . , xn ] = [f x1, . . . , f xn ]

The ML library declares map as follows:
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fun map f [] = []
| map f (x::xs) = (f x) :: map f xs;

> val map = fn : (’a -> ’b) -> ’a list -> ’b list
map recip [0.1, 1.0, 5.0, 10.0];
> [10.0, 1.0, 0.2, 0.1] : real list
map size ["York","Clarence","Gloucester"];
> [4, 8, 10] : int list

The functional filter applies a predicate — a boolean-valued function — to a
list. It returns a list of all elements satisfying the predicate, in their original
order.

fun filter pred [] = []
| filter pred (x::xs) =

if pred x then x :: filter pred xs
else filter pred xs;

> val filter = fn : (’a -> bool) -> ’a list -> ’a list
filter (fn a => size a = 4)

["Hie","thee","to","Hell","thou","cacodemon"];
> ["thee", "Hell", "thou"] : string list

Pattern-matching in curried functions works exactly as if the arguments were
given as a tuple. Both functionals are curried: map takes a function of type σ →
τ to one of type σ list → τ list , while filter takes a function of type τ → bool
to one of type τ list → τ list .

Thanks to currying, these functionals work together for lists of lists. Observe
that map(map f )[l1, l2, . . . , ln ] applies map f to each list l1, l2, . . . .

map (map double) [[1], [2,3], [4,5,6]];
> [[2], [4, 6], [8, 10, 12]] : int list list
map (map (implode o rev o explode))

[["When","he","shall","split"],
["thy","very","heart","with","sorrow"]];

> [["nehW", "eh", "llahs", "tilps"],
> ["yht", "yrev", "traeh", "htiw", "worros"]]
> : string list list

Similarly, map(filter pred)[l1, l2, . . . , ln ] applies filter pred to each of the lists l1,
l2, . . . . It returns a list of lists of elements satisfying the predicate pred .

map (filter (secr op< "m"))
[["my","hair","doth","stand","on","end"],
["to","hear","her","curses"]];

> [["hair", "doth", "end"], ["hear", "her", "curses"]]
> : string list list

Many list functions can be coded trivially using map and filter . Our matrix
transpose function (Section 3.9) becomes
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fun transp ([]:: ) = []
| transp rows = map hd rows :: transp (map tl rows);

> val transp = fn : ’a list list -> ’a list list
transp [["have","done","thy","charm"],

["thou","hateful","withered","hag!"]];
> [["have", "thou"], ["done", "hateful"],
> ["thy", "withered"], ["charm", "hag!"]]
> : string list list

Recall how we defined the intersection of two ‘sets’ in terms of the membership
relation, in Section 3.15. That declaration can be reduced to a single line:

fun inter(xs,ys) = filter (secr (op mem) ys) xs;
> val inter = fn : ’’a list * ’’a list -> ’’a list

Exercise 5.12 Show how to replace any expression of the form

map f (map g xs),

by an equivalent expression that calls map only once.

Exercise 5.13 Declare the infix operator andf such that

filter (pred1 andf pred2) xs

returns the same value as filter pred1 (filter pred2 xs).

5.8 The list functionals takewhile and dropwhile
These functionals chop an initial segment from a list using a predicate:

[x0, . . . , xi−1︸ ︷︷ ︸
takewhile

, xi , . . . , xn−1︸ ︷︷ ︸
dropwhile

]

The initial segment, which consists of elements satisfying the predicate, is re-
turned by takewhile:

fun takewhile pred [] = []
| takewhile pred (x::xs) =

if pred x then x :: takewhile pred xs
else [];

> val takewhile = fn : (’a -> bool) -> ’a list -> ’a list

The remaining elements (if any) begin with the first one to falsify the predicate.
This list is returned by dropwhile:
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fun dropwhile pred [] = []
| dropwhile pred (x::xs) =

if pred x then dropwhile pred xs
else x::xs;

> val dropwhile = fn : (’a -> bool) -> ’a list -> ’a list

These two functionals can process text in the form of character lists. The pred-
icate Char.isAlpha recognizes letters. Given this predicate, takewhile returns
the first word from a sentence and dropwhile returns the remaining characters.

takewhile Char.isAlpha (explode "that deadly eye of thine");
> [#"t", #"h", #"a", #"t"] : char list
dropwhile Char.isAlpha (explode "that deadly eye of thine");
> [#" ", #"d", #"e", #"a", #"d", #"l", ...] : char list

Since they are curried, takewhile and dropwhile combine with other functionals.
For instance, map(takewhile pred) returns a list of initial segments.

5.9 The list functionals exists and all

These functionals report whether some (or every) element of a list sat-
isfies some predicate. They can be viewed as quantifiers over lists:

fun exists pred [] = false
| exists pred (x::xs) = (pred x) orelse exists pred xs;

> val exists = fn : (’a -> bool) -> ’a list -> bool

fun all pred [] = true
| all pred (x::xs) = (pred x) andalso all pred xs;

> val all = fn : (’a -> bool) -> ’a list -> bool

By currying, these functionals convert a predicate over type τ to a predicate over
type τ list . The membership test x mem xs can be expressed in one line:

fun x mem xs = exists (secr op= x) xs;
> val mem = fn : ’’a * ’’a list -> bool

The function disjoint tests whether two lists have no elements in common:

fun disjoint(xs,ys) = all (fn x => all (fn y => x<>y) ys) xs;
> val disjoint = fn : ’’a list * ’’a list -> bool

Because of their argument order, exists and all are hard to read as quantifiers
when nested; it is hard to see that disjoint tests ‘for all x in xs and all y in ys ,
x 6= y .’ However, exists and all combine well with the other functionals.
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Useful combinations for lists of lists include

exists(exists pred)

filter(exists pred)

takewhile(all pred)

5.10 The list functionals foldl and foldr
These functionals are unusually general. They apply a 2-argument func-

tion over the elements of a list:

foldl f e [x1, . . . , xn ] = f (xn , . . . , f (x1, e) . . .)

foldr f e [x1, . . . , xn ] = f (x1, . . . , f (xn , e) . . .)

Since expressions are evaluated from the inside out, the foldl call applies f to
the list elements from left to right, while the foldr call applies it to them from
right to left. The functionals are declared by

fun foldl f e [] = e
| foldl f e (x::xs) = foldl f (f (x, e)) xs;

> val foldl = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

fun foldr f e [] = e
| foldr f e (x::xs) = f (x, foldr f e xs);

> val foldr = fn : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

Numerous functions can be expressed using foldl and foldr . The sum of a list
of numbers is computed by repeated addition starting from 0:

val sum = foldl op+ 0;
> val sum = fn : int list -> int
sum [1,2,3,4];
> 10 : int

The product is computed by repeated multiplication from 1. Binding the func-
tion to an identifier is not necessary:

foldl op* 1 [1,2,3,4];
> 24 : int

These definitions work because 0 and 1 are the identity elements of+ and×, re-
spectively; in other words, 0+k = k and 1×k = k for all k . Many applications
of foldl and foldr are of this sort.

Both functionals take as their first argument a function of type σ × τ → τ .
This function may itself be expressed using functionals. A nested application
of foldl adds a list of lists:
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foldl (fn (ns,n) => foldl op+ n ns) 0 [[1], [2,3], [4,5,6]];
> 21 : int

This is more direct than sum(map sum [[1], [2, 3], [4, 5, 6]]), which forms the
intermediate list of sums [1, 5, 15].

List construction (the operator ::) has a type of the required form. Supplying
it to foldl yields an efficient reverse function:

foldl op:: [] (explode "Richard");
> [#"d", #"r", #"a", #"h", #"c", #"i", #"R"] : char list

An iterative length computation is equally simple:

foldl (fn (_,n) => n+1) 0 (explode "Margaret");
> 8 : int

To append xs and ys , apply :: through foldr to each element of xs , starting
with ys:

foldr op:: ["out", "thee?"] ["And", "leave"];
> ["And", "leave", "out", "thee?"] : string list

Applying append through foldr joins a list of lists, like the function List.concat ;
note that [] is the identity element of append:

foldr op@ [] [[1], [2,3], [4,5,6]];
> [1, 2, 3, 4, 5, 6] : int list

Recall that newmem adds a member, if not already present, to a list (Sec-
tion 3.15). Applying that function through foldr builds a ‘set’ of distinct ele-
ments:

foldr newmem [] (explode "Margaret");
> [#"M", #"g", #"a", #"r", #"e", #"t"] : char list

To express map f , apply a function based on :: and f :

fun map f = foldr (fn(x,l)=> f x :: l) [];
> val map = fn : (’a -> ’b) -> ’a list -> ’b list

Two calls to foldr compute the Cartesian product of two lists:

fun cartprod (xs, ys) =
foldr (fn (x, pairs) =>

foldr (fn (y,l) => (x,y)::l) pairs ys)
[] xs;

> val cartprod = fn : ’a list * ’b list -> (’a * ’b) list



190 5 Functions and Infinite Data

Cartesian products can be computed more clearly using map and List.concat ,
at the expense of creating an intermediate list. Declare a curried pairing func-
tion:

fun pair x y = (x,y);
> val pair = fn : ’a -> ’b -> ’a * ’b

A list of lists of pairs is created . . .

map (fn a => map (pair a) ["Hastings","Stanley"])
["Lord","Lady"];

> [[("Lord", "Hastings"), ("Lord", "Stanley")],
> [("Lady", "Hastings"), ("Lady", "Stanley")]]
> : (string * string) list list

. . . then concatenated to form the Cartesian product:

List.concat it;
> [("Lord", "Hastings"), ("Lord", "Stanley"),
> ("Lady", "Hastings"), ("Lady", "Stanley")]
> : (string * string) list

Both algorithms for Cartesian products can be generalized, replacing (x , y) by
other functions of x and y , to express sets of the form {f (x , y) | x ∈ xs, y ∈
ys}.

Functionals and the standard library. The infix o, for function composition,
is available at top level. Also at top level are the list functionals map, foldl

and foldr ; they are separately available as components of structure List , as are filter ,
exists and all . Structure ListPair provides variants of map, exists and all that take a
2-argument function and operate on a pair of lists. For example, ListPair.map applies
a function to pairs of corresponding elements of two lists:

ListPair .map f ([x1, . . . , xn ], [y1, . . . , yn ]) = [f (x1, y1), . . . , f (xn , yn )]

If the lists have unequal lengths, the unmatched elements are ignored. The same result
can be obtained using List.map and ListPair.zip, but this builds an intermediate list.

Exercise 5.14 Express the function union (Section 3.15) using functionals.

Exercise 5.15 Simplify matrix multiplication (Section 3.10) using functionals.

Exercise 5.16 Express exists using foldl or foldr .

Exercise 5.17 Using functionals, express the conditional set expression

{x − y | x ∈ xs, y ∈ ys, y < x }.
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5.11 More examples of recursive functionals
Binary trees and similar recursive types can be processed using recur-

sive functionals. Even the natural numbers 0, 1, 2, . . . can be viewed as a
recursive type: their constructors are 0 and the successor function.

Powers of a function. If f is a function and n ≥ 0 then f n is the function such
that

f n(x ) = f (· · · f (f (︸ ︷︷ ︸
n times

x )) · · · )

This is the function repeat f n:

fun repeat f n x =
if n>0 then repeat f (n-1) (f x)

else x;
> val repeat = fn : (’a -> ’a) -> int -> ’a -> ’a

Surprisingly many functions have this form. Examples include drop and replist
(declared in Sections 3.4 and 5.2, respectively):

repeat tl 5 (explode "I’ll drown you in the malmsey-butt...");
> [#"d", #"r", #"o", #"w", #"n", #" ", ...] : char list
repeat (secl "Ha!" op::) 5 [];
> ["Ha!", "Ha!", "Ha!", "Ha!", "Ha!"] : string list

Complete binary trees with a constant label are created by

repeat (fn t=>Br("No",t,t)) 3 Lf ;
> Br ("No", Br ("No", Br ("No", Lf, Lf),
> Br ("No", Lf, Lf)),
> Br ("No", Br ("No", Lf, Lf),
> Br ("No", Lf, Lf)))
> : string tree

A suitable function on pairs, when repeated, computes factorials:

fun factaux (k,p) = (k+1, k*p);
> val factaux = fn : int * int -> int * int
repeat factaux 5 (1,1);
> (6, 120) : int * int

Tree recursion. The functional treerec, for binary trees, is analogous to foldr .
Calling foldr f e xs , figuratively speaking, replaces :: by f and nil by e in a
list. Given a tree, treefold replaces each leaf by some value e and each branch
by the application of a 3-argument function f .
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fun treefold f e Lf = e
| treefold f e (Br(u,t1,t2)) = f (u, treefold f e t1, treefold f e t2);

> val treefold = fn
> : (’a * ’b * ’b -> ’b) -> ’b -> ’a tree -> ’b

This functional can express many of the tree functions of the last chapter. The
function size replaces each leaf by 0 and each branch by a function to add 1 to
the sizes of the subtrees:

treefold (fn(_,c1,c2) => 1+c1+c2) 0

The function depth computes a maximum at each branch:

treefold (fn(_,d1,d2) => 1 + Int.max(d1,d2)) 0

Tree recursion over a reversed version of Br defines reflect :

treefold (fn(u,t1,t2) => Br(u,t2,t1)) Lf

To compute a preorder list, each branch joins its label to the lists for the subtrees:

treefold (fn(u,l1,l2) => [u] @ l1 @ l2) []

Operations on terms. The set of terms x , f (x ), g(x , f (x )), . . . , which is gener-
ated by variables and function applications, corresponds to the ML datatype

datatype term = Var of string
| Fun of string * term list;

The term (x + u)− (y × x ) could be declared by

val tm = Fun("-", [Fun("+", [Var "x", Var "u"]),
Fun("*", [Var "y", Var "x"])]);

Though it is natural to represent a function’s arguments as an ML list, the types
term and term list must be regarded as mutually recursive. A typical function
on terms will make use of a companion function on term lists. Fortunately, the
companion function need not be declared separately; in most instances it can be
expressed using list functionals.

If the ML function f : string → term defines a substitution from variables
to terms, then subst f extends this over terms. Observe how map applies the
substitution to term lists.

fun subst f (Var a) = f a
| subst f (Fun(a,args)) = Fun(a, map (subst f ) args);

> val subst = fn : (string -> term) -> term -> term

The list of variables in a term could also be computed using map:
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fun vars (Var a) = [a]
| vars (Fun( ,args)) = List.concat (map vars args);

> val vars = fn : term -> string list
vars tm;
> ["x", "u", "y", "x"] : string list

This is wasteful because List.concat copies lists repeatedly. Instead, declare a
function accumVars with an argument to accumulate a list of variables. It can
be extended to term lists using foldr :

fun accumVars (Var a, bs) = a::bs
| accumVars (Fun(_,args), bs) = foldr accumVars bs args;

> val accumVars = fn : term * string list -> string list
accumVars (tm,[]);
> ["x", "u", "y", "x"] : string list

Here is a demonstration. A trivial substitution, replace t a replaces the vari-
able a by t while leaving other variables unchanged:

fun replace t a b = if a=b then t else Var b;
> val replace = fn : term -> string -> string -> term

Thus, subst (replace t a) u replaces a by t throughout the term u . Substitut-
ing −z for x in tm yields the term (−z + u)− (y ×−z ):

subst (replace (Fun("-",[Var "z"])) "x") tm;
> Fun ("-",
> [Fun ("+", [Fun ("-", [Var "z"]), Var "u"]),
> Fun ("*", [Var "y", Fun ("-", [Var "z"])])])
> : term

Now the list of variables contains z in place of x :

accumVars (it,[]);
> ["z", "u", "y", "z"] : string list

Exercise 5.18 Declare the functional prefold such that prefold f e t is equiv-
alent to foldr f e (preorder t).

Exercise 5.19 Write a function nf such that repeat nf computes Fibonacci
numbers.

Exercise 5.20 What is this function good for?

fun funny f 0 = I
| funny f n = if n mod 2 = 0

then funny (f o f ) (n div 2)
else funny (f o f ) (n div 2) o f ;
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Exercise 5.21 What function is treefold F I , where F is declared as fol-
lows?

fun F (v,f 1,f 2) vs = v :: f 1 (f 2 vs);

Exercise 5.22 Consider counting the Fun nodes in a term. Express this as
a function modelled on vars , then as a function modelled on accumVars and
finally without using functionals.

Exercise 5.23 Note that the result of vars tm mentions x twice. Write a func-
tion to compute the list of variables in a term without repetitions. Can you find
a simple solution using functionals?

Sequences, or infinite lists
Lazy lists are one of the most celebrated features of functional program-

ming. The elements of a lazy list are not evaluated until their values are required
by the rest of the program; thus a lazy list may be infinite. In lazy languages
like Haskell, all data structures are lazy and infinite lists are commonplace in
programs. In ML, which is not lazy, infinite lists are rare. This section describes
how to express infinite lists in ML, representing the tail of a list by a function in
order to delay its evaluation.

It is important to recognize the hazards of programming with lazy lists. Hith-
erto we have expected every function, from the greatest common divisor to pri-
ority queues, to deliver its result in finite time. Recursion was used to reduce a
problem to simpler subproblems. Every recursive function included a base case
where it would terminate.

Now we shall be dealing with potentially infinite results. We may view any
finite part of an infinite list, but never the whole. We may add two infinite lists
element by element to form a list of sums, but may not reverse an infinite list or
find its smallest element. We shall define recursions that go on forever, with no
base case. Instead of asking whether the program terminates, we can only ask
whether the program generates each finite part of its result in finite time.

ML functions on infinite lists are more complicated than their counterparts in a
lazy language. By laying the mechanism bare, however, they may help us avoid
some pitfalls. Mechanistic thinking should not be our only tool; computations
over infinite values may exceed our powers of imagination. Domain theory gives
a deeper view of such computations (Gunter, 1992; Winskel, 1993).
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5.12 A type of sequences
Infinite lists are traditionally called streams, but let us call them sequen-

ces. (A ‘stream’ in ML is an input/output channel.) Like a list, a sequence either
is empty or contains a head and tail. The empty sequence is Nil and a non-empty
sequence has the form Cons(x , xf ), where x is the head and xf is a function to
compute the tail:3

datatype ′a seq = Nil
| Cons of ′a * (unit -> ′a seq);

Starting from this declaration, we shall interactively develop a set of sequence
primitives, by analogy with lists. Later, to avoid name clashes, we shall group
them into an appropriate structure.

Functions to return the head and tail of a sequence are easily declared. As
with lists, inspecting the empty sequence should raise an exception:

exception Empty;
fun hd (Cons(x,xf )) = x
| hd Nil = raise Empty;

> val hd = fn : ’a seq -> ’a

To inspect the tail, apply the function xf to (). The argument, the sole value of
type unit , conveys no information; it merely forces evaluation of the tail.

fun tl (Cons(x,xf )) = xf ()
| tl Nil = raise Empty;

> val tl = fn : ’a seq -> ’a seq

Calling cons(x , xq) combines a head x and tail sequence xq to form a longer
sequence:

fun cons(x,xq) = Cons(x, fn()=>xq);
> val cons = fn : ’a * ’a seq -> ’a seq

Note that cons(x ,E ) is not evaluated lazily. ML evaluates the expression E ,
yielding say xq , and returns Cons(x, fn()=>xq). So the fn inside cons
does not delay the evaluation of the tail. Only use cons where lazy evaluation is
not required, say to convert a list into a sequence:

fun fromList l = List.foldr cons Nil l;
> val fromList = fn : ’a list -> ’a seq

To delay the evaluation of E , write Cons(x,fn()=>E) instead of cons(x ,E ).
Let us define the increasing sequence of integers starting from k :

3 Type unit was described in Section 2.8.
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fun from k = Cons(k, fn()=> from(k+1));
> val from = fn : int -> int seq
from 1;
> Cons (1, fn) : int seq

The sequence starts with 1; here are some more elements:

tl it;
> Cons (2, fn) : int seq
tl it;
> Cons (3, fn) : int seq

Calling take(xq,n) returns the first n elements of the sequence xq as a list:

fun take (xq, 0) = []
| take (Nil, n) = raise Subscript
| take (Cons(x,xf ), n) = x :: take (xf (), n-1);

> val take = fn : ’a seq * int -> ’a list
take (from 30, 7);
> [30, 31, 32, 33, 34, 35, 36] : int list

How does it work? The computation of take(from 30, 2) goes as follows:

take(from 30, 2)

⇒ take(Cons(30,fn()=>from(30+ 1)), 2)

⇒ 30 :: take(from(30+ 1), 1)

⇒ 30 :: take(Cons(31,fn()=>from(31+ 1)), 1)

⇒ 30 :: 31 :: take(from(31+ 1), 0)

⇒ 30 :: 31 :: take(Cons(32,fn()=>from(32+ 1)), 0)

⇒ 30 :: 31 :: []

⇒ [30, 31]

Observe that the element 32 is computed but never used. Type α seq is not really
lazy; the head of a non-empty sequence is always computed. What is worse,
inspecting the tail repeatedly evaluates it repeatedly; we do not have call-by-
need, only call-by-name. Such defects can be cured at the cost of considerable
extra complication (see Section 8.4).

Exercise 5.24 Explain what is wrong with this version of from , describing the
computation steps of take(badfrom 30, 2).

fun badfrom k = cons(k, badfrom(k+1));
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Exercise 5.25 This variant of type α seq represents every non-empty sequence
by a function, preventing premature evaluation of the first element (Reade, 1989,
page 324). Code the functions from and take for this type of sequences:

datatype ′a seq = Nil
| Cons of unit -> ′a *

′a seq;

Exercise 5.26 This variant of α seq , declared using mutual recursion, is even
lazier than the one above. Every sequence is a function, delaying even the com-
putation needed to tell if a sequence is non-empty. Code the functions from and
take for this type of sequences:

datatype ′a seqnode = Nil
| Cons of ′a *

′a seq
and ′a seq = Seq of unit -> ′a seqnode;

5.13 Elementary sequence processing
For a function on sequences to be computable, each finite part of the

output must depend on at most a finite part of the input. Consider squaring a
sequence of integers one by one. The tail of the output, when evaluated, applies
squares to the tail of the input.

fun squares Nil : int seq = Nil
| squares (Cons(x,xf )) = Cons(x*x, fn()=> squares(xf ()));

> val squares = fn : int seq -> int seq
squares (from 1);
> Cons (1, fn) : int seq
take (it, 10);
> [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] : int list

Adding corresponding elements of two sequences is similar. Evaluating the
tail of the output evaluates the tails of the two inputs. If either input sequence
becomes empty, then so does the output.

fun add (Cons(x,xf ), Cons(y,yf )) = Cons(x+y,
fn()=> add(xf (), yf ()))

| add _ : int seq = Nil;
> val add = fn : int seq * int seq -> int seq
add (from 10000, squares (from 1));
> Cons (10001, fn) : int seq
take (it, 5);
> [10001, 10005, 10011, 10019, 10029] : int list

The append function for sequences works like the one for lists. The elements
of xq @ yq are first taken from xq ; when xq becomes empty, elements are taken
from yq .
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fun Nil @ yq = yq
| (Cons(x,xf )) @ yq = Cons(x, fn()=> (xf ()) @ yq);

> val @ = fn : ’a seq * ’a seq -> ’a seq

For a simple demonstration, let us build a finite sequence using fromList .

val finite = fromList [25,10];
> Cons (25, fn) : int seq
finite @ from 1415;
> Cons (25, fn) : int seq
take(it, 3);
> [25, 10, 1415] : int list

If xq is infinite then xq @ yq equals xq . A variant of append combines infinite
sequences fairly. The elements of two sequences can be interleaved:

fun interleave (Nil, yq) = yq
| interleave (Cons(x,xf ), yq) =

Cons(x, fn()=> interleave(yq, xf ()));
> val interleave = fn : ’a seq * ’a seq -> ’a seq
take(interleave(from 0, from 50), 10);
> [0, 50, 1, 51, 2, 52, 3, 53, 4, 54] : int list

In its recursive call, interleave exchanges the two sequences so that neither can
exclude the other.

Functionals for sequences. List functionals like map and filter can be general-
ized to sequences. The function squares is an instance of the functional map,
which applies a function to every element of a sequence:

fun map f Nil = Nil
| map f (Cons(x,xf )) = Cons(f x, fn()=> map f (xf ()));

> val map = fn : (’a -> ’b) -> ’a seq -> ’b seq

To filter a sequence, successive tail functions are called until an element is found
to satisfy the given predicate. If no such element exists, the computation will
never terminate.

fun filter pred Nil = Nil
| filter pred (Cons(x,xf )) =

if pred x then Cons(x, fn()=> filter pred (xf ()))
else filter pred (xf ());

> val filter = fn : (’a -> bool) -> ’a seq -> ’a seq
filter (fn n => n mod 10 = 7) (from 50);
> Cons (57, fn) : int seq
take(it, 8);
> [57, 67, 77, 87, 97, 107, 117, 127] : int list
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The function from is an instance of the functional iterates , which generates
sequences of the form [x , f (x ), f (f (x )), . . . , f k (x ), . . .]:

fun iterates f x = Cons(x, fn()=> iterates f (f x));
> val iterates = fn : (’a -> ’a) -> ’a -> ’a seq
iterates(secr op/ 2.0) 1.0;
> Cons (1.0, fn) : real seq
take(it, 5);
> [1.0, 0.5, 0.25, 0.125, 0.0625] : real list

A structure for sequences. Let us again gather up the functions we have ex-
plored, making a structure. As in the binary tree structure (Section 4.13), we
leave the datatype declaration outside to allow direct reference to the construc-
tors. Imagine that the other sequence primitives have been declared not at top
level but in a structure Seq satisfying the following signature:

signature SEQUENCE =
sig
exception Empty
val cons : ′a *

′a seq -> ′a seq
val null : ′a seq -> bool
val hd : ′a seq -> ′a
val tl : ′a seq -> ′a seq
val fromList : ′a list -> ′a seq
val toList : ′a seq -> ′a list
val take : ′a seq * int -> ′a list
val drop : ′a seq * int -> ′a seq
val @ : ′a seq *

′a seq -> ′a seq
val interleave : ′a seq *

′a seq -> ′a seq
val map : (′a -> ′b) -> ′a seq -> ′b seq
val filter : (′a -> bool) -> ′a seq -> ′a seq
val iterates : (′a -> ′a) -> ′a -> ′a seq
val from : int -> int seq
end;

Exercise 5.27 Declare the missing functions null and drop by analogy with
the list versions. Also declare toList , which converts a finite sequence to a list.

Exercise 5.28 Show the computation steps of add(from 5, squares(from 9)).

Exercise 5.29 Declare a function that, given a positive integer k , transforms a
sequence [x1, x2, . . .] into a new sequence by repeating each element k times:

[ x1, . . . , x1︸ ︷︷ ︸
k times

, x2, . . . , x2︸ ︷︷ ︸
k times

, . . . ]
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Exercise 5.30 Declare a function to add adjacent elements of a sequence,
transforming [x1, x2, x3, x4, . . .] to [x1 + x2, x3 + x4, . . .].

Exercise 5.31 Which of the list functionals takewhile , dropwhile, exists and all
can sensibly be generalized to infinite sequences? Code those that can be, and
explain what goes wrong with the others.

5.14 Elementary applications of sequences
We can use structure Seq for making change, to express an infinite se-

quence of random numbers and to enumerate the prime numbers. These exam-
ples especially illustrate the sequence functionals.

Making change, revisited. The function allChange (Section 3.7) computes all
possible ways of making change. It is not terribly practical: using British coin
values, there are 4366 different ways of making change for 99 pence!

If the function returned a sequence, it could compute solutions upon demand,
saving time and storage. Getting the desired effect in ML requires care. Replac-
ing the list operations by sequence operations in allChange would achieve little.
The new function would contain two recursive calls, with nothing to delay the
second call’s execution. The resulting sequence would be fully evaluated.

Seq.@ (allChange(c::coins, c::coinvals, amount-c),
allChange(coins, coinvals, amount))

Better is to start with the solution of Exercise 3.14, where the append is replaced
by an argument to accumulate solutions. An accumulator argument is usually a
list. Should we change it to a sequence?

fun seqChange (coins, coinvals, 0, coinsf ) = Cons(coins,coinsf )
| seqChange (coins, [], amount, coinsf ) = coinsf ()
| seqChange (coins, c::coinvals, amount, coinsf ) =
if amount<0 then coinsf ()
else seqChange(c::coins, c::coinvals, amount-c,

fn()=> seqChange(coins, coinvals, amount, coinsf ));
> val seqChange = fn : int list * int list * int *
> (unit -> int list seq) -> int list seq

Instead of a sequence there is a tail function coinsf of type unit → int list seq .
This allows us to use Cons in the first line, instead of the eager Seq.cons . And
it requires a fn around the inner recursive call, delaying it. This sort of thing is
easier in Haskell.

We can now enumerate solutions, getting each one instantly:

seqChange([], gbcoins, 99, fn ()=> Nil);
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> Cons ([2, 2, 5, 20, 20, 50], fn) : int list seq
Seq.tl it;
> Cons ([1, 1, 2, 5, 20, 20, 50], fn) : int list seq
Seq.tl it;
> Cons ([1, 1, 1, 1, 5, 20, 20, 50], fn) : int list seq

The overheads are modest. Computing all solutions takes 354 msec, which is
about 1/3 slower than the list version of the function and twice as fast as the
original allChange.

Random numbers. In Section 3.18 we generated a list of 10,000 random num-
bers for the sorting examples. However, we seldom know in advance how many
random numbers are required. Conventionally, a random number generator is a
procedure that stores the ‘seed’ in a local variable. In a functional language, we
can define an infinite sequence of random numbers. This hides the implementa-
tion details and generates the numbers as they are required.

local val a = 16807.0 and m = 2147483647.0
fun nextRand seed =

let val t = a*seed
in t - m * real(floor(t/m)) end

in
fun randseq s = Seq.map (secr op/ m)

(Seq.iterates nextRand (real s))
end;
> val randseq = fn : int -> real seq

Observe how Seq.iterates generates a sequence of numbers, which Seq.map
divides by m . The random numbers are reals between 0 and 1, exclusive. Using
Seq.map we convert them to integers from 0 to 9:

Seq.map (floor o secl(10.0) op* ) (randseq 1);
> Cons (0, fn) : int seq
Seq.take (it, 12);
> [0, 0, 1, 7, 4, 5, 2, 0, 6, 6, 9, 3] : int list

Prime numbers. The sequence of prime numbers can be computed by the Sieve
of Eratosthenes.

• Start with the sequence [2, 3, 4, 5, 6, . . .].
• Take 2 as a prime. Delete all multiples of 2, since they cannot be prime.

This leaves the sequence [3, 5, 7, 9, 11, . . .].
• Take 3 as a prime and delete its multiples. This leaves the sequence
[5, 7, 11, 13, 17, . . .].
• Take 5 as a prime . . . .
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At each stage, the sequence contains those numbers not divisible by any of the
primes generated so far. Therefore its head is prime, and the process can con-
tinue indefinitely.

The function sift deletes multiples from a sequence, while sieve repeatedly
sifts a sequence:

fun sift p = Seq.filter (fn n => n mod p <> 0);
> val sift = fn : int -> int seq -> int seq
fun sieve (Cons(p,nf )) = Cons(p, fn()=> sieve (sift p (nf ())));
> val sieve = fn : int seq -> int seq

The sequence primes results from sieve [2, 3, 4, 5, . . .]. No primes beyond the
first are generated until the sequence is inspected.

val primes = sieve (Seq.from 2);
> val primes = Cons (2, fn) : int seq
Seq.take (primes, 25);
> [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
> 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] : int list

When we write programs such as these, ML types help to prevent confusion
between sequences and tail functions. A sequence has type τ seq while a tail
function has type unit → τ seq . We can insert a function call · · · () or a function
abstraction fn()=>· · · in response to type error messages.

5.15 Numerical computing
Sequences have applications in numerical analysis. This may seem sur-

prising at first, but, after all, many numerical methods are based on infinite se-
ries. Why not express them literally?

Square roots are a simple example. Recall the Newton-Raphson method for
computing the square root of some number a . Start with a positive approxima-
tion x0. Compute further approximations by the rule

xk+1 =

(
a
xk
+ xk

)
/2 ,

stopping when two successive approximations are sufficiently close. With se-
quences we can perform this computation directly.

The function nextApprox computes xk+1 from xk . Iterating it computes the
series of approximations.

fun nextApprox a x = (a/x + x) / 2.0;
> val nextApprox = fn : real -> real -> real
Seq.take(Seq.iterates (nextApprox 9.0) 1.0, 7);
> [1.0, 5.0, 3.4, 3.023529412, 3.000091554,
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> 3.000000001, 3.0] : real list

The simplest termination test is to stop when the absolute difference between
two approximations is smaller than a given tolerance ε > 0 (written eps below).4

fun within (eps:real) (Cons(x,xf )) =
let val Cons(y,yf ) = xf ()
in if Real.abs(x-y) < eps then y

else within eps (Cons(y,yf ))
end;

> val within = fn : real -> real seq -> real

Putting 10−6 for the tolerance and 1 for the initial approximation yields a square
root function:

fun qroot a = within 1E˜6 (Seq.iterates (nextApprox a) 1.0);
> val qroot = fn : real -> real
qroot 5.0;
> 2.236067977 : real
it*it;
> 5.0 : real

Would not a Fortran program be better? This example follows Hughes (1989)
and Halfant and Sussman (1988), who show how interchangeable parts involv-
ing sequences can be assembled into numerical algorithms. Each algorithm is
tailor made to suit its application.

For instance, there are many termination tests to choose from. The absolute
difference (|x − y | < ε) tested by within is too strict for large numbers. We
could test relative difference (|x/y − 1| < ε) or something fancier:

|x − y |
(|x | + |y |)/2+ 1

< ε

Sometimes it is prudent to test that three or more approximations are sufficiently
close.

Each termination test can be packaged as a function from sequences to reals.
Techniques like Richardson extrapolation (for accelerating the convergence of
a series) can be packaged as functions from sequences to sequences. These
functions can be combined to perform numerical differentiation, integration and
so on.

4 The recursive call passes Cons(y, yf ) rather than xf (), which denotes the same
value, to avoid calling xf () twice. Recall that our sequences are not truly lazy,
but employ a call-by-name rule.
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Exercise 5.32 Compute the exponential function ex by generating a sequence
for the infinite sum

ex
=

1
0!
+

x 1

1!
+

x 2

2!
+

x 3

3!
+ · · · +

x k

k !
+ · · ·

Exercise 5.33 Write an ML function to take a value from a sequence using
one of the other termination tests mentioned above. Declare a square root (or
exponential) function using it.

5.16 Interleaving and sequences of sequences
Given infinite sequences xq and yq , consider forming the sequence of

all pairs (x , y) with x from xq and y from yq . This problem illustrates the
subtleties of computing with infinities.

As remarked above in Section 5.10, a list of lists can be generated using map
with the curried pairing function pair . A sequence of sequences can be gener-
ated similarly:

fun makeqq (xq,yq) = Seq.map (fn x=> Seq.map (pair x) yq) xq;
> val makeqq = fn : ’a seq * ’b seq -> (’a * ’b) seq seq

A sequence of sequences can be viewed using takeqq(xqq, (m,n)). This list of
lists is the m × n upper left rectangle of xqq .

fun takeqq (xqq,(m,n)) = map (secr Seq.take n) (Seq.take(xqq,m));
> val takeqq = fn
> : ’a seq seq * (int * int) -> ’a list list
makeqq (Seq.from 30, primes);
> Cons (Cons ((30, 2), fn), fn) : (int * int) seq seq
takeqq (it, (3,5));
> [[(30, 2), (30, 3), (30, 5), (30, 7), (30, 11)],
> [(31, 2), (31, 3), (31, 5), (31, 7), (31, 11)],
> [(32, 2), (32, 3), (32, 5), (32, 7), (32, 11)]]
> : (int * int) list list

The function List.concat appends the members of a list of lists, forming one
list. Let us declare an analogous function enumerate to combine a sequence
of sequences. Because the sequences may be infinite, we must use interleave
instead of append.

Here is the idea. If the input sequence has head xq and tail xqq , recursively
enumerate xqq and interleave the result with xq . If we take List.concat as a
model we end up with faulty code:



5.16 Interleaving and sequences of sequences 205

fun enumerate Nil = Nil
| enumerate (Cons(xq,xqf )) = Seq.interleave(xq, enumerate (xqf ()));

> val enumerate = fn : ’a seq seq -> ’a seq

If the input to this function is infinite, ML will make an infinite series of recur-
sive calls, generating no output. This version would work in a lazy functional
language, but with ML we must explicitly terminate the recursive calls as soon
as some output can be produced. This requires a more complex case analysis.
If the input sequence is non-empty, examine its head; if that is also non-empty
then it contains an element for the output.

fun enumerate Nil = Nil
| enumerate (Cons(Nil, xqf )) = enumerate (xqf ())
| enumerate (Cons(Cons(x,xf ), xqf )) =

Cons(x, fn()=> Seq.interleave(enumerate (xqf ()), xf ()));
> val enumerate = fn : ’a seq seq -> ’a seq

The second and third cases simulate the incorrect version’s use of interleave, but
the enclosing fn()=>· · · terminates the recursive calls.

Here is the sequence of all pairs of positive integers.

val pairqq = makeqq (Seq.from 1, Seq.from 1);
> val pairqq = Cons (Cons ((1, 1), fn), fn)
> : (int * int) seq seq
Seq.take(enumerate pairqq, 18);
> [(1, 1), (2, 1), (1, 2), (3, 1), (1, 3), (2, 2), (1, 4),
> (4, 1), (1, 5), (2, 3), (1, 6), (3, 2), (1, 7), (2, 4),
> (1, 8), (5, 1), (1, 9), (2, 5)] : (int * int) list

We can be more precise about the order of enumeration. Consider the following
declarations:

fun powof 2 n = repeat double n 1;
> val powof2 = fn : int -> int
fun pack(i,j) = powof 2(i-1) * (2*j - 1);
> val pack = fn : int * int -> int

This function, pack(i , j ) = 2i−1(2j − 1), establishes a one-to-one correspon-
dence between positive integers and pairs (i , j ) of positive integers. Thus, the
Cartesian product of two countable sets is a countable set. Here is a small table
of this function:

val nqq = Seq.map (Seq.map pack) pairqq;
> val nqq = Cons (Cons (1, fn), fn) : int seq seq
takeqq (nqq, (4,6));
> [[1, 3, 5, 7, 9, 11],
> [2, 6, 10, 14, 18, 22],
> [4, 12, 20, 28, 36, 44],
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> [8, 24, 40, 56, 72, 88]] : int list list

Our enumeration decodes the packing function, returning the sequence of posi-
tive integers in their natural order:

Seq.take (enumerate nqq, 12);
> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] : int list

It is not hard to see why this is so. Each interleaving takes half its elements
from one sequence and half from another. Repeated interleaving distributes the
places in the output sequence by powers of two, as in the packing function.

Exercise 5.34 Predict, or at least explain, ML’s response to the following:

enumerate (Seq.iterates I Nil);

Exercise 5.35 Generate the sequence of all finite lists of positive integers.
(Hint: first, declare a function to generate the sequence of lists having a given
length.)

Exercise 5.36 Show that for every positive integer k there are unique positive
integers i and j such that k = pack(i , j ). What is pack(i , j ) in binary notation?

Exercise 5.37 Adapt the definition of type α seq to declare a type of infinite
binary trees. Write a function itr that, applied to an integer n , constructs the
tree whose root has the label n and the two subtrees itr(2n) and itr(2n + 1).

Exercise 5.38 (Continuing the previous exercise.) Write a function to build
a sequence consisting of all the labels in a given infinite binary tree. In what
order are the labels enumerated? Then write an inverse function that constructs
an infinite binary tree whose labels are given by a sequence.

Search strategies and infinite lists
Theorem proving, planning and other Artificial Intelligence applications

require search. There are many search strategies:

• Depth-first search is cheap, but it may follow a blind alley and run for-
ever without finding any solutions.
• Breadth-first search is complete — certain to find all the solutions —

but it requires a huge amount of space.
• Depth-first iterative deepening is complete and requires little space, but

can be slow.
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• Best-first search must be guided by a function to estimate the distance
from a solution.

By representing the set of solutions as a lazy list, the search strategy can be
chosen independently from the process that consumes the solutions. The lazy
list serves as a communication channel: the producer generates its elements
and the consumer removes them. Because the list is lazy, its elements are not
produced until the consumer requires them.

Figures 5.1 and 5.2 contrast the depth-first and breadth-first strategies, apply-
ing both to the same tree. The tree is portrayed at some point during the search,
with subtrees not yet visited as wedges. Throughout this section, no tree node
may have an infinite number of branches. Trees may have infinite depth.

In depth-first search, each subtree is fully searched before its brother to the
right is considered. The numbers in the figure show the order of the visits.
Node 5 is reached because node 4 is a leaf, while four subtrees remain to be
visited. If the subtree below node 5 is infinite, the other subtrees will never
be reached: the strategy is incomplete. Depth-first search is familiarly called
backtracking.

Breadth-first search visits all nodes at the current depth before moving on to
the next depth. In Figure 5.2 it has explored the tree to three levels. Because
of finite branching, all nodes will be reached: the strategy is complete. But it
is seldom practical, except in trivial cases. To reach a given depth, it visits an
exponential number of nodes and uses an exponential amount of storage.

5.17 Search strategies in ML
Infinite trees could be represented rather like infinite lists, namely as an

ML datatype containing functions to delay evaluation. For the search trees of this
section, however, a node’s subtrees can be computed from its label. Trees over
type τ (with finite branching) are represented by a function next : τ → τ list ,
where next x is the list of the subtrees of x .

Depth-first search can be implemented efficiently using a stack to hold the
nodes to visit next. At each stage, the head y is removed from the stack and
replaced by its subtrees, next y , which will be visited before other nodes in the
stack. Nodes are included in the output in the order visited.

fun depthFirst next x =
let fun dfs [] = Nil

| dfs(y::ys) = Cons(y, fn()=> dfs(next y @ ys))
in dfs [x] end;

> val depthFirst = fn : (’a -> ’a list) -> ’a -> ’a seq
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Figure 5.1 A depth-first search tree
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Figure 5.2 A breadth-first search tree
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Breadth-first search stores the pending nodes on a queue, not on a stack. When y
is visited, its successors in next y are put at the end of the queue.5

fun breadthFirst next x =
let fun bfs [] = Nil

| bfs(y::ys) = Cons(y, fn()=> bfs(ys @ next y))
in bfs [x] end;

> val breadthFirst = fn : (’a -> ’a list) -> ’a -> ’a seq

Both strategies simply enumerate all nodes in some order. Solutions are iden-
tified using the functional Seq.filter with a suitable predicate on nodes. Other
search strategies can be obtained by modifying these functions.

Best-first search. Searches in Artificial Intelligence frequently employ a heuris-
tic distance function, which estimates the distance to a solution from any given

node. The estimate is added to the known distance from that node to the root, thereby
estimating the distance from the root to a solution via that node. These estimates impose
an order on the pending nodes, which are stored in a priority queue. The node with the
least estimated total distance is visited next.

If the distance function is reasonably accurate, best-first search converges rapidly to
a solution. If it is a constant function, then best-first search degenerates to breadth-first
search. If it overestimates the true distance, then best-first search may never find any
solutions. The strategy takes many forms, the simplest of which is the A* algorithm.
See Rich and Knight (1991) for more information.

Exercise 5.39 Write versions of depthFirst and breadthFirst with an addi-
tional argument: a predicate to recognize solutions. This is slightly more ef-
ficient than the approach used in the text, as it avoids calling Seq.filter and
copying the sequence of outputs.

Exercise 5.40 Implement best-first search, as described above. Your function
must keep track of each node’s distance from the root in order to add this to the
estimated distance to a solution.

5.18 Generating palindromes
Let us generate the sequence of palindromes over the alphabet {A,B ,C }.

Each node of the search tree will be a list l of these letters, with 3 branches to
nodes #"A"::l , #"B"::l and #"C"::l .

5 Stacks and queues are represented here by lists. Lists make efficient stacks but
poor queues. Section 7.3 presents efficient queues.
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AA BA CA

A

AB BB CB

B

AC BC CC

C

Function nextChar generates this tree.

fun nextChar l = [#"A"::l, #"B"::l, #"C"::l];
> val nextChar = fn : char list -> char list list

A palindrome is a list that equals its own reverse. Let us declare the correspond-
ing predicate:

fun isPalin l = (l = rev l);
> val isPalin = fn : ’’a list -> bool

There are, of course, more efficient ways of generating palindromes. Our ap-
proach highlights the differences between different search strategies. Let us
declare a function to help us examine sequences of nodes (implode joins a list
of characters to form a string):

fun show n csq = map implode (Seq.take(csq,n));
> val show = fn : int -> char list seq -> string list

Breadth-first search is complete and generates all the palindromes. Let us in-
spect the sequences before and after filtering:

show 8 (breadthFirst nextChar []);
> ["", "A", "B", "C", "AA", "BA", "CA", "AB"] : string list
show 8 (Seq.filter isPalin (breadthFirst nextChar []));
> ["", "A", "B", "C", "AA", "BB", "CC", "AAA"] : string list

Depth-first search fails to find all solutions. Since the tree’s leftmost branch is
infinite, the search never leaves it. We need not bother calling Seq.filter :

show 8 (depthFirst nextChar []);
> ["", "A", "AA", "AAA", "AAAA", "AAAAA", "AAAAAA",
> "AAAAAAA"] : string list

If there is no solution on an infinite branch then depth-first search finds nothing
at all. Let us start the search at the label B . There is only one palindrome of the
form AA . . .AB :
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show 5 (depthFirst nextChar [#"B"]);
> ["B", "AB", "AAB", "AAAB", "AAAAB"] : string list

The attempt to find more than one palindrome in this sequence . . .

show 2 (Seq.filter isPalin (depthFirst nextChar [#"B"]));

. . . runs forever.
On the other hand, breadth-first search explores the entire subtree below B .

Filtering yields the sequence of all palindromes ending in B :

show 6 (breadthFirst nextChar [#"B"]);
> ["B", "AB", "BB", "CB", "AAB", "BAB"] : string list
show 6 (Seq.filter isPalin (breadthFirst nextChar [#"B"]));
> ["B", "BB", "BAB", "BBB", "BCB", "BAAB"] : string list

Again, we see the importance of a complete search strategy.

5.19 The Eight Queens problem
A classic problem is to place 8 Queens on a chess board so that no

Queen may attack another. No two Queens may share a row, column or diagonal.
Solutions may be found by examining all safe ways of placing new Queens on
successive columns. The root of the search tree contains an empty board. There
are 8 positions for a Queen in the first column, so there are 8 branches from the
root to boards holding one Queen. Once a Queen has been placed in the first
column, there are fewer than 8 safe positions for a Queen in the second column;
branching decreases with depth in the tree. A board containing 8 Queens must
be a leaf node.

Since the tree is finite, depth-first search finds all solutions. Most published
solutions to the problem, whether procedural or functional, encode depth-first
search directly. A procedural program, recording the occupation of rows and
diagonals using boolean arrays, can find all solutions quickly. Here, the Eight
Queens problem simply serves to demonstrate the different search strategies.

We can represent a board position by a list of row numbers. The list [q1, . . . ,

qk ] stands for the board having Queens in row qi of column i for i = 1, . . . , k .
Function safeQueen tests whether a queen can safely be placed in row newq
of the next column, forming the board [newq, q1, . . . , qk ]. (The other columns
are essentially shifted to the left.) The new Queen must not be on the same row
or diagonal as another Queen. Note that |newq − qi | = i exactly when newq
and qi share a diagonal.

fun safeQueen oldqs newq =
let fun nodiag (i, []) = true
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| nodiag (i, q::qs) =
Int.abs(newq-q)<>i andalso nodiag(i+1,qs)

in not (newq mem oldqs) andalso nodiag (1,oldqs) end;

To generate the search tree, function nextQueen takes a board and returns the
list of the safe board positions having a new Queen. Observe the use of the
list functionals, map with a section and filter with a curried function. The
Eight Queens problem is generalized to the n Queens problem, which is to place
n Queens safely on an n × n board. Calling upto (declared in Section 3.1)
generates the list [1, . . . ,n] of candidate Queens.

fun nextQueen n qs =
map (secr op:: qs) (List.filter (safeQueen qs) (upto(1,n)));

> val nextQueen = fn : int -> int list -> int list list

Let us declare a predicate to recognize solutions. Since only safe board positions
are considered, a solution is any board having n Queens.

fun isFull n qs = (length qs=n);
> val isFull = fn : int -> ’a list -> bool

Function depthFirst finds all 92 solutions for 8 Queens. This takes 130 msec:

fun depthQueen n = Seq.filter (isFull n) (depthFirst (nextQueen n) []);
> val depthQueen = fn : int -> int list seq
Seq.toList (depthQueen 8);
> [[4, 2, 7, 3, 6, 8, 5, 1], [5, 2, 4, 7, 3, 8, 6, 1],
> [3, 5, 2, 8, 6, 4, 7, 1], [3, 6, 4, 2, 8, 5, 7, 1],
> [5, 7, 1, 3, 8, 6, 4, 2], [4, 6, 8, 3, 1, 7, 5, 2],
> ...] : int list list

Since sequences are lazy, solutions can be demanded one by one. Depth-first
search finds the first solution quickly (6.6 msec). This is not so important for
the Eight Queens problem, but the 15 Queens problem has over two million
solutions. We can compute a few of them in one second:

Seq.take(depthQueen 15, 3);
> [[8, 11, 7, 15, 6, 9, 13, 4, 14, 12, 10, 2, 5, 3, 1],
> [11, 13, 10, 4, 6, 8, 15, 2, 12, 14, 9, 7, 5, 3, 1],
> [13, 11, 8, 6, 2, 9, 14, 4, 15, 10, 12, 7, 5, 3, 1]]
> : int list list

Imagine the design of a procedural program that could generate solutions upon
demand. It would probably involve coroutines or communicating processes.

Function breadthFirst finds the solutions slowly.6 Finding one solution takes

6 It takes 310 msec. A version using efficient queues takes 160 msec.
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nearly as long as finding all! The solutions reside at the same depth in the search
tree; finding the first solution requires searching virtually the entire tree.

5.20 Iterative deepening
Depth-first iterative deepening combines the best properties of the other

search procedures. Like depth-first search, it uses little space; like breadth-first
search, it is complete. The strategy is to search the tree repeatedly, to finite but
increasing depths. First it performs depth-first search down to some depth d ,
returning all solutions found. It then searches down to depth 2d , returning all
solutions found between depths d and 2d . It then searches to depth 3d , and so
on. Since each search is finite, the strategy will eventually reach any depth.

The repeated searching is less wasteful than it may appear. Iterative deepen-
ing increases the time required to reach a given depth by no more than a con-
stant factor, unless the tree branches very little. There are more nodes between
depths kd and (k + 1)d than above kd (Korf, 1985).

For simplicity, let us implement iterative deepening with d = 1. It yields the
same result as breadth-first search, requiring more time but much less space.

Function depthFirst is not easily modified to perform iterative deepening
because its stack contains nodes from various depths in the tree. The following
search function has no stack; it visits each subtree in a separate recursive call.
Argument sf of dfs accumulates the (possibly infinite!) sequence of solutions.

fun depthIter next x =
let fun dfs k (y, sf ) =

if k=0 then fn()=> Cons(y,sf )
else foldr (dfs (k-1)) sf (next y)

fun deepen k = dfs k (x, fn()=> deepen (k+1)) ()
in deepen 0 end;

> val depthIter = fn : (’a -> ’a list) -> ’a -> ’a seq

Let us examine this declaration in detail. Tail functions (of type unit → α seq)
rather than sequences must be used in order to delay evaluation. The function
call dfs k (y,sf ) constructs the sequence of all solutions found at depth k
below node y , followed by the sequence sf (). There are two cases to consider.

1 If k = 0 then y is included in the output.
2 If k > 0 then let next y = [y1, . . . , yn ]. These nodes, the subtrees of y ,

are processed recursively via foldr . The resulting sequence contains all
solutions found at depth k − 1 below y1, . . . , yn :

dfs(k − 1)(y1, . . . dfs(k − 1)(yn , sf ) . . .) ()
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Calling deepen k creates a tail function to compute deepen(k + 1) and passes it
to dfs , which inserts the solutions found at depth k .

Let us try it on the previous examples. Iterative deepening generates the same
sequence of palindromes as breadth-first search:

show 8 (Seq.filter isPalin (depthIter nextChar []));
> ["", "A", "B", "C", "AA", "BB", "CC", "AAA"] : string list

It can also solve the Eight Queens problem, quite slowly (340 msec). With a
larger depth interval d , iterative deepening recovers some of the efficiency of
depth-first search, while remaining complete.

Exercise 5.41 A flaw of depthIter is that it explores ever greater depths even
if the search space is finite. It can run forever, seeking the 93rd solution to the
Eight Queens problem. Correct this flaw; is your version as fast as depthIter?

Exercise 5.42 Generalize function depthIter to take the depth interval d as a
parameter. Generate palindromes using d = 5. How does the result differ from
those obtained by other strategies?

Exercise 5.43 Declare a datatype of finite-branching search trees of possibly
infinite depth, using a representation like that of sequences. Write a function to
construct the tree generated by a parameter next : α→ α list . Give an example
of a tree that cannot be constructed in this way.

Summary of main points
• An ML expression can evaluate to a function.
• A curried function acts like a function of several arguments.
• Higher-order functions encapsulate common forms of computation, re-

ducing the need for separate function declarations.
• A lazy list can contain an infinite number of elements, but only a finite

number are ever evaluated.
• A lazy list connects a consumer to a producer, such that items are pro-

duced only when they have to be consumed.


