
2
Names, Functions and Types

Most functional languages are interactive. If you enter an expression, the com-
puter immediately evaluates it and displays the result. Interaction is fun; it gives
immediate feedback; it lets you develop programs in easily managed pieces.

We can enter an expression followed by a semicolon . . .

2+2;

. . . and ML responds

> 4 : int

Here we see some conventions that will be followed throughout the book. Most
ML systems print a prompt character when waiting for input; here, the input
is shown in typewriter characters. The response is shown, in slanted
characters,

> on a line like this.

At its simplest, ML is just a calculator. It has integers, as shown above, and real
numbers. ML can do simple arithmetic . . .

3.2 - 2.3;
> 0.9 : real

. . . and square roots:

Math.sqrt 2.0;
> 1.414213562 : real

Again, anything typed to ML must end with a semicolon (;). ML has printed the
value and type. Note that real is the type of real numbers, while int is the type
of integers.

Interactive program development is more difficult with procedural languages
because they are too verbose. A self-contained program is too long to type as a
single input.

17



18 2 Names, Functions and Types

Chapter outline
This chapter introduces Standard ML and functional programming. The

basic concepts include declarations, simple data types, record types, recursive
functions and polymorphism. Although this material is presented using Standard
ML, it illustrates general principles.

The chapter contains the following sections:
Value declarations. Value and function declarations are presented using ele-

mentary examples.
Numbers, character strings and truth values. The built-in types int , real ,

char , string and bool support arithmetic, textual and logical operations.
Pairs, tuples and records. Ordered pairs and tuples allow functions to have

multiple arguments and results.
The evaluation of expressions. The difference between strict evaluation and

lazy evaluation is not just a matter of efficiency, but concerns the very meaning
of expressions.

Writing recursive functions. Several worked examples illustrate the use of
recursion.

Local declarations. Using let or local, names can be declared with a
restricted scope.

Introduction to modules. Signatures and structures are introduced by devel-
oping a generic treatment of arithmetic operations.

Polymorphic type checking. The principles of polymorphism are introduced,
including type inference and polymorphic functions.

Value declarations
A declaration gives something a name. ML has many kinds of things

that can be named: values, types, signatures, structures and functors. Most
names in a program stand for values, like numbers, strings — and functions.
Although functions are values in ML, they have a special declaration syntax.

2.1 Naming constants
Any value of importance can be named, whether its importance is uni-

versal (like the constant π ) or transient (the result of a previous computation).
As a trivial example, suppose we want to compute the number of seconds in an
hour. We begin by letting the name seconds stand for 60.

val seconds = 60;

The value declaration begins with ML keyword val and ends with a semicolon.



2.2 Declaring functions 19

Names in this book usually appear in italics. ML repeats the name, with its value
and type:

> val seconds = 60 : int

Let us declare constants for minutes per hour and hours per day:

val minutes = 60;
> val minutes = 60 : int
val hours = 24;
> val hours = 24 : int

These names are now valid in expressions:

seconds*minutes*hours;
> 86400 : int

If you enter an expression at top level like this, ML stores the value under the
name it. By referring to it you can use the value in a further calculation:

it div 24;
> 3600 : int

The name it always has the value of the last expression typed at top level. Any
previous value of it is lost. To save the value of it, declare a permanent name:

val secsinhour = it;
> val secsinhour = 3600 : int

Incidentally, names may contain underscores to make them easier to read:

val secsinhour = seconds*minutes;
> val secs_in_hour = 3600 : int

To demonstrate real numbers, we compute the area of a circle of radius r by the
formula area = πr 2:

val pi = 3.14159;
> val pi = 3.14159 : real
val r = 2.0;
> val r = 2.0 : real
val area = pi * r * r;
> val area = 12.56636 : real

2.2 Declaring functions
The formula for the area of a circle can be made into an ML function

like this:



20 2 Names, Functions and Types

fun area (r) = pi*r*r;

The keyword fun starts the function declaration, while area is the function
name, r is the formal parameter, and pi*r*r is the body. The body refers to r
and to the constant pi declared above.

Because functions are values in ML, a function declaration is a form of value
declaration, and so ML prints the value and type:

> val area = fn : real -> real

The type, which in standard mathematical notation is real → real , says that
area takes a real number as argument and returns another real number. The
value of a function is printed as fn. In ML, as in most functional languages,
functions are abstract values: their internal structure is hidden.

Let us call the function, repeating the area calculation performed above:

area(2.0);
> 12.56636 : real

Let us try it with a different argument. Observe that the parentheses around the
argument are optional:

area 1.0;
> 3.14159 : real

The parentheses are also optional in function declarations. This definition of
area is equivalent to the former one.

fun area r = pi*r*r;

The evaluation of function applications is discussed in more detail below.

Comments. Programmers often imagine that their creations are too transparent
to require further description. This logical clarity will not be evident to others
unless the program is properly commented. A comment can describe the pur-
pose of a declaration, give a literature reference, or explain an obscure matter.
Needless to say, comments must be correct and up-to-date.

A comment in Standard ML begins with (* and ends with *), and may extend
over several lines. Comments can even be nested. They can be inserted almost
anywhere:

fun area r = (*area of circle with radius r*)
pi*r*r;

Functional programmers should not feel absolved from writing comments. Peo-
ple once claimed that Pascal was self-documenting.



2.3 Identifiers in Standard ML 21

Redeclaring a name. Value names are called variables. Unlike variables in im-
perative languages, they cannot be updated. But a name can be reused for an-
other purpose. If a name is declared again then the new meaning is adopted
afterwards, but does not affect existing uses of the name. Let us redeclare the
constant pi :

val pi = 0.0;
> val pi = 0.0 : real

We can see that area still takes the original value of pi :

area(1.0);
> 3.14159 : real

At this point in the session, several variables have values. These include seconds ,
minutes , area and pi , as well as the built-in operations provided by the library.
The set of bindings visible at any point is called the environment. The function
area refers to an earlier environment in which pi denotes 3.14159. Thanks to
the permanence of names (called static binding), redeclaring a function cannot
damage the system, the library or your program.

Correcting your program. Because of static binding, redeclaring a function
called by your program may have no visible effect. When modifying a pro-

gram, be sure to recompile the entire file. Large programs should be divided into
modules; Chapter 7 will explain this in detail. After the modified module has been
recompiled, the program merely has to be relinked.

2.3 Identifiers in Standard ML
An alphabetic name must begin with a letter, which may be followed

by any number of letters, digits, underscores (_), or primes (’), usually called
single quotes. For instance:

x UB40 Hamlet_Prince_of_Denmark h’’3_H

The case of letters matters, so q differs from Q. Prime characters are allowed
because ML was designed by mathematicians, who like variables called x , x ′,
x ′′. When choosing names, be certain to avoid ML’s keywords:

abstype and andalso as case datatype do
else end eqtype exception fn fun functor
handle if in include infix infixr let local
nonfix of op open orelse raise rec
sharing sig signature struct structure
then type val where while with withtype

Watch especially for the short ones: as, fn, if, in, of, op.



22 2 Names, Functions and Types

ML also permits symbolic names. These consist of the characters

! % & $ # + - * / : < = > ? @ \ ˜ ‘ ˆ |

Names made up of these characters can be as long as you like:

----> $ˆ$ˆ$ˆ$ !!?@**??!! :-|==>->#

Certain strings of special characters are reserved for ML’s syntax and should not
be used as symbolic names:

: | = => -> # :>

A symbolic name is allowed wherever an alphabetic name is:

val +-+-+ = 1415;
> val +-+-+ = 1415 : int

Names are more formally known as identifiers. An identifier can simultaneously
denote a value, a type, a structure, a signature, a functor and a record field.

Exercise 2.1 On your computer, learn how to start an ML session and how to
terminate it. Then learn how to make the ML compiler read declarations from a
file — a typical command is use "myfile".

Numbers, character strings and truth values
The simplest ML values are integer and real numbers, strings and char-

acters, and the booleans or truth values. This section introduces these types with
their constants and principal operations.

2.4 Arithmetic
ML distinguishes between integers (type int) and real numbers (type

real ). Integer arithmetic is exact (with unlimited precision in some ML systems)
while real arithmetic is only as accurate as the computer’s floating-point hard-
ware.

Integers. An integer constant is a sequence of digits, possibly beginning with a
minus sign (˜). For instance:

0 ˜23 01234 ˜85601435654678

Integer operations include addition (+), subtraction (-), multiplication (*), di-
vision (div) and remainder (mod). These are infix operators with conventional
precedences: thus in



2.4 Arithmetic 23

(((m*n)*k) - (m div j)) + j

all the parentheses can be omitted without harm.

Real numbers. A real constant contains a decimal point or E notation, or both.
For instance:

0.01 2.718281828 ˜1.2E12 7E˜5

The ending En means ‘times the nth power of 10.’ A negative exponent begins
with the unary minus sign (˜). Thus 123.4E˜2 denotes 1.234.

Negative real numbers begin with unary minus (˜). Infix operators for reals
include addition (+), subtraction (-), multiplication (*) and division (/). Func-
tion application binds more tightly than infix operators. For instance, area a + b
is equivalent to (area a) + b, not area (a + b).

Unary plus and minus. The unary minus sign is a tilde (˜). Do not confuse it
with the subtraction sign (-)! ML has no unary plus sign. Neither + nor - may

appear in the exponent of a real number.

Type constraints. ML can deduce the types in most expressions from the types of
the functions and constants in it. But certain built-in functions are overloaded,
having more than one meaning. For example, + and * are defined for both
integers and reals. The type of an overloaded function must be determined from
the context; occasionally types must be stated explicitly.

For instance, ML cannot tell whether this squaring function is intended for
integers or reals, and therefore rejects it.

fun square x = x*x;
> Error- Unable to resolve overloading for *

Suppose the function is intended for real numbers. We can insert the type real
in a number of places.

We can specify the type of the argument:

fun square(x : real) = x*x;
> val square = fn : real -> real

We can specify the type of the result:

fun square x : real = x*x;
> val square = fn : real -> real

Equivalently, we can specify the type of the body:



24 2 Names, Functions and Types

fun square x = x*x : real;
> val square = fn : real -> real

Type constraints can also appear within the body, indeed almost anywhere.

Default overloading. The standard library introduces the notion of a default
overloading; the compiler may resolve the ambiguity in square by choosing

type int . Using a type constraint in such cases is still advisable, for clarity. The motiva-
tion for default overloadings is to allow different precisions of numbers to coexist. For
example, unless the precision of 1.23 is determined by its context, it will be assumed
to have the default precision for real numbers. As of this writing there is no experience
of using different precisions, but care is plainly necessary.

Arithmetic and the standard library. The standard library includes numerous
functions for integers and reals, of various precisions. Structure Int contains

such functions as abs (absolute value), min , max and sign . Here are some examples:

Int.abs ˜4;
> 4 : int
Int.min(7, Int.sign 12);
> 1 : int

Structure Real contains analogous functions such as abs and sign , as well as functions
to convert between integers and reals. Calling real(i) converts i to the equivalent real
number. Calling round(r) converts r to the nearest integer. Other real-to-integer con-
versions include floor , ceil and trunc. Conversion functions are necessary whenever
integers and reals appear in the same expression.

Structure Math contains higher mathematical functions on real numbers, such as sqrt ,
sin , cos , atan (inverse tangent), exp and ln (natural logarithm). Each takes one real
argument and returns a real result.

Exercise 2.2 A Lisp hacker says: ‘Since the integers are a subset of the real
numbers, the distinction between them is wholly artificial — foisted on us by
hardware designers. ML should simply provide numbers, as Lisp does, and au-
tomatically use integers or reals as appropriate.’ Do you agree? What consider-
ations are there?

Exercise 2.3 Which of these function definitions require type constraints?

fun double(n) = 2*n;
fun f u = Math.sin(u)/u;
fun g k = ˜ k * k;

2.5 Strings and characters
Messages and other text are strings of characters. They have type string .

String constants are written in double quotes:



2.5 Strings and characters 25

"How now! a rat? Dead, for a ducat, dead!";
> "How now! a rat? Dead,for a ducat,dead!" : string

The concatenation operator (ˆ) joins two strings end-to-end:

"Fair " ˆ "Ophelia";
> "Fair Ophelia" : string

The built-in function size returns the number of characters in a string. Here it
refers to "Fair Ophelia":

size (it);
> 12 : int

The space character counts, of course. The empty string contains no characters;
size("") is 0.

Here is a function that makes noble titles:

fun title(name) = "The Duke of " ˆ name;
> val title = fn : string -> string
title "York";
> "The Duke of York" : string

Special characters. Escape sequences, which begin with a backslash (\), insert
certain special characters into a string. Here are some of them:

• \n inserts a newline character (line break).
• \t inserts a tabulation character.
• \" inserts a double quote.
• \\ inserts a backslash.
• \ followed by a newline and other white-space characters, followed by

another \ inserts nothing, but continues a string across the line break.

Here is a string containing newline characters:

"This above all:\nto thine own self be true\n";

The type char. Just as the number 3 differs from the set {3}, a character differs
from a one-character string. Characters have type char . The constants have the
form #s , where s is a string constant consisting of a single character. Here is a
letter, a space and a special character:

#"a" #" " #"\n"

The functions ord and chr convert between characters and character codes.
Most implementations use the ASCII character set; if k is in the range 0 ≤



26 2 Names, Functions and Types

k ≤ 255 then chr(k) returns the character with code k . Conversely, ord(c)
is the integer code of the character c. We can use these to convert a number
between 0 and 9 to a character between #"0" and #"9":

fun digit i = chr(i + ord #"0");
> val digit = fn : int -> char

The functions str and String.sub convert between characters and strings. If c
is a character then str(c) is the corresponding string. Conversely, if s is a string
then String.sub(s,n) returns the nth character in s , counting from zero. Let
us try these, first expressing the function digit differently:

fun digit i = String.sub("0123456789", i);
> val digit = fn : int -> char
str (digit 5);
> "5" : string

The second definition of digit is preferable to the first, as it does not rely on
character codes.

Strings, characters and the standard library. Structure String contains numer-
ous operations on strings. Structure Char provides functions such as isDigit ,

isAlpha , etc., to recognize certain classes of character. A substring is a contiguous
subsequence of characters from a string; structure Substring provides operations for
extracting and manipulating them.

The ML Definition only has type string (Milner et al., 1990). The standard library
introduces the type char . It also modifies the types of built-in functions such as ord
and chr , which previously operated on single-character strings.

Exercise 2.4 For each version of digit , what do you expect in response to the
calls digit ˜1 and digit 10? Try to predict the response before experimenting
on the computer.

2.6 Truth values and conditional expressions
To define a function by cases — where the result depends on the out-

come of a test — we employ a conditional expression.1 The test is an expres-
sion E of type bool , whose values are true and false . The outcome of the test
chooses one of two expressions E1 or E2. The value of the conditional expres-
sion

if E then E1 else E2

1 Because a Standard ML expression can update the state, conditional expres-
sions can also act like the if commands of procedural languages.



2.6 Truth values and conditional expressions 27

is that of E1 if E equals true , and that of E2 if E equals false . The else part
is mandatory.

The simplest tests are the relations:

• less than (<)
• greater than (>)
• less than or equals (<=)
• greater than or equals (>=)

These are defined on integers and reals; they also test alphabetical ordering on
strings and characters. Thus the relations are overloaded and may require type
constraints. Equality (=) and its negation (<>) can be tested for most types.

For example, the function sign computes the sign (1, 0, or −1) of an integer.
It has two conditional expressions and a comment.

fun sign(n) =
if n>0 then 1

else if n=0 then 0
else (*n<0*) ˜1;

> val sign = fn : int ->int

Tests are combined by ML’s boolean operations:

• logical or (called orelse)
• logical and (called andalso)
• logical negation (the function not)

Functions that return a boolean value are known as predicates. Here is a predi-
cate to test whether its argument, a character, is a lower-case letter:

fun isLower c = #"a" <= c andalso c <= #"z";
> val isLower = fn : char -> bool

When a conditional expression is evaluated, either the then or the else ex-
pression is evaluated, never both. The boolean operators andalso and orelse
behave differently from ordinary functions: the second operand is evaluated only
if necessary. Their names reflect this sequential behaviour.

Exercise 2.5 Let d be an integer and m a string. Write an ML boolean expres-
sion that is true just when d and m form a valid date: say 25 and "October".
Assume it is not a leap year.



28 2 Names, Functions and Types

Pairs, tuples and records
In mathematics, a collection of values is often viewed as a single value.

A vector in two dimensions is an ordered pair of real numbers. A statement
about two vectors Ev1 and Ev2 can be taken as a statement about four real numbers,
and those real numbers can themselves be broken down into smaller pieces, but
thinking at a high level is easier. Writing Ev1 + Ev2 for their vector sum saves us
from writing (x1 + x2, y1 + y2).

Dates are a more commonplace example. A date like 25 October 1415 con-
sists of three values. Taken as a unit, it is a triple of the form (day,month, year).
This elementary concept has taken remarkably long to appear in programming
languages, and only a few handle it properly.

Standard ML provides ordered pairs, triples, quadruples and so forth. For
n ≥ 2, the ordered collection of n values is called an n-tuple, or just a tuple. The
tuple whose components are x1, x2, . . . , xn is written (x1, x2, . . . , xn). Such a
value is created by an expression of the form (E1,E2, . . . ,En). With functions,
tuples give the effect of multiple arguments and results.

The components of an ML tuple may themselves be tuples or any other value.
For example, a period of time can be represented by a pair of dates, regardless
of how dates are represented. It also follows that nested pairs can represent n-
tuples. (In Classic ML, the original dialect, (x1, . . . , xn−1, xn) was merely an
abbreviation for (x1, . . . , (xn−1, xn) . . .).)

An ML record has components identified by name, not by position. A record
with 20 components occupies a lot of space on the printed page, but is easier to
manage than a 20-tuple.

2.7 Vectors: an example of pairing
Let us develop the example of vectors. To try the syntax for pairs, enter

the vector (2.5,−1.2):

(2.5, ˜1.2);
> (2.5, ˜1.2) : real * real

The vector’s type, which in mathematical notation is real × real , is the type of a
pair of real numbers. Vectors are ML values and can be given names. We declare
the zero vector and two others, called a and b.

val zerovec = (0.0, 0.0);
> val zerovec = (0.0, 0.0) : real * real
val a = (1.5, 6.8);
> val a = (1.5, 6.8) : real * real
val b = (3.6, 0.9);



2.7 Vectors: an example of pairing 29

> val b = (3.6, 0.9) : real * real

Many functions on vectors operate on the components. The length of (x , y) is√
x 2 + y2, while the negation of (x , y) is (−x ,−y). To code these functions in

ML, simply write the argument as a pattern:

fun lengthvec (x,y) = Math.sqrt(x*x + y*y);
> val lengthvec = fn : real * real -> real

The function lengthvec takes the pair of values of x and y . It has type real ×
real → real : its argument is a pair of real numbers and its result is another real
number.2 Here, a is a pair of real numbers.

lengthvec a;
> 6.963476143 : real
lengthvec (1.0, 1.0);
> 1.414213562 : real

Function negvec negates a vector with respect to the point (0, 0).

fun negvec (x,y) : real*real = (˜x, ˜y);
> val negvec = fn : real * real -> real * real

This function has type real×real → real×real : given a pair of real numbers it
returns another pair. The type constraint real × real is necessary because minus
(˜) is overloaded.

We negate some vectors, giving a name to the negation of b:

negvec (1.0, 1.0);
> (˜1.0, ˜1.0) : real * real
val bn = negvec(b);
> val bn = (˜3.6, ˜0.9) : real * real

Vectors can be arguments and results of functions and can be given names. In
short, they have all the rights of ML’s built-in values, like the integers. We can
even declare a type of vectors:

type vec = real*real;
> type vec

Now vec abbreviates real × real . It is only an abbreviation though: every pair
of real numbers has type vec, regardless of whether it is intended to represent a
vector. We shall employ vec in type constraints.

2 function Math.sqrt , which is defined only for real numbers, constrains the
overloaded operators to type real .



30 2 Names, Functions and Types

2.8 Functions with multiple arguments and results
Here is a function that computes the average of a pair of real numbers.

fun average(x,y) = (x+y)/2.0;
> val average = fn : (real * real) -> real

This would be an odd thing to do to a vector, but average works for any two
numbers:

average(3.1,3.3);
> 3.2 : real

A function on pairs is, in effect, a function of two arguments: lengthvec(x , y)
and average(x , y) operate on the real numbers x and y . Whether we view (x , y)
as a vector is up to us. Similarly negvec takes a pair of arguments — and returns
a pair of results.

Strictly speaking, every ML function has one argument and one result. With
tuples, functions can effectively have any number of arguments and results. Cur-
rying, discussed in Chapter 5, also gives the effect of multiple arguments.

Since the components of a tuple can themselves be tuples, two vectors can be
paired:

((2.0, 3.5), zerovec);
> ((2.0, 3.5), (0.0, 0.0)) : (real*real) * (real*real)

The sum of vectors (x1, y1) and (x2, y2) is (x1+x2, y1+y2). In ML, this function
takes a pair of vectors. Its argument pattern is a pair of pairs:

fun addvec ((x1,y1), (x2,y2)) : vec = (x1+x2, y1+y2);
> val addvec = fn : (real*real) * (real*real) -> vec

Type vec appears for the first time, constraining addition to operate on real num-
bers. ML gives addvec the type

((real × real)× (real × real))→ vec

which is equivalent to the more concise (vec × vec) → vec. The ML system
may not abbreviate every real × real as vec.

Look again at the argument pattern of addvec. We may equivalently view this
function as taking

• one argument: a pair of pairs of real numbers
• two arguments: each a pair of real numbers
• four arguments: all real numbers, oddly grouped



2.8 Functions with multiple arguments and results 31

Here we add the vectors (8.9,4.4) and b, then add the result to another vector.
Note that vec is the result type of the function.

addvec((8.9, 4.4), b);
> (12.5, 5.3) : vec
addvec(it, (0.1, 0.2));
> (12.6, 5.5) : vec

Vector subtraction involves subtraction of the components, but can be expressed
by vector operations:

fun subvec(v1,v2) = addvec(v1, negvec v2);
> val subvec = fn : (real*real) * (real*real) -> vec

The variables v1 and v2 range over pairs of reals.

subvec(a,b);
> (˜2.1, 5.9) : vec

The distance between two vectors is the length of the difference:

fun distance(v1,v2) = lengthvec(subvec(v1,v2));
> val distance = fn : (real*real) * (real*real) -> real

Since distance never refers separately to v1 or v2, it can be simplified:

fun distance pairv = lengthvec(subvec pairv);

The variable pairv ranges over pairs of vectors. This version may look odd, but
is equivalent to its predecessor. How far is it from a to b?

distance(a,b);
> 6.262587325 : real

A final example will show that the components of a pair can have different types:
here, a real number and a vector. Scaling a vector means multiplying both com-
ponents by a constant.

fun scalevec (r, (x,y)) : vec = (r*x, r*y);
> val scalevec = fn : real * (real*real) -> vec

The type constraint vec ensures that the multiplications apply to reals. The
function scalevec takes a real number and a vector, and returns a vector.

scalevec(2.0, a);
> (3.0, 13.6) : vec
scalevec(2.0, it);
> (6.0, 27.2) : vec



32 2 Names, Functions and Types

Selecting the components of a tuple. A function defined on a pattern, say (x,y),
refers to the components of its argument through the pattern variables x and y .
A val declaration may also match a value against a pattern: each variable in
the pattern refers to the corresponding component.

Here we treat scalevec as a function returning two results, which we name xc
and yc.

val (xc,yc) = scalevec(4.0, a);
> val xc = 6.0 : real
> val yc = 27.2 : real

The pattern in a val declaration can be as complicated as the argument pattern
of a function definition. In this contrived example, a pair of pairs is split into
four parts, which are all given names.

val ((x1,y1), (x2,y2)) = (addvec(a,b), subvec(a,b));
> val x1 = 5.1 : real
> val y1 = 7.7 : real
> val x2 = ˜2.1 : real
> val y2 = 5.9 : real

The 0-tuple and the type unit. Previously we have considered n-tuples for n ≥
2. There is also a 0-tuple, written () and pronounced ‘unity,’ which has no
components. It serves as a placeholder in situations where no data needs to be
conveyed. The 0-tuple is the sole value of type unit .

Type unit is often used with procedural programming in ML. A procedure is
typically a ‘function’ whose result type is unit . The procedure is called for its
effect — not for its value, which is always (). For instance, some ML systems
provide a function use of type string → unit . Calling use "myfile" has the
effect of reading the definitions on the file "myfile" into ML.

A function whose argument type is unit passes no information to its body
when called. Calling the function simply causes its body to be evaluated. In
Chapter 5, such functions are used to delay evaluation for programming with
infinite lists.

Exercise 2.6 Write a function to determine whether one time of day, in the
form (hours , minutes , AM or PM), comes before another. As an example,
(11, 59, "AM") comes before (1, 15, "PM").

Exercise 2.7 Old English money had 12 pence in a shilling and 20 shillings in
a pound. Write functions to add and subtract two amounts, working with triples
(pounds, shillings, pence).



2.9 Records 33

2.9 Records
A record is a tuple whose components — called fields — have labels.

While each component of an n-tuple is identified by its position from 1 to n ,
the fields of a record may appear in any order. Transposing the components of
a tuple is a common error. If employees are taken as triples (name, age, salary)
then there is a big difference between ("Jones", 25, 15300) and ("Jones",
15300, 25). But the records

{name="Jones", age=25, salary=15300}

and

{name="Jones", salary=15300, age=25}

are equal. A record is enclosed in braces {. . .}; each field has the form label =
expression .

Records are appropriate when there are many components. Let us record five
fundamental facts about some Kings of England, and note ML’s response:

val henryV =
{name = "Henry V",

born = 1387,
crowned = 1413,
died = 1422,
quote = "Bid them achieve me and then sell my bones"};

> val henryV =
> {born = 1387,
> died = 1422,
> name = "Henry V",
> quote = "Bid them achieve me and then sell my bones",
> crowned = 1413}
> : {born: int,
> died: int,
> name: string,
> quote: string,
> crowned: int}

ML has rearranged the fields into a standard order, ignoring the order in which
they were given. The record type lists each field as label : type, within braces.
Here are two more Kings:

val henryVI =
{name = "Henry VI",

born = 1421,
crowned = 1422,
died = 1471,
quote = "Weep, wretched man, \

\ I’ll aid thee tear for tear"};



34 2 Names, Functions and Types

val richardIII =
{name = "Richard III",

born = 1452,
crowned = 1483,
died = 1485,
quote = "Plots have I laid..."};

The quote of henryVI extends across two lines, using the backslash, newline,
backslash escape sequence.

Record patterns. A record pattern with fields label = variable gives each vari-
able the value of the corresponding label. If we do not need all the fields, we
can write three dots (...) in place of the others. Here we get two fields from
Henry V’s famous record, calling them nameV and bornV :

val {name=nameV , born=bornV , ...} = henryV ;
> val nameV = "Henry V" : string
> val bornV = 1387 : int

Often we want to open up a record, making its fields directly visible. We can
specify each field in the pattern as label = label , making the variable and the
label identical. Such a specification can be shortened to simply label . We open
up Richard III:

val {name,born,died,quote,crowned} = richardIII;
> val name = "Richard III" : string
> val born = 1452 : int
> val died = 1485 : int
> val quote = "Plots have I laid..." : string
> val crowned = 1483 : int

To omit some fields, write (...) as before. Now quote stands for the quote of
Richard III. Obviously this makes sense for only one King at a time.

Record field selections. The selection #label gets the value of the given label
from a record.

#quote richardIII;
> "Plots have I laid..." : string
#died henryV - #born henryV ;
> 35 : int

Different record types can have labels in common. Both employees and Kings
have a name , whether "Jones" or "Henry V". The three Kings given above
have the same record type because they have the same number of fields with the
same labels and types.



2.9 Records 35

Here is another example of different record types with some labels in com-
mon: the n-tuple (x1, x2, . . . , xn) is just an abbreviation for a record with num-
bered fields:

{1 = x1, 2 = x2, . . . ,n = xn}

Yes, a label can be a positive integer! This obscure fact about Standard ML is
worth knowing for one reason: the selector #k gets the value of component k
of an n-tuple. So #1 selects the first component and #2 selects the second. If
there is a third component then #3 selects it, and so forth:

#2 ("a","b",3,false);
> "b" : string

Partial record specifications. A field selection that omits some of the fields
does not completely specify the record type; a function may only be defined

over a complete record type. For instance, a function cannot be defined for all records
that have fields born and died , without specifying the full set of field names (typically
using a type constraint). This restriction makes ML records efficient but inflexible. It
applies equally to record patterns and field selections of the form #label . Ohori (1995)
has defined and implemented flexible records for a variant of ML.

Declaring a record type. Let us declare the record type of Kings. This abbrevi-
ation will be useful for type constraints in functions.

type king = {name : string,
born : int,
crowned : int,
died : int,
quote : string};

> type king

We now can declare a function on type king to return the King’s lifetime:

fun lifetime(k: king) = #died k - #born k;
> val lifetime = fn : king -> int

Using a pattern, lifetime can be declared like this:

fun lifetime({born,died,...}: king) = died - born;

Either way the type constraint is mandatory. Otherwise ML will print a message
like ‘A fixed record type is needed here.’

lifetime henryV ;
> 35 : int
lifetime richardIII;
> 33 : int



36 2 Names, Functions and Types

Exercise 2.8 Does the following function definition require a type constraint?
What is its type?

fun lifetime({name,born,crowned,died,quote}) = died - born;

Exercise 2.9 Discuss the differences, if any, between the selector #born and
the function

fun borna t({born}) = born;

2.10 Infix operators
An infix operator is a function that is written between its two argu-

ments. We take infix notation for granted in mathematics. Imagine doing with-
out it. Instead of 2+2=4 we should have to write =(+(2,2),4). Most functional
languages let programmers declare their own infix operators.

Let us declare an infix operator xor for ‘exclusive or.’ First we issue an ML

infix directive:

infix xor;

We now must write p xor q rather than xor(p,q):

fun (p xor q) = (p orelse q) andalso not (p andalso q);
> val xor = fn : (bool * bool) -> bool

The function xor takes a pair of booleans and returns a boolean.

true xor false xor true;
> false : bool

The infix status of a name concerns only its syntax, not its value, if any. Usually
a name is made infix before it has any value at all.

Precedence of infixes. Most people take m × n+ i/j to mean (m × n)+ (i/j ),
giving× and / higher precedence than+. Similarly i− j −k means (i− j )−k ,
since the operator − associates to the left. An ML infix directive may state a
precedence from 0 to 9. The default precedence is 0, which is the lowest. The
directive infix causes association to the left, while infixr causes associa-
tion to the right.

To demonstrate infixes, the following functions construct strings enclosed in
parentheses. Operator plus has precedence 6 (the precedence of + in ML) and
constructs a string containing a + sign.

infix 6 plus;
fun (a plus b) = "(" ˆ a ˆ "+" ˆ b ˆ ")";



2.10 Infix operators 37

> val plus = fn : string * string -> string

Observe that plus associates to the left:

"1" plus "2" plus "3";
> "((1+2)+3)" : string

Similarly, times has precedence 7 (like * in ML) and constructs a string con-
taining a * sign.

infix 7 times;
fun (a times b) = "(" ˆ a ˆ "*" ˆ b ˆ ")";
> val times = fn : string * string -> string
"m" times "n" times "3" plus "i" plus "j" times "k";
> "((((m*n)*3)+i)+(j*k))" : string

The operator pow has higher precedence than times and associates to the right,
which is traditional for raising to a power. It produces a # sign. (ML has no
operator for powers.)

infixr 8 pow;
fun (a pow b) = "(" ˆ a ˆ "#" ˆ b ˆ ")";
> val pow = fn : string * string -> string
"m" times "i" pow "j" pow "2" times "n";
> "((m*(i#(j#2)))*n)" : string

Many infix operators have symbolic names. Let ++ be the operator for vector
addition:

infix ++;
fun ((x1,y1) ++ (x2,y2)) : vec = (x1+x2, y1+y2);
> val ++ = fn : (real*real) * (real*real) -> vec

It works exactly like addvec, but with infix notation:

b ++ (0.1,0.2) ++ (20.0, 30.0);
> (23.7, 31.1) : vec

Keep symbolic names separate. Symbolic names can cause confusion if you
run them together. Below, ML reads the characters +˜ as one symbolic name,

then complains that this name has no value:

1+˜3;
> Unknown name +˜

Symbolic names must be separated by spaces or other characters:

1+ ˜3;
> ˜2 : int



38 2 Names, Functions and Types

Taking infixes as functions. Occasionally an infix has to be treated like an or-
dinary function. In ML the keyword op overrides infix status: if ⊕ is an infix
operator then op⊕ is the corresponding function, which can be applied to a pair
in the usual way.

> op++ ((2.5,0.0), (0.1,2.5));
(2.6, 2.5) : real * real
opˆ ("Mont","joy");
> "Montjoy" : string

Infix status can be revoked. If⊕ is an infix operator then the directive nonfix⊕
makes it revert to ordinary function notation. A subsequent infix directive can
make ⊕ an infix operator again.

Here we deprive ML’s multiplication operator of its infix status. The attempt
to use it produces an error message, since we may not apply 3 as a function. But
* can be applied as a function:

nonfix *;
3*2;
> Error: Type conflict...

*(3,2);
> 6 : int

The nonfix directive is intended for interactive development of syntax, for
trying different precedences and association. Changing the infix status of estab-
lished operators leads to madness.

The evaluation of expressions
An imperative program specifies commands to update the machine state.

During execution, the state changes millions of times per second. Its structure
changes too: local variables are created and destroyed. Even if the program has a
mathematical meaning independent of hardware details, that meaning is beyond
the comprehension of the programmer. Axiomatic and denotational semantic
definitions make sense only to a handful of experts. Programmers trying to
correct their programs rely on debugging tools and intuition.

Functional programming aims to give each program a straightforward math-
ematical meaning. It simplifies our mental image of execution, for there are
no state changes. Execution is the reduction of an expression to its value, re-
placing equals by equals. Most function definitions can be understood within
elementary mathematics.

When a function is applied, as in f (E ), the argument E must be supplied to
the body of f . If the expression contains several function calls, one must be



2.11 Evaluation in ML: call-by-value 39

chosen according to some evaluation rule. The evaluation rule in ML is call-
by-value (or strict evaluation), while most purely functional languages adopt
call-by-need (or lazy evaluation).

Each evaluation rule has its partisans. To compare the rules we shall consider
two trivial functions. The squaring function sqr uses its argument twice:

fun sqr(x) : int = x*x;
> val sqr = fn : int -> int

The constant function zero ignores its argument and returns 0:

fun zero(x : int) = 0;
> val zero = fn : int -> int

When a function is called, the argument is substituted for the function’s formal
parameter in the body. The evaluation rules differ over when, and how many
times, the argument is evaluated. The formal parameter indicates where in the
body to substitute the argument. The name of the formal parameter has no other
significance, and no significance outside of the function definition.

2.11 Evaluation in ML: call-by-value
Let us assume that expressions consist of constants, variables, function

calls and conditional expressions (if-then-else). Constants have explicit val-
ues; variables have bindings in the environment. So evaluation has only to deal
with function calls and conditionals. ML’s evaluation rule is based on an obvious
idea.

To compute the value of f (E ), first compute the value of the expression E .

This value is substituted into the body of f , which then can be evaluated. Pattern-
matching is a minor complication. If f is declared by, say

fun f (x,y,z) = body

then substitute the corresponding parts of E ’s value for the pattern variables x , y
and z . (A practical implementation performs no substitutions, but instead binds
the formal parameters in the local environment.)

Consider how ML evaluates sqr(sqr(sqr(2))). Of the three function calls,
only the innermost call has a value for the argument. So sqr(sqr(sqr(2))) re-
duces to sqr(sqr(2 × 2)). The multiplication must now be evaluated, yielding
sqr(sqr(4)). Evaluating the inner call yields sqr(4 × 4), and so forth. Reduc-



40 2 Names, Functions and Types

tions are written sqr(sqr(4))⇒ sqr(4× 4). The full evaluation looks like this:

sqr(sqr(sqr(2)))⇒ sqr(sqr(2× 2))

⇒ sqr(sqr(4))

⇒ sqr(4× 4)

⇒ sqr(16)

⇒ 16× 16

⇒ 256

Now consider zero(sqr(sqr(sqr(2)))). The argument of zero is the expression
evaluated above. It is evaluated but the value is ignored:

zero(sqr(sqr(sqr(2))))⇒ zero(sqr(sqr(2× 2)))
...

⇒ zero(256)

⇒ 0

Such waste! Functions like zero are uncommon, but frequently a function’s
result does not depend on all of its arguments.

ML’s evaluation rule is known as call-by-value because a function is always
given its argument’s value. It is not hard to see that call-by-value corresponds to
the usual way we should perform a calculation on paper. Almost all program-
ming languages adopt it. But perhaps we should look for an evaluation rule
that reduces zero(sqr(sqr(sqr(2)))) to 0 in one step. Before such issues can be
examined, we must have a look at recursion.

2.12 Recursive functions under call-by-value
The factorial function is a standard example of recursion. It includes a

base case, n = 0, where evaluation stops.

fun fact n =
if n=0 then 1 else n * fact(n-1);

> val fact = fn : int -> int
fact 7;
> 5040 : int
fact 35;
> 10333147966386144929666651337523200000000 : int

ML evaluates fact(4) as follows. The argument, 4, is substituted for n in the
body, yielding

if 4 = 0 then 1 else 4× fact(4− 1)



2.12 Recursive functions under call-by-value 41

Figure 2.1 Evaluation of fact(4)

fact(4)⇒ 4× fact(4− 1)
⇒ 4× fact(3)
⇒ 4× (3× fact(3− 1))
⇒ 4× (3× fact(2))
⇒ 4× (3× (2× fact(2− 1)))
⇒ 4× (3× (2× fact(1)))
⇒ 4× (3× (2× (1× fact(1− 1))))
⇒ 4× (3× (2× (1× fact(0))))
⇒ 4× (3× (2× (1× 1)))
⇒ 4× (3× (2× 1))
⇒ 4× (3× 2)
⇒ 4× 6
⇒ 24

Figure 2.2 Evaluation of facti(4, 1)

facti(4, 1)⇒ facti(4− 1, 4× 1)
⇒ facti(3, 4)
⇒ facti(3− 1, 3× 4)
⇒ facti(2, 12)
⇒ facti(2− 1, 2× 12)
⇒ facti(1, 24)
⇒ facti(1− 1, 1× 24)
⇒ facti(0, 24)
⇒ 24



42 2 Names, Functions and Types

Since 4 = 0 is false, the conditional reduces to 4 × fact(4 − 1). Then 4 − 1 is
selected, and the entire expression reduces to 4×fact(3). Figure 2.1 summarizes
the evaluation. The conditionals are not shown: they behave similarly apart from
n = 0, when the conditional returns 1.

The evaluation of fact(4) exactly follows the mathematical definition of fac-
torial: 0! = 1, and n! = n × (n − 1)! if n > 0. Could the execution of a
recursive procedure be shown as succinctly?

Iterative functions. Something is odd about the computation of fact(4). As the
recursion progresses, more and more numbers are waiting to be multiplied. The
multiplications cannot take place until the recursion terminates with fact(0). At
that point 4 × (3 × (2 × (1 × 1))) must be evaluated. This paper calculation
shows that fact is wasting space.

A more efficient version can be found by thinking about how we should com-
pute factorials. By the associative law, each multiplication can be done at once:

4× (3× fact(2)) = (4× 3)× fact(2) = 12× fact(2)

The computer will not apply such laws unless we force it to. The function facti
keeps a running product in p, which initially should be 1:

fun facti (n,p) =
if n=0 then p else facti(n-1, n*p);

> val facti = fn : int * int -> int

Compare the evaluation for facti(4, 1), shown in Figure 2.2, with that of fact(4).
The intermediate expressions stay small; each multiplication can be done at
once; storage requirements remain constant. The evaluation is iterative — also
termed tail recursive. In Section 6.3 we shall prove that facti gives correct
results by establishing the law facti(n, p) = n! × p.

Good compilers detect iterative forms of recursion and execute them effi-
ciently. The result of the recursive call facti(n− 1,n×p) undergoes no further
computation, but is immediately returned as the value of facti(n, p). Such a tail
call can be executed by assigning the arguments n and p their new values and
then jumping back into the function, avoiding the cost of a proper function in-
vocation. The recursive call in fact is not a tail call because its value undergoes
further computation, namely multiplication by n .

Many functions can be made iterative by adding an argument, like p in facti .
Sometimes the iterative function runs much faster. Sometimes, making a func-
tion iterative is the only way to avoid running out of store. However, adding



2.12 Recursive functions under call-by-value 43

an extra argument to every recursive function is a bad habit. It leads to ugly,
convoluted code that might run slower than it should.

The special rôle of conditional expressions. The conditional expression permits
definition by cases. Recall how the factorial function is defined:

0! = 1

n! = n × (n − 1)! for n > 0

These equations determine n! for all integers n ≥ 0. Omitting the condition
n > 0 from the second equation would lead to absurdity:

1 = 0! = 0× (−1)! = 0

Similarly, in the conditional expression

if E then E1 else E2,

ML evaluates E1 only if E = true , and evaluates E2 only if E = false .
Due to call-by-value, there is no ML function cond such that cond(E ,E1,E2)

is evaluated like a conditional expression. Let us try to declare one and use it to
code the factorial function:

fun cond(p,x,y) : int = if p then x else y;
> val cond = fn : bool * int * int -> int
fun badf n = cond(n=0, 1, n*badf (n-1));
> val badf = fn : int -> int

This may look plausible, but every call to badf runs forever. Observe the evalu-
ation of badf (0):

badf (0)⇒ cond(true, 1, 0× badf (−1))

⇒ cond(true, 1, 0× cond(false, 1,−1× badf (−2)))
...

Although cond never requires the values of all three of its arguments, the call-
by-value rule evaluates them all. The recursion cannot terminate.

Conditional and/or. ML’s boolean infix operators andalso and orelse are
not functions, but stand for conditional expressions.

The expression E1 andalso E2 abbreviates

if E1 then E2 else false.



44 2 Names, Functions and Types

The expression E1 orelse E2 abbreviates

if E1 then true else E2.

These operators compute the boolean and/or, but evaluate E2 only if necessary.
If they were functions, the call-by-value rule would evaluate both arguments.
All other ML infixes are really functions.

The sequential evaluation of andalso and orelse makes them ideal for
expressing recursive predicates (boolean-valued functions). The function pow-
oftwo tests whether a number is a power of two:

fun even n = (n mod 2 = 0);
> val even = fn : int -> bool
fun powoftwo n = (n=1) orelse

(even(n) andalso powoftwo(n div 2));
> val powoftwo = fn : int -> bool

You might expect powoftwo to be defined by conditional expressions, and so it
is, through orelse and andalso. Evaluation terminates once the outcome is
decided:

powoftwo(6)⇒ (6 = 1) orelse (even(6) andalso · · · )

⇒ even(6) andalso powoftwo(6 div 2)

⇒ powoftwo(3)

⇒ (3 = 1) orelse (even(3) andalso · · · )

⇒ even(3) andalso powoftwo(3 div 2)

⇒ false

Exercise 2.10 Write the reduction steps for powoftwo(8).

Exercise 2.11 Is powoftwo an iterative function?

2.13 Call-by-need, or lazy evaluation
The call-by-value rule has accumulated a catalogue of complaints. It

evaluates E superfluously in zero(E ). And it evaluates E1 or E2 superfluously
in cond(E ,E1,E2). Conditional expressions and similar operations cannot
be functions. ML provides andalso and orelse, but we have no means of
defining similar things.

Shall we give functions their arguments as expressions, not as values? The
general idea is this:



2.13 Call-by-need, or lazy evaluation 45

To compute the value of f (E ), substitute E immediately into the body of f .
Then compute the value of the resulting expression.

This is the call-by-name rule. It reduces zero(sqr(sqr(sqr(2)))) at once to 0.
But it does badly by sqr(sqr(sqr(2))). It duplicates the argument, sqr(sqr(2)).
The result of this ‘reduction’ is

sqr(sqr(2))× sqr(sqr(2)).

This happens because sqr(x ) = x × x .
Multiplication, like other arithmetic operations, needs special treatment. It

must be applied to values, not expressions: it is an example of a strict function.
To evaluate E1 × E2, the expressions E1 and E2 must be evaluated first.

Let us carry on with the evaluation. As the outermost function is ×, which is
strict, the rule selects the leftmost call to sqr . Its argument is also duplicated:

(sqr(2)× sqr(2))× sqr(sqr(2))

A full evaluation goes something like this.

sqr(sqr(sqr(2)))⇒ sqr(sqr(2))× sqr(sqr(2))

⇒ (sqr(2)× sqr(2))× sqr(sqr(2))

⇒ ((2× 2)× sqr(2))× sqr(sqr(2))

⇒ (4× sqr(2))× sqr(sqr(2))

⇒ (4× (2× 2))× sqr(sqr(2))
...

Does it ever reach the answer? Eventually. But call-by-name cannot be the
evaluation rule we want.

The call-by-need rule (lazy evaluation) is like call-by-name, but ensures that
each argument is evaluated at most once. Rather than substituting an expression
into the function’s body, the occurrences of the argument are linked by pointers.
If the argument is ever evaluated, the value will be shared with its other occur-
rences. The pointer structure forms a directed graph of functions and arguments.
As a part of the graph is evaluated, it is updated by the resulting value. This is
called graph reduction.

Figure 2.3 presents a graph reduction. Every step replaces an occurrence of
sqr(E ) by E × E , where the two E s are shared. There is no wasteful duplica-
tion: only three multiplications are performed. We seem to have the best of both
worlds, for zero(E ) reduces immediately to 0. But the graph manipulations are
expensive.



46 2 Names, Functions and Types

Figure 2.3 Graph reduction of sqr(sqr(sqr(2)))

16

×

2

×

×

sqr

2

×

256

⇒

⇒

⇒

⇒

⇒⇒

sqr

sqr

sqr

2

sqr

2

sqr

×

×

×

4

×

×



2.13 Call-by-need, or lazy evaluation 47

Figure 2.4 A space leak with lazy evaluation

facti(4, 1)⇒ facti(4− 1, 4× 1)
⇒ facti(3− 1, 3× (4× 1))
⇒ facti(2− 1, 2× (3× (4× 1)))
⇒ facti(1− 1, 1× (2× (3× (4× 1))))
⇒ 1× (2× (3× (4× 1)))
...

⇒ 24

Lazy evaluation of cond(E ,E1,E2) behaves like a conditional expression
provided that its argument, the tuple (E ,E1,E2), is itself evaluated lazily. The
details of this are quite subtle: tuple formation must be viewed as a function. The
idea that a data structure like (E ,E1,E2) can be partially evaluated — either E1

or E2 but not both — leads to infinite lists.

A comparison of strict and lazy evaluation. Call-by-need does the least possible
evaluation. It may seem like the route to efficiency. But it requires much book-
keeping. Realistic implementations became possible only after David Turner
(1979) applied graph reduction to combinators. He exploited obscure facts
about the λ-calculus to develop new compilation techniques, which researchers
continue to improve. Every new technology has its evangelists: some people
are claiming that lazy evaluation is the way, the truth and the light. Why does
Standard ML not adopt it?

Lazy evaluation says that zero(E ) = 0 even if E fails to terminate. This flies
in the face of mathematical tradition: an expression is meaningful only if all its
parts are. Alonzo Church, the inventor of the λ-calculus, preferred a variant (the
λI -calculus) banning constant functions like zero.

Infinite data structures complicate mathematical reasoning. To fully under-
stand lazy evaluation, it is necessary to know some domain theory, as well as
the theory of the λ-calculus. The output of a program is not simply a value,
but a partially evaluated expression. These concepts are not easy to learn, and
many of them are mechanistic. If we can only think in terms of the evaluation
mechanism, we are no better off than the procedural programmers.

Efficiency is problematical too. Sometimes lazy evaluation saves enormous



48 2 Names, Functions and Types

amounts of space; sometimes it wastes space. Recall that facti is more efficient
than fact under strict evaluation, performing each multiplication at once. Lazy
evaluation of facti(n, p) evaluates n immediately (for the test n = 0), but not
p. The multiplications accumulate; we have a space leak (Figure 2.4).

Most lazy programming languages are purely functional. Can lazy evaluation
be combined with commands, such as are used in ML to perform input/output?
Subexpressions would be evaluated at unpredictable times; it would be impos-
sible to write reliable programs. Much research has been directed at combining
functional and imperative programming (Peyton Jones and Wadler, 1993).

Writing recursive functions
Since recursion is so fundamental to functional programming, let us

take the time to examine a few recursive functions. There is no magic formula
for program design, but perhaps it is possible to learn by example. One recursive
function we have already seen implements Euclid’s Algorithm:

fun gcd(m,n) =
if m=0 then n

else gcd(n mod m, m);
> val gcd = fn : int * int -> int

The Greatest Common Divisor of two integers is by definition the greatest inte-
ger that divides both. Euclid’s Algorithm is correct because the divisors of m
and n are the same as those of m and n −m , and, by repeated subtraction, the
same as the divisors of m and n mod m . Regarding its efficiency, consider

gcd(5499,6812)⇒ gcd(1313, 5499)⇒ gcd(247, 1313)

⇒ gcd(78, 247)⇒ gcd(13, 78)⇒ gcd(0, 13)⇒ 13.

Euclid’s Algorithm dates from antiquity. We seldom can draw on 2000 years of
expertise, but we should aim for equally elegant and efficient solutions.

Recursion involves reducing a problem to smaller subproblems. The key to
efficiency is to select the right subproblems. There must not be too many of
them, and the rest of the computation should be reasonably simple.

2.14 Raising to an integer power
The obvious way to compute x k is to multiply repeatedly by x . Using

recursion, the problem x k is reduced to the subproblem x k−1. But x 10 need
not involve 10 multiplications. We can compute x 5 and then square it. Since



2.14 Raising to an integer power 49

x 5
= x × x 4, we can compute x 4 by squaring also:

x 10
= (x 5)2 = (x × x 4)2 = (x × (x 2)2)2

By exploiting the law x 2n
= (xn)2 we have improved vastly over repeated

multiplication. But the computation is still messy; using instead x 2n
= (x 2)n

eliminates the nested squaring:

210
= 45

= 4× 162
= 4× 2561

= 1024

By this approach, power computes x k for real x and integer k > 0:

fun power(x,k) : real =
if k=1 then x
else if k mod 2 = 0 then power(x*x, k div 2)

else x * power(x*x, k div 2);
> val power = fn : real * int -> real

Note how mod tests whether the exponent is even. Integer division (div ) trun-
cates its result to an integer if k is odd. The function power embodies the equa-
tions (for n > 0)

x 1
= x

x 2n
= (x 2)n

x 2n+1
= x × (x 2)n .

We can test power using the built-in exponentiation function Math.pow :

power(2.0,10);
> 1024.0 : real
power(1.01, 925);
> 9937.353723 : real
Math.pow(1.01, 925.0);
> 9937.353723 : real

Reducing x 2n to (x 2)n instead of (xn)2 makes power iterative in its first recur-
sive call. The second call (for odd exponents) can be made iterative only by
introducing an argument to hold the result, which is a needless complication.

Exercise 2.12 Write the computation steps for power(2.0, 29).

Exercise 2.13 How many multiplications does power(x , k) need in the worst
case?

Exercise 2.14 Why not take k = 0 for the base case instead of k = 1?



50 2 Names, Functions and Types

2.15 Fibonacci numbers
The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . , is popular

with mathematical hobbyists because it enjoys many fascinating properties. The
sequence (Fn) is defined by

F0 = 0

F1 = 1

Fn = Fn−2 + Fn−1. for n ≥ 2

The corresponding recursive function is a standard benchmark for measuring
the efficiency of compiled code! It is far too slow for any other use because it
computes subproblems repeatedly. For example, since

F8 = F6 + F7 = F6 + (F5 + F6),

it computes F6 twice.
Each Fibonacci number is the sum of the previous two:

0+ 1 = 1 1+ 1 = 2 1+ 2 = 3 2+ 3 = 5 3+ 5 = 8 · · ·

So we should compute with pairs of numbers. Function nextfib takes (Fn−1,Fn)

and returns the next pair (Fn ,Fn+1).

fun nextfib(prev, curr :int) = (curr, prev+curr);
> val nextfib = fn : int * int -> int * int

The special name it , by referring to the previous pair, helps us demonstrate the
function:

nextfib (0,1);
> (1, 1) : int * int
nextfib it;
> (1, 2) : int * int
nextfib it;
> (2, 3) : int * int
nextfib it;
> (3, 5) : int * int

Recursion applies nextfib the requisite number of times:

fun fibpair (n) =
if n=1 then (0,1) else nextfib(fibpair(n-1));

> val fibpair = fn : int -> int * int

It quickly computes (F29,F30), which previously would have required nearly
three million function calls:



2.15 Fibonacci numbers 51

fibpair 30;
> (514229, 832040) : int * int

Let us consider in detail why fibpair is correct. Clearly fibpair(1) = (F0,F1).
And if, for n ≥ 1, we have

fibpair(n) = (Fn−1,Fn),

then

fibpair(n + 1) = (Fn ,Fn−1 + Fn) = (Fn ,Fn+1).

We have just seen a proof of the formula fibpair(n) = (Fn−1,Fn) by mathe-
matical induction. We shall see many more examples of such proofs in Chap-
ter 6. Proving properties of functional programs is often straightforward; this is
one of the main advantages of functional languages.

The function fibpair uses a correct and fairly efficient algorithm for comput-
ing Fibonacci numbers, and it illustrates computing with pairs. But its pattern
of recursion wastes space: fibpair builds the nest of calls

nextfib(nextfib(· · ·nextfib(0, 1) · · · )).

To make the algorithm iterative, let us turn the computation inside out:

fun itfib (n, prev, curr) : int =
if n=1 then curr (*does not work for n=0*)
else itfib (n-1, curr, prev+curr);

> val itfib = fn : int * int * int -> int

The function fib calls itfib with correct initial arguments:

fun fib (n) = itfib(n,0,1);
> val fib = fn : int -> int
fib 30;
> 832040 : int
fib 100;
> 354224848179261915075 : int

For Fibonacci numbers, iteration is clearer than recursion:

itfib(7, 0, 1)⇒ itfib(6, 1, 1)⇒ · · · itfib(1, 8, 13)⇒ 13

In Section 6.3 we shall show that itfib is correct by proving the rather unusual
law itfib(n,Fk ,Fk+1) = Fk+n .

Exercise 2.15 How is the repeated computation in the recursive definition of
Fn related to the call-by-name rule? Could lazy evaluation execute this defini-
tion efficiently?



52 2 Names, Functions and Types

Exercise 2.16 Show that the number of steps needed to compute Fn by its
recursive definition is exponential in n . How many steps does fib perform?
Assume that call-by-value is used.

Exercise 2.17 What is the value of itfib(n,Fk−1,Fk )?

2.16 Integer square roots
The integer square root of n is the integer k such that

k 2
≤ n < (k + 1)2.

To compute this by recursion, we must choose a subproblem: an integer smaller
than n . Division by 2 is often helpful, but how can we obtain

√
2x from

√
x?

Observe that
√

4x = 2
√

x (for real x ); division by 4 may lead to a simple
algorithm.

Suppose n > 0. Since n may not be exactly divisible by 4, write n = 4m+r ,
where r = 0, 1, 2, or 3. Since m < n we can recursively find the integer square
root of m:

i2
≤ m < (i + 1)2.

Since m and i are integers, m + 1 ≤ (i + 1)2. Multiplication by 4 implies
4i2
≤ 4m and 4(m + 1) ≤ 4(i + 1)2. Therefore

(2i)2 ≤ 4m ≤ n < 4m + 4 ≤ (2i + 2)2.

The square root of n is 2i or 2i +1. There is only to test whether (2i +1)2 ≤ n ,
determining whether a 1 should be added.

fun increase(k,n) = if (k+1)*(k+1) > n then k else k+1;
> val increase = fn : int * int -> int

The recursion terminates when n = 0. Repeated integer division will reduce
any number to 0 eventually:

fun introot n =
if n=0 then 0 else increase(2 * introot(n div 4), n);

> val introot = fn : int -> int

There are faster methods of computing square roots, but ours is respectably fast
and is a simple demonstration of recursion.

introot 123456789;
> 11111 : int
it*it;
> 123454321 : int
introot 2000000000000000000000000000000;



2.16 Integer square roots 53

> 1414213562373095 : int
it*it;
> 1999999999999999861967979879025 : int

Exercise 2.18 Code this integer square root algorithm using iteration in a pro-
cedural programming language.

Exercise 2.19 Declare an ML function for computing the Greatest Common
Divisor, based on these equations (m and n range over positive integers):

GCD(2m, 2n) = 2×GCD(m,n)

GCD(2m, 2n + 1) = GCD(m, 2n + 1)

GCD(2m + 1, 2n + 1) = GCD(n −m, 2m + 1) m < n

GCD(m,m) = m.

How does this compare with Euclid’s Algorithm?

Local declarations
Reducing the fraction n/d to least terms, where n and d have no com-

mon factor, involves dividing both numbers by their GCD.

fun fraction (n,d) = (n div gcd(n,d), d div gcd(n,d));

The wasteful re-computation of gcd(n, d) can be prevented by first defining an
auxiliary function:

fun divideboth (n, d, com: int) = (n div com, d div com);
fun fraction (n,d) = divideboth (n, d, gcd(n,d));

But this is a contorted way of giving gcd(n, d) the name com . ML allows the
declaration of names within an expression:

fun fraction (n,d) =
let val com = gcd(n,d)
in (n div com, d div com) end;

> val fraction = fn : int * int -> int * int

We have used a let expression, which has the general form

let D in E end

During evaluation, the declaration D is evaluated first: expressions within the
declaration are evaluated, and their results given names. The environment thus



54 2 Names, Functions and Types

created is visible only inside the let expression. Then the expression E is
evaluated, and its value returned.

Typically D is a compound declaration, which consists of a list of declara-
tions:

D1;D2; . . . ;Dn

The effect of each declaration is visible in subsequent ones. The semicolons are
optional and many programmers omit them.

2.17 Example: real square roots
The Newton-Raphson method finds roots of a function: in other words,

it solves equations of the form f (x ) = 0. Given a good initial approximation, it
converges rapidly. It is highly effective for computing square roots, solving the
equation a − x 2

= 0. To compute
√

a , choose any positive x0, say 1, as the first
approximation. If x is the current approximation then the next approximation is
(a/x + x )/2. Stop as soon as the difference becomes small enough.

The function findroot performs this computation, where x approximates the
square root of a and acc is the desired accuracy (relative to x ). Since the next
approximation is used several times, it is given the name nextx using let.

fun findroot (a, x, acc) =
let val nextx = (a/x + x) / 2.0
in if abs (x-nextx) < acc*x

then nextx else findroot (a, nextx, acc)
end;

> val findroot = fn : (real * real * real) -> real

The function sqroot calls findroot with suitable starting values.

fun sqroot a = findroot (a, 1.0, 1.0E˜10);
> val sqroot = fn : real -> real
sqroot 2.0;
> 1.414213562 : real
it*it;
> 2.0 : real

Nested function declarations. Our square root function is still not ideal. The
arguments a and acc are passed unchanged in every recursive call of findroot .
They can be made global to findroot for efficiency and clarity.

A further let declaration nests findroot within sqroot . The accuracy acc is
declared first, to be visible in findroot ; the argument a is also visible.

fun sqroot a =
let val acc = 1.0E˜10



2.18 Hiding declarations using local 55

fun findroot x =
let val nextx = (a/x + x) / 2.0
in if abs (x-nextx) < acc*x

then nextx else findroot nextx
end

in findroot 1.0 end;
> val sqroot = fn : real -> real

As we see from ML’s response, findroot is not visible outside sqroot .
Most kinds of declaration are permitted within let. Values, functions, types

and exceptions may be declared.

When not to use let. Consider taking the minimum of f (x ) and g(x ). You
could name these quantities using let:

let val a = f x
val b = g x

in
if a<b then a else b

end

Better, declare a function for the minimum of two real numbers:

fun min(a,b) : real = if a<b then a else b;

Now min(f x, g x) is clear because min computes something familiar.
Take every opportunity to declare meaningful functions, even if they are only
needed once.

2.18 Hiding declarations using local
A local declaration resembles a let expression:

local D1 in D2 end

This declaration behaves like the list of declarations D1;D2 except that D1 is
visible only within D2, not outside. Since a list of declarations is regarded as
one declaration, both D1 and D2 can declare any number of names.

While let is frequently used, local is not. Its sole purpose is to hide
a declaration. Recall itfib and fib, which compute Fibonacci numbers. The
function itfib should be called only from fib:

local
fun itfib (n, prev, curr) : int =

if n=1 then curr
else itfib (n-1, curr, prev+curr)

in



56 2 Names, Functions and Types

fun fib (n) = itfib(n,0,1)
end;
> val fib = fn : int -> int

Here the local declaration makes itfib private to fib.

Exercise 2.20 Above we have used local to hide the function itfib. Why not
simply nest the declaration of itfib within fib? Compare with the treatment of
findroot and sqroot .

Exercise 2.21 Using let, we can eliminate the expensive squaring operation
in our integer square root function. Code a variant of introot that maps n to its
integer square root k , paired with the difference n − k 2. Only simple multipli-
cations and divisions are needed; an optimizing compiler could replace them by
bit operations.

2.19 Simultaneous declarations
A simultaneous declaration defines several names at once. Normally

the declarations are independent. But fun declarations allow recursion, so a
simultaneous declaration can introduce mutually recursive functions.

A val declaration of the form

val Id1 = E1 and · · · and Idn = En

evaluates the expressions E1, . . ., En and then declares the identifiers Id1, . . ., Idn

to have the corresponding values. Since the declarations do not take effect until
all the expressions are evaluated, their order is immaterial.

Here we declare names for π , e and the logarithm of 2.

val pi = 4.0 * Math.atan 1.0
and e = Math.exp 1.0
and log2 = Math.ln 2.0;
> pi = 3.141592654 : real
> e = 2.718281828 : real
> log2 = 0.693147806 : real

A single input declares three names. The simultaneous declaration emphasizes
that they are independent.

Now let us declare the chimes of Big Ben:

val one = "BONG ";
> val one = "BONG " : string
val three = oneˆoneˆone;
> val three = "BONG BONG BONG " : string
val five = threeˆoneˆone;



2.19 Simultaneous declarations 57

> val five = "BONG BONG BONG BONG BONG " : string

There must be three separate declarations, and in this order.
A simultaneous declaration can also swap the values of names:

val one = three and three = one;
> val one = "BONG BONG BONG " : string
> val three = "BONG " : string

This is, of course, a silly thing to do! But it illustrates that the declarations occur
at the same time. Consecutive declarations would give one and three identical
bindings.

Mutually recursive functions. Several functions are mutually recursive if they
are declared recursively in terms of each other. A recursive descent parser is
a typical case. This sort of parser has one function for each element of the
grammar, and most grammars are mutually recursive: an ML declaration can
contain expressions, while an expression can contain declarations. Functions to
traverse the resulting parse tree will also be mutually recursive.

Parsing and trees are discussed later in this book. For a simpler example,
consider summing the series

π

4
= 1−

1
3
+

1
5
−

1
7
· · · +

1
4k + 1

−
1

4k + 3
· · ·

By mutual recursion, the final term of the summation can be either positive or
negative:

fun pos d = neg(d-2.0) + 1.0/d
and neg d = if d>0.0 then pos(d-2.0) - 1.0/d

else 0.0;
> val pos = fn : real -> real
> val neg = fn : real -> real

Two functions are declared. The series converges leisurely:

4.0 * pos(201.0);
> 3.151493401
4.0 * neg(8003.0);
> 3.141342779

Mutually recursive functions can often be combined into one function with the
help of an additional argument:

fun sum(d,one) =



58 2 Names, Functions and Types

if d>0.0 then sum(d-2.0, ˜one) + one/d else 0.0;

Now sum(d,1.0) returns the same value as pos(d), and sum(d,˜1.0)
returns the same value as

neg(d).

Emulating goto statements. Functional programming and procedural program-
ming are more alike than you may imagine. Any combination of goto and as-
signment statements — the worst of procedural code — can be translated into a
set of mutually recursive functions. Here is a simple case:

var x := 0; y := 0; z := 0;
F: x := x+1; goto G
G: if y<z then goto F else (y := x+y; goto H)
H: if z>0 then (z := z-x; goto F) else stop

For each of the labels, F , G and H , declare mutually recursive functions. The
argument of each function is a tuple holding all of the variables.

fun F(x,y,z) = G(x+1,y,z)
and G(x,y,z) = if y<z then F(x,y,z) else H(x,x+y,z)
and H(x,y,z) = if z>0 then F(x,y,z-x) else (x,y,z);
> val F = fn : int * int * int -> int * int * int
> val G = fn : int * int * int -> int * int * int
> val H = fn : int * int * int -> int * int * int

Calling f (0, 0, 0) gives x , y and z their initial values for execution, and returns
the result of the procedural code.

f (0,0,0);
> (1, 1, 0) : int * int * int

Functional programs are referentially transparent, yet can be totally opaque. If
your code starts to look like this, beware!

Exercise 2.22 What is the effect of this declaration?

val (pi,log2) = (log2,pi);

Exercise 2.23 Consider the sequence (Pn) defined for n ≥ 1 by

Pn = 1+
n−1∑
k=1

Pk .

(In particular, P1 = 1.) Express this computation as an ML function. How
efficient is it? Is there a faster way of computing Pn?



2.20 The complex numbers 59

Introduction to modules
An engineer understands a device in terms of its component parts, and

those, similarly, in terms of their subcomponents. A bicycle has wheels; a wheel
has a hub; a hub has bearings, and so forth. It takes several stages before we
reach the level of individual pieces of metal and plastic. In this way one can un-
derstand the entire bike at an abstract level, or parts of it in detail. The engineer
can improve the design by modifying one part, often without thinking about the
other parts.

Programs (which are more complicated than bicycles!) should also be seen as
consisting of components. Traditionally, a subprogram is a procedure or func-
tion, but these are too small — it is like regarding the bicycle as composed of
thousands of metal shapes. Many recent languages regard programs as consist-
ing of modules, each of which defines its own data structures and associated
operations. The interface to each module is specified separately from the mod-
ule itself. Different modules can therefore be coded by different members of a
project team; the compiler can check that each module meets its interface spec-
ification.

Consider our vector example. The function addvec is useless in isolation; it
must be used together with other vector operations, all sharing the same repre-
sentation of vectors. We can guess that the other operations are related because
their names all end with vec, but nothing enforces this naming convention. They
should be combined together to form a program module.

An ML structure combines related types, values and other structures, with a
uniform naming discipline. An ML signature specifies a class of structures by
listing the name and type (or other attributes) of each component.

Standard ML’s signatures and structures have analogues in other languages,
such as Modula-2’s definition and implementation modules (Wirth, 1985). ML

also provides functors — structures taking other structures as parameters — but
we shall defer these until Chapter 7.

2.20 The complex numbers
Many types of mathematical object can be added, subtracted, multiplied

and divided. Besides the familiar integer and real numbers, there are the rational
numbers, matrices, polynomials, etc. Our example below will be the complex
numbers, which are important in scientific mathematics. We shall gather up
their arithmetic operations using a structure Complex , then declare a signature
for Complex that also matches any structure that defines the same arithmetic
operations. This will provide a basis for generic arithmetic.

We start with a quick introduction to the complex numbers. A complex num-



60 2 Names, Functions and Types

ber has the form x + iy , where x and y are real numbers and i is a constant
postulated to satisfy i2

= −1. Thus, x and y determine the complex number.

The complex number zero is 0+ i0. The sum of two complex numbers con-
sists of the sums of the x and y parts; the difference is similar. The definitions of
product and reciprocal look complicated, but are easy to justify using algebraic
laws and the axiom i2

= −1:

(x + iy)+ (x ′ + iy ′) = (x + x ′)+ i(y + y ′)

(x + iy)− (x ′ + iy ′) = (x − x ′)+ i(y − y ′)

(x + iy)× (x ′ + iy ′) = (xx ′ − yy ′)+ i(xy ′ + x ′y)

1/(x + iy) = (x − iy)/(x 2
+ y2)

In the reciprocal above, the y component is −y/(x 2
+ y2). We can now define

the complex quotient z/z ′ as z × (1/z ′).

By analogy with our vector example, we could implement the complex num-
bers by definitions such as

type complex = real*real;
val complexzero = (0.0, 0.0);
...

but it is better to use a structure.

Further reading. Penrose (1989) explains the complex number system in more
detail, with plenty of motivation and examples. He discusses the connections

between the complex numbers and fractals, including a definition of the Mandelbrot
set. Later in the book, the complex numbers play a central rôle in his discussion of
quantum mechanics. Penrose gives the complex numbers a metaphysical significance;
that might be taken with a pinch of salt! Feynman et al. (1963) give a more technical
but marvellously enjoyable description of the complex numbers in Chapter 22.

2.21 Structures

Declarations can be grouped to form a structure by enclosing them in
the keywords struct and end. The result can be bound to an ML identifier
using a structure declaration:



2.21 Structures 61

structure Complex =
struct
type t = real*real;
val zero = (0.0, 0.0);
fun sum ((x,y), (x ′,y ′)) = (x+x ′, y+y ′) : t;
fun diff ((x,y), (x ′,y ′)) = (x-x ′, y-y ′) : t;
fun prod ((x,y), (x ′,y ′)) = (x*x ′ - y*y ′, x*y ′ + x ′*y) : t;
fun recip (x,y) =

let val t = x*x + y*y
in (x/t, ˜y/t) end

fun quo (z,z ′) = prod(z, recip z ′);
end;

Where structure Complex is visible, its components are known by compound
names such as Complex.zero and Complex.sum . Inside the structure body,
the components are known by their ordinary identifiers, such as zero and sum;
note the use of recip in the declaration of quo. The type of complex numbers
is called Complex.t . When the purpose of a structure is to define a type, that
type is commonly called t .

We may safely use short names. They cannot clash with names occurring
in other structures. The standard library exploits this heavily, for example to
distinguish the absolute value functions Int.abs and Real.abs .

Let us experiment with our new structure. We declare two ML identifiers, i
and a; a mathematician would normally write their values as i and 0.3, respec-
tively.

val i = (0.0, 1.0);
> val i = (0.0, 1.0) : real * real
val a = (0.3, 0.0);
> val a = (0.3, 0.0) : real * real

In two steps we form the sum a+ i +0.7, which equals 1+ i . Finally we square
that number to obtain 2i :

val b = Complex.sum(a,i);
> val b = (0.3, 1.0) : Complex.t
Complex.sum(b, (0.7, 0.0));
> (1.0, 1.0) : Complex.t
Complex.prod(it,it);
> (0.0, 2.0) : Complex.t

Observe that Complex.t is the same type as real×real ; what is more confusing,
it is the same type as vec above. Chapter 7 describes how to declare an abstract
type, whose internal representation is hidden.

Structures look a bit like records, but there are major differences. A record’s
components can only be values (including, perhaps, other records). A structure’s



62 2 Names, Functions and Types

components may include types and exceptions (as well as other structures). But
you cannot compute with structures: they can only be created when the program
modules are being linked together. Structures should be seen as encapsulated
environments.

2.22 Signatures
A signature is a description of each component of a structure. ML re-

sponds to our declaration of the structure Complex by printing its view of the
corresponding signature:

structure Complex = ...;
> structure Complex :
> sig
> type t
> val diff : (real * real) * (real * real) -> t
> val prod : (real * real) * (real * real) -> t
> val quo : (real * real) * (real * real) -> t
> val recip : real * real -> real * real
> val sum : (real * real) * (real * real) -> t
> val zero : real * real
> end

The keywords sig and end enclose the signature body. It shows the types of all
the components that are values, and mentions the type t . (Some compilers dis-
play eqtype t instead of type t, informing us that t is a so-called equality
type.)

The signature inferred by the ML compiler is frequently not the best one for
our purposes. The structure may contain definitions that ought to be kept private.
By declaring our own signature and omitting the private names, we can hide
them from users of the structure. We might, for instance, hide the name recip.

The signature printed above expresses the type of complex numbers some-
times as t and sometimes as real × real . If we use t everywhere, then we obtain
a general signature that specifies a type t equipped with operators sum , prod ,
etc.:

signature ARITH =
sig
type t
val zero : t
val sum : t * t -> t
val diff : t * t -> t
val prod : t * t -> t
val quo : t * t -> t
end;



2.22 Signatures 63

The declaration gives the name ARITH to the signature enclosed within the
brackets sig and end. We can declare other structures and make them con-
form to signature ARITH. Here is the skeleton of a structure for the rational
numbers:

structure Rational : ARITH =
struct
type t = int*int;
val zero = (0, 1);
...

end;

A signature specifies the information that ML needs to integrate program units
safely. It cannot specify what the components actually do. A well-documented
signature includes comments describing the purpose of each component. Com-
ments describing a component’s implementation belong in the structure, not in
the signature. Signatures can be combined in various ways to form new signa-
tures; structures can similarly be combined.

ML functors can express generic modules: for example, ones that take any
structure conforming to signature ARITH. The standard library offers extensive
possibilities for this. An ML system may provide floating point numbers in vari-
ous precisions, as structures matching signature FLOAT. A numerical algorithm
can be coded as a functor. Applying the functor to a floating point structure spe-
cializes the algorithm to the desired precision. ML thus has some of the power
of object-oriented languages such as C++ — though in a more restrictive form,
since structures are not computable values.

Exercise 2.24 Declare a structure Real , matching signature ARITH, such that
Real.t is the type real and the components zero, sum , prod , etc., denote the
corresponding operations on type real .

Exercise 2.25 Complete the declaration of structure Rational above, basing
your definitions on the laws n/d+n ′/d ′ = (nd ′+n ′d)/dd ′, (n/d)×(n ′/d ′) =
nn ′/dd ′, and 1/(n/d) = d/n . Use the function gcd to maintain the fractions in
lowest terms, and ensure that the denominator is always positive.

Polymorphic type checking
Until recently, the debate on type checking has been deadlocked, with

two rigid positions:



64 2 Names, Functions and Types

• Weakly typed languages like Lisp and Prolog give programmers the
freedom they need when writing large programs.
• Strongly typed languages like Pascal give programmers security by re-

stricting their freedom to make mistakes.

Polymorphic type checking offers a new position: the security of strong type
checking, as well as great flexibility. Programs are not cluttered with type spec-
ifications since most type information is deduced automatically.

A type denotes a collection of values. A function’s argument type specifies
which values are acceptable as arguments. The result type specifies which values
could be returned as results. Thus, div demands a pair of integers as argument;
its result can only be an integer. If the divisor is zero then there will be no result
at all: an error will be signalled instead. Even in this exceptional situation, the
function div is faithful to its type.

ML can also assign a type to the identity function, which returns its argument
unchanged. Because the identity function can be applied to an argument of any
type, it is polymorphic. Generally speaking, an object is polymorphic if it can be
regarded as having multiple types. ML polymorphism is based on type schemes,
which are like patterns or templates for types. For instance, the identity function
has the type scheme α→ α.

2.23 Type inference
Given little or no explicit type information, ML can infer all the types

involved with a function declaration. Type inference follows a natural but rigor-
ous procedure. ML notes the types of any constants, and applies type checking
rules for each form of expression. Each variable must have the same type every-
where in the declaration. The type of each overloaded operator (like +) must be
determined from the context.

Here is the type checking rule for the conditional expression. If E has type
bool and E1 and E2 have the same type, say τ , then

if E then E1 else E2

also has type τ . Otherwise, the expression is ill-typed.
Let us examine, step by step, the type checking of facti :

fun facti (n,p) =
if n=0 then p else facti(n-1, n*p);

The constants 0 and 1 have type int . Therefore n=0 and n-1 involve integers,
so n has type int . Now n*p must be integer multiplication, so p has type int .



2.24 Polymorphic function declarations 65

Since p is returned as the result of facti , its result type is int and its argument
type is int× int . This fits with the recursive call. Having made all these checks,
ML can respond

> val facti = fn : int * int -> int

If the types are not consistent, the compiler rejects the declaration.

Exercise 2.26 Describe the steps in the type checking of itfib.

Exercise 2.27 Type check the following function declaration:

fun f (k,m) = if k=0 then 1 else f (k-1);

2.24 Polymorphic function declarations
If type inference leaves some types completely unconstrained then the

declaration is polymorphic — literally, ‘having many forms.’ Most polymor-
phic functions involve pairs, lists and other data structures. They usually do
something simple, like pairing a value with itself:

fun pairself x = (x,x);
> val pairself = fn : ’a -> ’a * ’a

This type is polymorphic because it contains a type variable, namely ’a. In ML,
type variables begin with a prime (single quote) character.

’b ’c ’we_band_of_brothers ’3

Let us write α, β, γ for the ML type variables ’a, ’b, ’c, because type variables
are traditionally Greek letters. Write x : τ to mean ‘x has type τ ,’ for instance
pairself : α → (α × α). Incidentally, × has higher precedence than→; the
type of pairself can be written α→ α × α.

A polymorphic type is a type scheme. Substituting types for type variables
forms an instance of the scheme. A value whose type is polymorphic has in-
finitely many types. When pairself is applied to a real number, it effectively has
type real → real × real .

pairself 4.0;
> (4.0, 4.0) : real * real

Applied to an integer, pairself effectively has type int → int × int .

pairself 7;
> (7, 7) : int * int

Here pairself is applied to a pair; the result is called pp.



66 2 Names, Functions and Types

val pp = pairself ("Help!",999);
> val pp = (("Help!", 999), ("Help!", 999))
> : (string * int) * (string * int)

Projection functions return a component of a pair. The function fst returns the
first component; snd returns the second:

fun fst (x,y) = x;
> val fst = fn : ’a * ’b -> ’a
fun snd (x,y) = y;
> val snd = fn : ’a * ’b -> ’b

Before considering their polymorphic types, we apply them to pp:

fst pp;
> ("Help!", 999) : string * int
snd(fst pp);
> 999 : int

The type of fst is α × β → α, with two type variables. The argument pair may
involve any two types τ1 and τ2 (not necessarily different); the result has type τ1.

Polymorphic functions can express other functions. The function that takes
((x , y),w) to x could be coded directly, but two applications of fst also work:

fun fstfst z = fst(fst z);
> val fstfst = fn : (’a * ’b) * ’c -> ’a
fstfst pp;
> "Help!" : string

The type (α × β)× γ → α is what we should expect for fstfst . Note that a
polymorphic function can have different types within the same expression. The
inner fst has type (α × β)× γ → α × β; the outer fst has type α × β → α.

Now for something obscure: what does this function do?

fun silly x = fstfst(pairself (pairself x));
> val silly = fn : ’a -> ’a

Not very much:

silly "Hold off your hands.";
> "Hold off your hands." : string

Its type, α → α, suggests that silly is the identity function. This function can
be expressed rather more directly:

fun I x = x;
> val I = fn : ’a -> ’a

Further issues. Milner (1978) gives an algorithm for polymorphic type check-
ing and proves that a type-correct program cannot suffer a run-time type error.



2.24 Polymorphic function declarations 67

Damas and Milner (1982) prove that the types inferred by this algorithm are princi-
pal: they are as polymorphic as possible. Cardelli and Wegner (1985) survey several
approaches to polymorphism. For Standard ML, things are quite complicated.

Equality testing is polymorphic in a limited sense: it is defined for most, not all,
types. Standard ML provides a class of equality type variables to range over this re-
stricted collection of types. See Section 3.14.

Recall that certain built-in functions are overloaded: addition (+) is defined for in-
tegers and reals, for instance. Overloading sits uneasily with polymorphism. It com-
plicates the type checking algorithm and frequently forces programmers to write type
constraints. Fortunately there are only a few overloaded functions. Programmers cannot
introduce further overloading.

Summary of main points
• A variable stands for a value; it can be redeclared but not updated.
• Basic values have type int , real , char , string or bool .
• Values of any types can be combined to form tuples and records.
• Numerical operations can be expressed as recursive functions.
• An iterative function employs recursion in a limited fashion, where re-

cursive calls are essentially jumps.
• Structures and signatures serve to organize large programs.
• A polymorphic type is a scheme containing type variables.


