
10
A Tactical Theorem Prover

ML was originally designed to serve as the programming language for a theorem
prover, Edinburgh LCF. So it is fitting that a book on ML should conclude by
describing a theorem prover, called Hal, inspired by LCF.1 Hal constructs a
proof by refinement steps, working backwards from a goal. At its simplest, this
is proof checking: at each step, an inference rule is matched to a goal, reducing
it to certain subgoals. If we are ever to prove anything significant, we shall
require more automation. Hal provides tactics and tacticals, which constitute a
high-level language for expressing search procedures. A few primitive tactics,
applied using a tactical for depth-first search, implement a general tactic that can
prove many theorems automatically, such as

¬(∃x .∀y . φ(x , y)↔ ¬φ(y, y))

∃xy . φ(x , y)→ ∀xy . φ(x , y)

∃x .∀yz . (φ(y)→ ψ(z))→ (φ(x)→ ψ(x))

For raw power Hal cannot compete with specialized theorem provers. What Hal
lacks in power it makes up in flexibility. A typical resolution theorem prover
supports pure classical logic with equality, but without induction. Tactical the-
orem provers allow a mixture of automatic and interactive working, in virtually
any logic.

Hal works in classical logic for familiarity’s sake, but it can easily be extended
to include induction, modal operators, set theory or whatever. Its tactics must be
changed to reflect the new inference rules; the tacticals remain the same, ready
to express search procedures for the new logic.

Chapter outline
The chapter contains the following sections:

A sequent calculus for first-order logic. The semantics of first-order logic is

1 Hal is named after King Henry V, who was a master tactician.

403

404 10 A Tactical Theorem Prover

sketched and the sequent calculus is described. Quantifier reasoning involves
parameters and meta-variables.

Processing terms and formulæ in ML. Hal’s representation of first-order logic
borrows techniques from previous chapters. A major new technique is unifica-
tion.

Tactics and the proof state. Hal implements the sequent calculus as a set of
transformations upon an abstract type of proof states. Each inference rule is
provided as a tactic.

Searching for proofs. A crude user interface allows the tactics to be demon-
strated. Tacticals add control structures to tactics, and are used to code automatic
tactics for first-order logic.

A sequent calculus for first-order logic
We begin with a quick overview of first-order logic. The syntax of first-

order logic has been presented in Section 6.1. Propositional logic concerns for-
mulæ built by the connectives ∧, ∨, ¬,→ and↔. First-order logic introduces
the quantifiers ∀ and ∃, with variables and terms. A first-order language aug-
ments the logical symbols with certain constants a , b, . . . , function symbols f ,
g , . . . and predicate symbols P , Q , Let φ, ψ , χ , . . . stand for arbitrary
formulæ.

The universe is a non-empty set containing the possible values of terms. Con-
stants denote elements of the universe; function symbols denote functions over
the universe; predicate symbols denote relations over the universe. A structure
defines the semantics of a first-order language by specifying a universe and giv-
ing the interpretations of the constants, function symbols and predicate symbols.
An ML structure is analogous to a logical structure.

The meaning of a formula depends on the values of its free variables. An
assignment is a mapping from free variables to elements of the universe. Given
a structure and an assignment, every formula is either true or false. The formula
∀x . φ is true if and only if φ is true for every possible value that could be as-
signed to x (leaving the other variables unchanged). The connectives are defined
by truth tables; for instance, φ ∧ ψ is true if and only if φ is true and ψ is true.

A valid formula is one that is true in all structures and assignments. Since
there are infinitely many structures, exhaustive testing can never show that a
formula is valid. Instead, we can attempt to show that a formula is valid by
formal proof using inference rules, each of which is justified by the semantics
of the logic. Each rule accepts zero or more premises and yields a conclusion; a

10.1 The sequent calculus for propositional logic 405

sound rule must yield a valid conclusion provided its premises are valid. A set
of inference rules for a logic is called a proof system or a formalization.

Of the many proof systems for classical first-order logic, easiest to automate is
the sequent calculus. The tableau method, which is sometimes used to automate
first-order logic, is a compact notation for the sequent calculus.

10.1 The sequent calculus for propositional logic
To keep matters simple, let us temporarily restrict attention to proposi-

tional logic. A sequent has the form

φ1, . . . , φm ` ψ1, . . . , ψn

where φ1, . . . , φm andψ1, . . . , ψn are multisets of formulæ. As discussed above
in Chapter 6, a multiset is a collection of elements whose order is insignificant.
Traditionally a sequent contains lists of formulæ, and the logic includes rules
for exchanging adjacent formulæ; multisets make such rules unnecessary.

Given a structure and an assignment, the sequent above is true if and only if
some of the formulæ φ1, . . . , φm are false or some of the formulæ ψ1, . . . , ψn

are true. In other words, the sequent has the same meaning as the formula

φ1 ∧ · · · ∧ φm → ψ1 ∨ · · · ∨ ψn .

As a special case, ` ψ has the same meaning as ψ . A sequent is not a formula,
however; the ` symbol (the ‘turnstile’) is not a logical connective.

For convenience in writing the rules, 0 and 1 will stand for multisets of
formulæ. The comma will denote multiset union; thus 0,1 stands for the union
of 0 and 1. A formula appearing where a multiset is expected (like φ in 0 `
φ) will stand for a singleton multiset. Thus 0, φ is a multiset containing an
occurrence of φ, where 0 denotes its other elements.

Validity and basic sequents. A valid sequent is one that is true under every struc-
ture and assignment. The theorems of our sequent calculus will be precisely the
valid sequents.

A sequent is called basic if both sides share a common formula φ. This can
be formalized as the axiom

φ, 0 ` 1,φ.

In the notation just described, φ, 0 and 1,φ are multisets containing φ. Such
sequents are clearly valid.

The other formulæ, those contained in 0 and 1, play no part in the infer-
ence. The sequent calculus is sometimes formulated such that a basic sequent

406 10 A Tactical Theorem Prover

must have the form φ ` φ. Then sequents of the form φ, 0 ` 1,φ can be
derived with the help of ‘weakening’ rules, which insert arbitrary formulæ into
a sequent.

Sequent rules for the connectives. Sequent calculus rules come in pairs, to intro-
duce each connective on the left or right of the ` symbol. For example, the rule
∧:left introduces a conjunction on the left, while ∧:right introduces a conjunc-
tion on the right. Here is the latter rule in the usual notation, with its premises
above the line and its conclusion below:

0 ` 1,φ 0 ` 1,ψ

0 ` 1,φ ∧ ψ
∧:right

To show that ∧:right is a sound rule, let us assume that its premises are valid and
demonstrate that its conclusion is valid. Suppose that, under some structure and
assignment, every formula in 0 is true; we must demonstrate that some formula
in1,φ∧ψ is true. If no formula in1 is true, then both φ and ψ are true by the
premises. Therefore φ ∧ ψ is true.

Now let us justify the rule ∧:left.

φ,ψ, 0 ` 1

φ ∧ ψ,0 ` 1
∧:left

To show that this rule is sound, we proceed as above. Suppose that every formula
in 0, φ ∧ ψ is true. Then both φ and ψ are true. Assuming that the premise is
valid, some formula of 1 must be true, and this establishes the conclusion.

Figure 10.1 presents the rules for the propositional connectives ∧, ∨,→,↔
and ¬. All the rules are justified similarly.

Exercise 10.1 Which formula is equivalent to φ1, . . . , φm ` , a sequent whose
right side is empty?

Exercise 10.2 Justify the rules ∨:left and ∨:right.

Exercise 10.3 Justify the rules↔:left and↔:right.

10.2 Proving theorems in the sequent calculus
Inference rules are often viewed in a forward direction, from premises

to conclusion. Thus,∧:right accepts premises 0 ` 1,φ and 0 ` 1,ψ , yielding
the conclusion 0 ` 1,φ ∧ ψ . Applying another rule to this sequent yields an-
other conclusion, and so forth. A formal proof is a tree constructed by applying

10.2 Proving theorems in the sequent calculus 407

Figure 10.1 Sequent rules for the propositional connectives

:left :right

φ,ψ, 0 ` 1

φ ∧ ψ,0 ` 1

0 ` 1,φ 0 ` 1,ψ

0 ` 1,φ ∧ ψ

φ,0 ` 1 ψ,0 ` 1

φ ∨ ψ,0 ` 1

0 ` 1,φ,ψ

0 ` 1,φ ∨ ψ

0 ` 1,φ ψ,0 ` 1

φ→ ψ,0 ` 1

φ,0 ` 1,ψ

0 ` 1,φ→ ψ

φ,ψ, 0 ` 1 0 ` 1,φ,ψ

φ ↔ ψ,0 ` 1

φ,0 ` 1,ψ ψ,0 ` 1,φ

0 ` 1,φ ↔ ψ

0 ` 1,φ

¬φ, 0 ` 1

φ,0 ` 1

0 ` 1,¬φ

inference rules. Here is a proof of the sequent φ ∧ ψ ` ψ ∧ φ:

φ,ψ ` ψ φ,ψ ` φ
∧:right

φ,ψ ` ψ ∧ φ
∧:left

φ ∧ ψ ` ψ ∧ φ

(*)

Viewed in the forward direction, two basic sequents are combined by ∧:right
and the result transformed by ∧:left. However, the forward reading does not
help us find a proof of a given sequent.

For the purpose of finding proofs, rules should be viewed in the backward
direction, from a goal to subgoals. Thus, ∧:right accepts the goal 0 ` 1,φ∧ψ
and returns the subgoals 0 ` 1,φ and 0 ` 1,ψ . If these subgoals can be
proved as theorems, then so can the goal. The subgoals are refined by further
rule applications until all the remaining subgoals are basic sequents, which are
immediately valid. The proof tree is constructed from the root upwards; the
process is called refinement or backward proof.

Viewed in the backward direction, the proof (∗) begins with the sequent to be
proved, namely φ ∧ψ ` ψ ∧ φ. This goal is refined by ∧:left to φ,ψ ` ψ ∧ φ;
this subgoal is refined by ∧:right to φ,ψ ` ψ and φ,ψ ` φ. These two
subgoals are basic sequents, so the proof is finished.

408 10 A Tactical Theorem Prover

Under the backward reading, each rule attacks a formula in the goal. Applying
∧:left breaks down a conjunction on the left side, while ∧:right breaks down a
conjunction on the right. If all the resulting subgoals are basic sequents, then
the initial goal has been proved. For propositional logic, this procedure must
terminate.

A sequent may have several different proofs, depending on which formulæ are
broken down first. The proof (∗) first breaks down the conjunction on the left in
φ ∧ ψ ` ψ ∧ φ. For a different proof, begin by breaking down the conjunction
on the right:

φ,ψ ` ψ

φ ∧ ψ ` ψ
∧:left

φ,ψ ` φ

φ ∧ ψ ` φ
∧:left

φ ∧ ψ ` ψ ∧ φ
∧:right

This is larger than the proof (∗) in that ∧:left is applied twice. Applying ∧:right
to the initial goal produced two subgoals, each with a conjunction on the left.
Shorter proofs usually result if the rule that produces the fewest subgoals is
chosen at each step.

To summarize, we have the following proof procedure:

• Take the sequent to be proved as the initial goal. The root of the proof
tree, and its only leaf, is this goal.
• Select some subgoal that is a leaf of the proof tree and apply a rule to it,

turning the leaf into a branch node with one or more leaves.
• Stop whenever all the leaves are basic sequents (success), or when no

rules can be applied to a leaf (failure).

This procedure is surprisingly effective, though its search is undirected. Both
∨:left and ∧:right may be applied to the subgoal p ∨ q, r ` r ∧ r . The former
rule performs case analysis on the irrelevant formula p ∨ q ; the latter rule yields
two basic subgoals, succeeding immediately.

Exercise 10.4 Construct proofs of the sequents φ∨ψ ` ψ ∨φ and φ1∧ (φ2∧

φ3) ` (φ1 ∧ φ2) ∧ φ3.

Exercise 10.5 Construct a proof of the sequent

` (φ1 ∧ φ2) ∨ ψ ↔ (φ1 ∨ ψ) ∧ (φ2 ∨ ψ).

Exercise 10.6 Show that any sequent containing both φ and ¬φ to the left of
the ` symbol is provable.

10.3 Sequent rules for the quantifiers 409

10.3 Sequent rules for the quantifiers
Propositional logic is decidable; our proof procedure can determine, in

finite time, whether any formula is a theorem. With quantifiers, no such deci-
sion procedure exists. Quantifiers, moreover, introduce many syntactic compli-
cations.

Each quantifier binds a variable; thus x and y occur bound and z occurs free in
∀x . ∃y .R(x , y, z). Renaming the bound variables does not affect the meaning
of a formula; the previous example is equivalent to ∀y . ∃w .R(y,w , z). Some
of the inference rules involve substitution, and φ[t/x] will stand for the result
of substituting t for every free occurrence of x in φ. Less formally, φ(x) stands
for a formula involving x and φ(t) stands for the result of substituting t for free
occurrences of x . The name-free representation of bound variables (Section 9.6)
works as well for quantifier syntax as it does for the λ-calculus.

The universal quantifier has these two sequent rules:

φ[t/x], ∀x . φ, 0 ` 1
∀x . φ, 0 ` 1

∀:left
0 ` 1, φ

0 ` 1, ∀x . φ
∀:right

proviso: x must not occur free
in the conclusion

The rule ∀:left is easy to justify; if ∀x . φ is true then so is φ[t/x], where t is
any term.

To justify ∀:right, which is the more complicated rule, let us assume that
its premise is valid and demonstrate that its conclusion is valid. Given some
structure and assignment, suppose that every formula in 0 is true and that no
formula in 1 is true; then we must show that ∀x . φ is true. It suffices to show
that φ is true for every possible assignment to x that leaves the other variables
unchanged. By the proviso of ∀:right, changing the value of x does not affect
the truth of any formula of 0 or 1; since the premise is valid, φ must be true.

Ignoring the proviso can yield unsound inferences:

P(x) ` P(x)
P(x) ` ∀x .P(x)

∀:right ???

The conclusion is false if P(x) stands for the predicate x = 0 over the integers
and x is assigned the value 0.

The existential quantifier has these two sequent rules:

φ, 0 ` 1

∃x . φ, 0 ` 1
∃:left

0 ` 1, ∃x . φ, φ[t/x]
0 ` 1, ∃x . φ

∃:right

proviso: x must not occur free
in the conclusion

410 10 A Tactical Theorem Prover

They are dual to the rules for the universal quantifier and can be justified simi-
larly. Note that ∃x . φ is equivalent to ¬∀x .¬φ.

The rules ∀:left and ∃:right have one feature that is not present in any of the
other rules: in backward proof, they do not remove any formulæ from the goal.
They expand a quantified formula, substituting a term into its body; and they
retain the formula to allow repeated expansion. It is impossible to determine in
advance how many expansions of a quantified formula are required for a proof.
Because of this, our proof procedure can fail to terminate; first-order logic is
undecidable.

Exercise 10.7 If the premise of ∀:right is ignored, can a proof involving this
rule reach an inconsistent conclusion? (This means a sequent ` φ such that ¬φ
is a valid formula.)

10.4 Theorem proving with quantifiers
Our backward proof procedure is reasonably effective with quantifiers,

at least for tackling simple problems that do not require a more discriminating
search. Let us begin with an easy proof involving universal quantification:

φ(x), ∀x . φ(x) ` φ(x), ψ(x)
∀:left

∀x . φ(x) ` φ(x), ψ(x)
∨:right

∀x . φ(x) ` φ(x) ∨ ψ(x)
∀:right

∀x . φ(x) ` ∀x . φ(x) ∨ ψ(x)

The proviso of ∀:right holds; x is not free in the conclusion. In a backward
proof, this conclusion is the initial goal.

If we first applied ∀:left, inserting the formula φ(x), then x would be free in
the resulting subgoal. Then ∀:right could not be applied without renaming the
quantified variable:

φ(x), ∀x . φ(x) ` φ(y), ψ(y)
∨:right

φ(x), ∀x . φ(x) ` φ(y) ∨ ψ(y)
∀:right

φ(x), ∀x . φ(x) ` ∀x . φ(x) ∨ ψ(x)
∀:left

∀x . φ(x) ` ∀x . φ(x) ∨ ψ(x)

The topmost sequent is not basic; to finish the proof we must again apply ∀:left.
The first application of this rule has accomplished nothing. We have a general
heuristic: never apply ∀:left or ∃:right to a goal if a different rule can usefully
be applied.

10.4 Theorem proving with quantifiers 411

The following proof illustrates some of the difficulties of using quantifiers.2

φ(x), φ(z) ` ∃z . φ(z)→ ∀x . φ(x), φ(x), ∀x . φ(x)
→:right

φ(z) ` ∃z . φ(z)→ ∀x . φ(x), φ(x), φ(x)→ ∀x . φ(x)
∃:right

φ(z) ` ∃z . φ(z)→ ∀x . φ(x), φ(x)
∀:right

φ(z) ` ∃z . φ(z)→ ∀x . φ(x), ∀x . φ(x)
→:right

` ∃z . φ(z)→ ∀x . φ(x), φ(z)→ ∀x . φ(x)
∃:right

` ∃z . φ(z)→ ∀x . φ(x)

Working upwards from the goal, ∃:right is applied, introducing z as a free vari-
able. Although the existential formula remains in the subgoal, it remains dor-
mant until we again reach a goal where no other rule is applicable. The next
inference,→:right, moves φ(z) to the left. Since x is not free in the subgoal,
∀:right can be applied, replacing ∀x . φ(x) by φ(x). In the resulting subgoal,
∃:right is again applied (there is no alternative), substituting x for z . The final
subgoal after→:right is a basic sequent containing φ(x) on both sides.

Observe that ∃z . φ(z) → ∀x . φ(x) is expanded twice by ∃:right. The se-
quent cannot be proved otherwise. Sequents requiring n expansions of a quan-
tifier, for any given n , are not hard to devise.

Unification. When reasoning about quantifiers, we have a difficulty: how do we
choose the term t in the rules ∃:right and ∀:left? This amounts to predicting
which term will ultimately generate basic subgoals and a successful proof. In
the proof above, choosing z in the first ∃:right was arbitrary; any term would
have worked. Choosing x in the second ∃:right was crucial — but perhaps not
obvious.

We can postpone choosing the term in such rules. Introduce meta-variables
?a , ?b, . . . as placeholders for terms. When a goal can be solved by substituting
appropriate terms for its meta-variables, perform this substitution — throughout
the proof. For instance, the subgoal P(?a), 0 ` 1,P(f (?b)) becomes basic
if we replace ?a by f (?b); observe that ?a has still not been fully determined,
only its outer form f (· · ·). We solve for unknowns incrementally. Unification,
the process of determining the appropriate substitutions, is the key to automated
reasoning about quantifiers.

The rule ∀:left now takes the following form, where ?a stands for any meta-

2 To see that ∃z . φ(z)→ ∀x . φ(x) is a theorem, first note that in fully parenthe-
sized form it is ∃z . [φ(z) → (∀x . φ(x))]. Pushing the existential quantifier
inside the implication changes it to a universal quantifier. The formula is thus
equivalent to (∀z . φ(z))→ (∀x . φ(x)), which is trivially true.

412 10 A Tactical Theorem Prover

variable:
φ[?a/x], ∀x . φ, 0 ` 1

∀x . φ, 0 ` 1
∀:left

Enforcing provisos. Meta-variables cause difficulties of their own. Recall that
∀:right and ∃:left have the proviso ‘x not free in conclusion.’ What shall we
do when the conclusion contains meta-variables, which could be replaced by
any terms? Our approach is to label each free variable with a list of forbidden
meta-variables. The free variable b?a1,...,?ak

must never be contained in a term
substituted for the meta-variables ?a1, . . . , ?ak . The unification algorithm can
enforce this.

Let us simplify the terminology. Labelled free variables will be called pa-
rameters. Meta-variables will be called variables.

Using parameters, the rule ∀:right becomes

0 ` 1, φ[b?a1,...,?ak
/x]

0 ` 1, ∀x . φ
∀:right

proviso: b must not occur in the
conclusion and ?a1, . . . , ?ak must
be all the variables in the conclu-
sion.

The first part of the proviso ensures that the parameter b is not already in use,
while the second part ensures that b is not slipped in later by a substitution. The
treatment of ∃:left is the same.

Parameters ensure correct quantifier reasoning. For example, ∀x . φ(x , x)
does not, in general, imply ∃y .∀x . φ(x , y). Consider an attempted proof of the
corresponding sequent:

φ(?c, ?c), ∀x .φ(x , x) ` ∃y .∀x .φ(x , y), φ(b?a , ?a)
∀:left

∀x .φ(x , x) ` ∃y .∀x .φ(x , y), φ(b?a , ?a)
∀:right

∀x .φ(x , x) ` ∃y .∀x .φ(x , y), ∀x .φ(x , ?a)
∃:right

∀x .φ(x , x) ` ∃y .∀x .φ(x , y)

The topmost sequent cannot be made basic. To make φ(?c, ?c) and φ(b?a , ?a)
identical, a substitution would have to replace both ?c and ?a by b?a . However,
the parameter b?a is forbidden from occurring in a term substituted for ?a . The
attempted proof may continue to grow upwards through applications of ∀:right
and ∃:left, but no basic sequent will ever be generated.

For a contrasting example, let us prove that ∀x .φ(x , x) implies ∀x .∃y .φ(x , y):

φ(?c, ?c), ∀x .φ(x , x) ` ∃y .φ(a, y), φ(a, ?b)
∀:left

∀x .φ(x , x) ` ∃y .φ(a, y), φ(a, ?b)
∃:right

∀x .φ(x , x) ` ∃y .φ(a, y)
∀:right

∀x .φ(x , x) ` ∀x .∃y .φ(x , y)

10.5 Representing terms and formulæ 413

Replacing ?b and ?c by a transforms both φ(?c, ?c) and φ(a, ?b) into φ(a, a),
completing the proof. The parameter a is not labelled with any variables because
there are none in the goal supplied to ∀:right.

Further reading. A number of textbooks present logic from the viewpoint of
computer science. They emphasize proof procedures and unification, avoiding

the more traditional concerns of mathematical logic, such as model theory. See Galton
(1990) or Reeves and Clarke (1990) for a gentle introduction to logic. Gallier (1986)
gives a more technical treatment centred around the sequent calculus.

Exercise 10.8 Reconstruct the first three quantifier proofs above, this time us-
ing (meta) variables and parameters.

Exercise 10.9 Falsify the sequent ∀x .P(x , x) ` ∃y .∀x .P(x , y) by let-
ting P denote a suitable relation in a structure.

Exercise 10.10 If the attempted proof of ∀x . φ(x , x) ` ∃y .∀x . φ(x , y) is
continued, will parameters allow it to succeed?

Exercise 10.11 Demonstrate that ` ∃z . φ(z) → ∀x . φ(x) has no proof that
applies ∃:right only once.

Exercise 10.12 For each of the following, construct a proof or demonstrate
that no proof exists (a and b are constants):

` ∃z . φ(z)→ φ(a) ∧ φ(b)

∀x . ∃y . φ(x , y) ` ∃y .∀x . φ(x , y)

∃y .∀x . φ(x , y) ` ∀x . ∃y . φ(x , y)

Processing terms and formulæ in ML
Let us code an infrastructure for theorem proving. Terms and formulæ

must be represented; abstraction, substitution, parsing and pretty printing must
be implemented. Thanks to the methods we have accumulated in recent chap-
ters, none of this programming is especially difficult.

10.5 Representing terms and formulæ
The techniques we have developed for the λ-calculus (in Section 9.7)

work for first-order logic. In some respects, first-order logic is simpler. An
inference can affect only the outermost variable binding; there is nothing corre-
sponding to a reduction within a λ-term.

414 10 A Tactical Theorem Prover

The signature. Signature FOL defines the representation of first-order terms and
formulæ:

signature FOL =
sig
datatype term = Var of string

| Param of string * string list
| Bound of int
| Fun of string * term list

datatype form = Pred of string * term list
| Conn of string * form list
| Quant of string * string * form

type goal = form list * form list
val precOf : string -> int
val abstract : int -> term -> form -> form
val subst : int -> term -> form -> form
val termVars : term * string list -> string list
val goalVars : goal *string list -> string list
val termParams : term * (string * string list) list

-> (string * string list) list
val goalParams : goal *(string * string list) list

-> (string * string list) list
end;

Type term realizes the methods described in the previous section. A variable
(constructor Var) has a name. A Bound variable has an index. A Fun appli-
cation has a function’s name and argument list; a function taking no arguments
is simply a constant. A parameter (Param) has a name and a list of forbidden
variables.

Type form is elementary. An atomic formula (Pred) has a predicate’s name
and argument list. A connective application (Conn) has a connective and a list
of formulæ, typically "˜", "&", "|", "-->", or "<->" paired with one or
two formulæ. A Quant formula has a quantifier (either "ALL" or "EX"), a
bound variable name and a formula for the body.

Type goal abbreviates the type of pairs of formula lists. Some older ML com-
pilers do not allow type abbreviations in signatures. We could specify goal
simply as a type: its declaration inside the structure would be visible outside.

The function precOf defines the precedences of the connectives, as required
for parsing and printing.

Functions abstract and subst resemble their namesakes of the previous chap-
ter, but operate on formulæ. Calling abstract i t p replaces each occurrence of t
in p by the index i (which is increased within quantifications); typically i = 0
and t is an atomic term. Calling subst i t p replaces the index i (increased
within quantifications) by t in the formula p.

10.5 Representing terms and formulæ 415

The function termVars collects the list of variables in a term (without repe-
titions); termVars(t, bs) inserts all the variables of t into the list bs . The argu-
ment bs may appear to be a needless complication, but it eliminates costly list
appends while allowing termVars to be extended to formulæ and goals. This
will become clear when we examine the function definitions.

The function goalVars , which also takes two arguments, collects the list of
variables in a goal. A goal in Hal is a sequent. Although sequents are represented
in ML using formula lists, not multisets, we shall be able to implement the style
of proof discussed above.

The functions termParams and goalParams collect the list of parameters in
a term or goal, respectively. Each parameter consists of its name paired with a
list of variable names.

The structure. Structure Fol (Figure 10.2) implements signature FOL. The da-
tatype declarations of term and form are omitted to save space; they are
identical to those in the signature. The structure declares several functions not
specified in the signature.

Calling replace (u1, u2) t replaces the term u1 by u2 throughout the term t .
This function is called by abstract and subst .

Functionals accumForm and accumGoal demonstrate higher-order program-
ming. Suppose that f has type term × τ → τ , for some type τ , where f (t, x)
accumulates some information about t in x . (For instance, f could be termVars ,
which accumulates the list of free variables in a term.) Then foldr f extends f
to lists of terms. The function accumForm f has type form × τ → τ , extend-
ing f to operate on formulæ. It lets foldr f handle the arguments of a predi-
cate P(t1, . . . , tn); it recursively lets foldr (accumForm f) handle the formula
lists of connectives. The functional accumGoal calls foldr twice, extending a
function of type form× τ → τ to one of type (form list × form list)× τ → τ .
It extends a function involving formulæ to one involving goals.

Functionals accumForm and accumGoal provide a uniform means of travers-
ing formulæ and goals. They define the functions goalVars and goalParams
and could have many similar applications. Moreover, they are efficient: they
create no lists or other data structures.

The functions termVars and termParams are defined by recursion, scan-
ning a term to accumulate its variables or parameters. They use foldr to traverse
argument lists. The function insert (omitted to save space) builds an ordered
list of strings without repetitions. Note that termVars does not regard the pa-
rameter b?a1,...,?ak

as containing ?a1, . . . , ?ak ; these forbidden variables are not
logically part of the term and perhaps ought to be stored in a separate table.

416 10 A Tactical Theorem Prover

Figure 10.2 First-order logic: representing terms and formulæ

structure Fol : FOL =
struct
datatype term = ...; datatype form = ...
type goal = form list * form list;

fun replace (u1,u2) t =
if t=u1 then u2 else

case t of Fun(a,ts) => Fun(a, map (replace(u1,u2)) ts)
| _ => t;

fun abstract i t (Pred(a,ts)) = Pred(a, map (replace(t, Bound i)) ts)
| abstract i t (Conn(b,ps)) = Conn(b, map (abstract i t) ps)
| abstract i t (Quant(qnt,b,p)) = Quant(qnt, b, abstract (i+1) t p);

fun subst i t (Pred(a,ts)) = Pred(a, map (replace(Bound i, t)) ts)
| subst i t (Conn(b,ps)) = Conn(b, map (subst i t) ps)
| subst i t (Quant(qnt,b,p)) = Quant(qnt, b, subst (i+1) t p);

fun precOf "˜" = 4
| precOf "&" = 3
| precOf "|" = 2
| precOf "<->" = 1
| precOf "-->" = 1
| precOf _ = ˜1 (*means not an infix*);

fun accumForm f (Pred(_,ts), z) = foldr f z ts
| accumForm f (Conn(_,ps), z) = foldr (accumForm f) z ps
| accumForm f (Quant(_,_,p), z) = accumForm f (p,z);

fun accumGoal f ((ps,qs), z) = foldr f (foldr f z qs) ps;

fun insert ...

fun termVars (Var a, bs) = insert(a,bs)
| termVars (Fun(_,ts), bs) = foldr termVars bs ts
| termVars (_, bs) = bs;

val goalVars = accumGoal (accumForm termVars);

fun termParams (Param(a,bs), pairs) = (a,bs) :: pairs
| termParams (Fun(_,ts), pairs) = foldr termParams pairs ts
| termParams (_, pairs) = pairs;

val goalParams = accumGoal (accumForm termParams);
end;

10.6 Parsing and displaying formulæ 417

Exercise 10.13 Sketch how FOL and Fol can be modified to adopt a new repre-
sentation of terms. Bound variables are identified by name, but are syntactically
distinct from parameters and meta-variables. Would this representation work for
the λ-calculus?

Exercise 10.14 Change the declaration of type form , replacing Conn by sep-
arate constructors for each connective, say Neg , Conj , Disj , Imp, Iff . Modify
FOL and Fol appropriately.

Exercise 10.15 The function accumGoal is actually more polymorphic than
was suggested above. What is its most general type?

10.6 Parsing and displaying formulæ
Our parser and pretty printer (from Chapters 9 and 8, respectively) can

implement the syntax of first-order logic. We employ the following grammar for
terms (Term), optional argument lists (TermPack), and non-empty term lists
(TermList):

TermList = Term {, Term}∗

TermPack = (TermList)

| Empty

Term = Id TermPack

| ? Id

Formulæ (Form) are defined in mutual recursion with primaries, which consist
of atomic formulæ and their negations:

Form = ALL Id . Form

| EX Id . Form

| Form Conn Form

| Primary

Primary = ˜ Primary

| (Form)

| Id TermPack

418 10 A Tactical Theorem Prover

The quantifiers are rendered into ASCII characters as ALL and EX; the following
table gives the treatment of the connectives:

Usual symbol: ¬ ∧ ∨ → ↔

ASCII version: ˜ & | --> <->

The formula ∃z . φ(z)→ ∀x . φ(x) might be rendered as

EX z. P(z) --> (ALL x. P(x))

since ASCII lacks Greek letters. Hal requires a quantified formula to be enclosed
in parentheses if it is the operand of a connective.

Parsing. The signature for parsing is minimal. It simply specifies the function
read , for converting strings to formulæ:

signature PARSEF OL =
sig
val read: string -> Fol.form
end;

Before we can implement this signature, we must build structures for the lexical
analysis and parsing of first-order logic. Structure FolKey defines the lexical
syntax. Let us apply the functors described in Chapter 9:

structure FolKey =
struct val alphas = ["ALL","EX"]

and symbols = ["(", ")", ".", ",", "?", "˜",
"&", "|", "<->", "-->", "|-"]

end;
structure FolLex = Lexical (FolKey);
structure FolParsing = Parsing (FolLex);

Figure 10.3 presents the corresponding structure. It is fairly simple, but a few
points are worth noting.

Functions list and pack express the grammar phrases TermList and TermPack .
They are general enough to define ‘lists’ and ‘packs’ of arbitrary phrases.

The parser cannot distinguish constants from parameters or check that func-
tions have the right number of arguments: it keeps no information about the
functions and predicates of the first-order language. It regards any identifier
as a constant, representing x by Fun("x", []). When parsing the quantifica-
tion ∀x . φ(x), it abstracts the body φ(x) over its occurrences of the ‘constant’ x .

As discussed in the previous chapter, our parser cannot accept left-recursive
grammar rules such as

Form = Form Conn Form.

10.6 Parsing and displaying formulæ 419

Figure 10.3 Parsing for first-order logic

structure ParseFol : PARSEF OL =
struct
local

open FolParsing
fun list ph = ph -- repeat ("," $-- ph) >> (op::);

fun pack ph = "(" $-- list ph -- $")" >> #1
|| empty;

fun makeQuant ((qnt,b),p) =
Fol.Quant(qnt, b, Fol.abstract 0 (Fol.Fun(b,[])) p);

fun makeConn a p q = Fol.Conn(a, [p,q]);
fun makeNeg p = Fol.Conn("˜", [p]);

fun term toks =
(id -- pack term >> Fol.Fun
|| "?" $-- id >> Fol.Var) toks;

fun form toks =
($"ALL" -- id -- "." $-- form >> makeQuant
|| $"EX" -- id -- "." $-- form >> makeQuant
|| infixes (primary, Fol.precOf , makeConn)) toks

and primary toks =
("˜" $-- primary >> makeNeg
|| "(" $-- form -- $")" >> #1
|| id -- pack term >> Fol.Pred) toks;

in
val read = reader form

end
end;

420 10 A Tactical Theorem Prover

Instead, it relies on the precedences of the connectives. It invokes the parsing
function infixes with three arguments:

• primary parses the operands of connectives.
• precOf defines the precedences of the connectives.
• makeConn applies a connective to two formulæ.

Most of the structure body is made private by a local declaration. At the
bottom it defines the only visible identifiers, form and read . We could easily
declare a reading function for terms if necessary.

Displaying. Signature DISPLAY FOL specifies the pretty printing operators for
formulæ and goals (which are sequents):

signature DISPLAYF OL =
sig
val form: Fol.form -> unit
val goal: int -> Fol.goal -> unit
end;

The integer argument of function goal is displayed before the goal itself. It
represents the subgoal number; a proof state typically has several subgoals. The
sessions in Section 10.14 illustrate the output.

Structure DisplayFol implements this signature; see Figure 10.4. Our pretty
printer must be supplied with symbolic expressions that describe the formatting.
Function enclose wraps an expression in parentheses, while list inserts commas
between the elements of a list of expressions. Together, they format argument
lists as (t1, . . . , tn).

A parameter’s name is printed, but not its list of forbidden variables. Another
part of the program will display that information as a table.

The precedences of the connectives govern the inclusion of parentheses. Call-
ing formp k q formats the formula q — enclosing it in parentheses, if necessary,
to protect it from an adjacent connective of precedence k . In producing the
string q & (p | r), it encloses p | r in parentheses because the adjacent
connective (&) has precedence 3 while | has precedence 2.

Exercise 10.16 Explain the workings of each of the functions supplied to >>
in ParseFol .

Exercise 10.17 Alter the parser to admit q --> ALL x. p as correct syntax
for q → (∀x . p), for example. It should no longer demand parentheses around
quantified formulæ.

10.6 Parsing and displaying formulæ 421

Figure 10.4 Pretty printing for first-order logic

structure DisplayFol : DISPLAYF OL =
struct
fun enclose sexp = Pretty.blo(1, [Pretty.str"(", sexp, Pretty.str")"]);

fun commas [] = []
| commas (sexp::sexps) = Pretty.str"," :: Pretty.brk 1 ::

sexp :: commas sexps;

fun list (sexp::sexps) = Pretty.blo(0, sexp :: commas sexps);

fun term (Fol.Param(a,_)) = Pretty.str a
| term (Fol.Var a) = Pretty.str ("?"ˆa)
| term (Fol.Bound i) = Pretty.str "??UNMATCHED INDEX??"
| term (Fol.Fun (a,ts)) = Pretty.blo(0, [Pretty.str a, args ts])

and args [] = Pretty.str""
| args ts = enclose (list (map term ts));

fun formp k (Fol.Pred (a,ts)) = Pretty.blo(0, [Pretty.str a, args ts])
| formp k (Fol.Conn("˜", [p])) =

Pretty.blo(0, [Pretty.str "˜", formp (Fol.precOf "˜") p])
| formp k (Fol.Conn(C, [p,q])) =

let val pf = formp (Int.max(Fol.precOf C, k))
val sexp = Pretty.blo(0, [pf p, Pretty.str(" "ˆC),

Pretty.brk 1, pf q])
in if (Fol.precOf C <= k) then (enclose sexp) else sexp
end

| formp k (Fol.Quant(qnt,b,p)) =
let val q = Fol.subst 0 (Fol.Fun(b,[])) p

val sexp = Pretty.blo(2, [Pretty.str(qnt ˆ " " ˆ b ˆ "."),
Pretty.brk 1, formp 0 q])

in if k>0 then (enclose sexp) else sexp
end

| formp k _ = Pretty.str"??UNKNOWN FORMULA??";

fun formList [] = Pretty.str"empty"
| formList ps = list (map (formp 0) ps);

fun form p = Pretty.pr (TextIO.stdOut, formp 0 p, 50);

fun goal (n:int) (ps,qs) =
Pretty.pr (TextIO.stdOut,

Pretty.blo (4, [Pretty.str(" " ˆ Int.toString n ˆ ". "),
formList ps, Pretty.brk 2, Pretty.str"|- ",
formList qs]),

50);
end;

422 10 A Tactical Theorem Prover

Exercise 10.18 The inner parenthesis pair in q & (p1 --> (p2 | r)) is
redundant because | has greater precedence than -->; our pretty printing often
includes such needless parentheses. Suggest modifications to the function form
that would prevent this.

Exercise 10.19 Explain how quantified formulæ are displayed.

10.7 Unification
Hal attempts to unify atomic formulæ in goals. Its basic unification

algorithm takes terms containing no bound variables. Given a pair of terms,
it computes a set of (variable, term) replacements to make them identical, or
reports that the terms cannot be unified. Performing the replacements is called
instantiation. Unification involves three cases:

Function applications. Two function applications can be unified only if they ap-
ply the same function; clearly no instantiation can transform f (?a) and g(b, ?c)
into identical terms. To unify g(t1, t2)with g(u1, u2) involves unifying t1 with u1

and t2 with u2 consistently — thus g(?a, ?a) cannot be unified with g(b, c) be-
cause a variable (?a) cannot be replaced by two different constants (b and c).

The unification of f (t1, . . . , tn)with f (u1, . . . , un) begins by unifying t1 with
u1, then applies the resulting replacements to the remaining terms. The next
step is unifying t2 with u2 and applying the new replacements to the remaining
terms, and so forth. If any unifications fail then the function applications are
not unifiable. The corresponding arguments can be chosen for unification in any
order without significantly affecting the outcome.

Parameters. Two parameters can be unified only if they have the same name. A
parameter cannot be unified with a function application.

Variables. The remaining and most interesting case is unifying a variable ?a
with a term t (distinct from ?a). If ?a does not occur in t then unification
succeeds, yielding the replacement (?a, t). If ?a does occur in t then unification
fails — for possibly two different reasons:

• If ?a occurs in a parameter of t , then ?a is a ‘forbidden variable’ for
that parameter and for the term. Replacing ?a by t would violate the
proviso of some quantifier rule.
• If t properly contains ?a then the terms cannot be unified: no term can

contain itself. For example, no replacement can transform f (?a) and ?a
into identical terms.

10.7 Unification 423

This is the notorious occurs check, which most Prolog interpreters omit because
of its cost. For theorem proving, soundness must have priority over efficiency;
the occurs check must be performed.

Examples. To unify g(?a, f (?c)) with g(f (?b), ?a), first unify ?a with f (?b), a
trivial step. After replacing ?a by f (?b) in the remaining arguments, unify f (?c)
with f (?b). This replaces ?c by ?b. The outcome can be given as the set {?a 7→
f (?b)), ?c 7→?b}. The unified formula is g(f (?b), f (?b)).

Here is another example. To unify g(?a, f (?a)) with g(f (?b), ?b), the first
step again replaces ?a by f (?b). The next task is unifying f (f (?b)) with ?b —
which is impossible because f (f (?b)) contains ?b. Unification fails.

Instantiation of parameters. Recall that each parameter carries a list of forbid-
den variables; b?a must never be part of a term t substituted for ?a . When a legal
replacement is performed, the occurrence of ?a in b?a is replaced by the vari-
ables contained in t , not by t itself. For instance, replacing ?a by g(?c, f (?d))
transforms b?a into b?c,?d . Any substitution for ?c or ?d is effectively a substi-
tution for ?a , and therefore ?c and ?d are forbidden to the parameter.

For example, to unify g(?a, f (b?a)) with g(h(?c, ?d), ?c), the first step is to
replace ?a by h(?c, ?d). The second arguments of g become f (b?c,?d) and ?c;
these terms are not unifiable because ?c is forbidden to the parameter b?c,?d .

Skolem functions. Parameters are not widely used in theorem proving; more
traditional are Skolem functions. The rules ∀:left and ∃:right, instead of cre-

ating the parameter b?a1,...,?ak , could introduce the term b(?a1, . . . , ?ak). Here, b is a
function symbol not appearing elsewhere in the proof. The term behaves like a param-
eter; the occurs check prevents unification from violating the rules’ provisos. Skolem
functions have advantages in automatic proof procedures, but they destroy the formula’s
readability; in higher-order logic they can even cause faulty reasoning.

The ML code. The signature specifies unification and instantiation functions, as
well as an exception Failed for reporting non-unifiable terms:

signature UNIFY =
sig
exception Failed
val atoms : Fol.form * Fol.form -> Fol.term StringDict.t
val instTerm : Fol.term StringDict.t -> Fol.term -> Fol.term
val instForm : Fol.term StringDict.t -> Fol.form -> Fol.form
val instGoal : Fol.term StringDict.t -> Fol.goal -> Fol.goal
end;

424 10 A Tactical Theorem Prover

The function atoms attempts to unify two atomic formulæ, while instTerm ,
instForm and instGoal apply replacements to terms, formulæ and goals, respec-
tively.

We represent a set of replacements by a dictionary, using structure StringDict
(Section 7.10); variable names are strings.

An atomic formula consists of a predicate applied to an argument list, such
as P(t1, . . . , tn). Unifying two atomic formulæ is essentially the same as uni-
fying two function applications; the predicates must be the same and the corre-
sponding argument pairs must be simultaneously unifiable.

Structure Unify (Figure 10.5) implements unification. The key functions are
declared within unifyLists in order to have access to env , the environment of re-
placements. Collecting the replacements in env is more efficient than applying
each replacement as it is generated. Replacements are regarded as cumulative
rather than simultaneous, just as in the λ-calculus interpreter’s treatment of def-
initions (Section 9.7). Simultaneous substitution by

{?b 7→ g(z), ?a 7→ f (?b)}

would replace ?a by f (?b), but our functions replace ?a by f (g(z)). This is the
correct treatment for our unification algorithm.

Here are some remarks about the functions declared in unifyLists:

• chase t replaces the term t , if it is a variable, by its assignment in env .
Nonvariable terms are returned without change; at each stage, unifica-
tion is concerned only with a term’s outer form.
• occurs a t tests whether the variable ?a occurs within term t ; like chase ,

it looks up variables in the environment.
• occsl a ts tests whether the variable ?a occurs within the list of terms ts .
• unify(t, u) creates a new environment from env by unifying t with u ,

if possible, otherwise raising exception Failed . If t and u are variables
then they must have no assignment in env ; violating this condition could
result in a variable having two assignments!
• unifyl(ts, us) simultaneously unifies the corresponding members of the

lists ts and us , raising Failed if their lengths differ. (If two terms are
not unifiable, the exception will arise in unify , not unifyl .)

The implementation is purely functional. Representing variables by references
might be more efficient — updating a variable would perform a replacement,
with no need for environments — but is incompatible with tactical theorem
proving. Applying a tactic to a proof state should create a new state, leaving the

10.7 Unification 425

Figure 10.5 Unification

structure Unify : UNIFY =
struct
exception Failed;

fun unifyLists env =
let fun chase (Fol.Var a) = (chase(StringDict.lookup(env,a))

handle StringDict.E _ => Fol.Var a)
| chase t = t

fun occurs a (Fol.Fun(_,ts)) = occsl a ts
| occurs a (Fol.Param(_,bs)) = occsl a (map Fol.Var bs)
| occurs a (Fol.Var b) =

(a=b) orelse (occurs a (StringDict.lookup(env,b))
handle StringDict.E _ => false)

| occurs a _ = false
and occsl a = List.exists (occurs a)
and unify (Fol.Var a, t) =

if t = Fol.Var a then env
else if occurs a t then raise Failed

else StringDict.update(env,a,t)
| unify (t, Fol.Var a) = unify (Fol.Var a, t)
| unify (Fol.Param(a,_), Fol.Param(b,_)) = if a=b then env

else raise Failed
| unify (Fol.Fun(a,ts), Fol.Fun(b,us)) = if a=b then unifyl(ts,us)

else raise Failed
| unify _ = raise Failed

and unifyl ([],[]) = env
| unifyl (t::ts, u::us) = unifyLists (unify (chase t, chase u)) (ts,us)
| unifyl _ = raise Failed

in unifyl end

fun atoms (Fol.Pred(a,ts), Fol.Pred(b,us)) =
if a=b then unifyLists StringDict.empty (ts,us) else raise Failed

| atoms _ = raise Failed;

fun instTerm env (Fol.Fun(a,ts)) = Fol.Fun(a, map (instTerm env) ts)
| instTerm env (Fol.Param(a,bs)) =

Fol.Param(a, foldr Fol.termVars [] (map (instTerm env o Fol.Var) bs))
| instTerm env (Fol.Var a) = (instTerm env (StringDict.lookup(env,a))

handle StringDict.E _ => Fol.Var a)
| instTerm env t = t;

fun instForm env (Fol.Pred(a,ts)) = Fol.Pred(a, map (instTerm env) ts)
| instForm env (Fol.Conn(b,ps)) = Fol.Conn(b, map (instForm env) ps)
| instForm env (Fol.Quant(qnt,b,p)) = Fol.Quant(qnt, b, instForm env p);

fun instGoal env (ps,qs) = (map (instForm env) ps, map (instForm env) qs);
end;

426 10 A Tactical Theorem Prover

original state unchanged so that other tactics can be tried. A unification algo-
rithm could employ imperative techniques provided they were invisible outside.

The unification function raises exception Failed when two terms cannot be
unified. As in parsing, the failure may be detected in deeply nested recursive
calls; the exception propagates upwards. This is a typical case where exceptions
work well.

Function instTerm substitutes in parameters as described above. Each for-
bidden variable is replaced by the list of variables in the term resulting from
the substitution. This could be done using List.concat , but the combination of
foldr and termVars performs less copying.

Efficient unification algorithms. The algorithm presented here can take expo-
nential time, in highly exceptional cases. In practice, it is quite usable. More

efficient algorithms exist. The linear time algorithm of Paterson and Wegman (1978)
is usually regarded as too complicated for practical use. The algorithm of Martelli and
Montanari (1982) is almost linear and is intended to be usable. However, Corbin and
Bidoit (1983) propose an algorithm based upon the naı̈ve one, but representing terms
by graphs (really, pointers) instead of trees. They claim it to be superior to the almost
linear algorithms because of its simplicity, despite needing quadratic time. Ružička and
Prı́vara (1988) have refined this approach to be almost linear too.

Exercise 10.20 What could happen if this line were omitted from unify?

if t = Fol.Var a then env else

Tactics and the proof state
Our proof procedure for the sequent calculus operates by successive

refinements, working backwards from a goal. The proof tree grows up from
the root. Coding the procedure in ML requires a data structure for proof states,
which are partially constructed proofs. Inference rules will be implemented as
functions, called tactics, on proof states.

10.8 The proof state
A formal proof is a tree whose every node carries a sequent and the

name of a rule. Each node’s branches lead to the premises of its rule. But the
ML datatype corresponding to such trees is unsuitable for our purposes. Back-
ward proof requires access to the leaves, not to the root. Extending the proof
turns a leaf into a branch node, and would require copying part of the tree. The
intermediate nodes would play no useful rôle in the search for a proof.

Hal omits the intermediate nodes altogether. A partial proof tree contains just
two parts of the proof. The root, or main goal, is the formula we first set out

10.9 The ML signature 427

to prove. The leaves, or current subgoals, are the sequents that remain to be
proved.

A goal φ paired with the singleton subgoal list [` φ] represents the initial
state of a proof of φ; no rules have yet been applied. A goal φ paired with the
empty subgoal list is a final state, and represents a finished proof.

If the full proof tree is not stored, how can we be certain that a Hal proof is
correct? The answer is to hide the representation of proof states using an abstract
type state , providing a limited set of operations — to create an initial state, to
examine the contents of a state, to test for a final state, and to transform a state
into a new state by some rule of inference.

If greater security is required, the proof could be saved and checked by a
separate program. Bear in mind that proofs of real theorems can be extremely
large, and that no amount of machine checking can provide absolute security.
Our programs and proof systems are fallible — as are the theories we use to
reduce ‘real world’ tasks to logic.

Approaches to formalizing an inference system. While developing Edinburgh
LCF, Robin Milner conceived the idea of defining an inference system as an

abstract type. He designed ML’s type system to support this application. LCF’s type
thm denotes the set of theorems of the logic. Functions with result type thm implement
the axioms and inference rules.

Implementing the inference rules as functions from theorems to theorems supports
forward proof, LCF’s primitive style of reasoning. To support backward proof, LCF
provides tactics. LCF tactics represent a partial proof by a function of type thm list →
thm . This function proves the main goal, using inference rules, when supplied with
theorems for each of the subgoals. A finished proof can be supplied with the empty list
to prove the main goal. The classic description (Gordon et al., 1979) is out of print, but
my book on LCF also describes this work (Paulson, 1987).

Hal differs from LCF in implementing the inference rules as functions on proof states,
not on theorems. These functions are themselves tactics and support backward proof
as the primitive style. They do not support forward proof. The approach supports
unification; tactics may update meta-variables in the proof state.

Isabelle (Paulson, 1994) uses yet another approach. Rules and proof states have a
common representation in the typed λ-calculus. Combining these objects yields both
forward and backward proof. This requires some form of higher-order unification (Huet,
1975).

10.9 The ML signature
Signature RULE specifies the abstract type of proof states, with its op-

erations (Figure 10.6). Each value of type state contains a formula (the main
goal) and a list of sequents (the subgoals). Although we cannot tell from the
signature, each state contains additional information for internal use.

428 10 A Tactical Theorem Prover

Figure 10.6 The signature RULE

signature RULE =
sig
type state
type tactic = state -> state ImpSeq.t
val main : state -> Fol.form
val subgoals : state -> Fol.goal list
val initial : Fol.form -> state
val final : state -> bool
val basic : int -> tactic
val unify : int -> tactic
val conjL : int -> tactic
val conjR : int -> tactic
val disjL : int -> tactic
val disjR : int -> tactic
val impL : int -> tactic
val impR : int -> tactic
val negL : int -> tactic
val negR : int -> tactic
val iffL : int -> tactic
val iffR : int -> tactic
val allL : int -> tactic
val allR : int -> tactic
val exL : int -> tactic
val exR : int -> tactic
end;

10.9 The ML signature 429

Type tactic abbreviates the function type

state → state ImpSeq .t,

where ImpSeq is the structure for lazy lists presented in Section 8.4. A tactic
maps a state to a sequence of possible next states. The primitive tactics generate
finite sequences, typically of length zero or one. A complex tactic, say for depth-
first search, could generate an infinite sequence of states.

The function initial creates initial states containing a given formula as the
main goal and the only subgoal. The predicate final tests whether a proof state
is final, containing no subgoals.

The other functions in the signature are the primitive tactics, which define the
inference rules of the sequent calculus. Later, we shall introduce tacticals for
combining tactics.

The subgoals of a proof state are numbered starting from 1. Each primitive
tactic, given an integer argument i and a state, applies some rule of the sequent
calculus to subgoal i , creating a new state. For instance, calling

conjL 3 st

applies ∧:left to subgoal 3 of state st . If this subgoal has the form φ∧ψ,0 ` 1

then subgoal 3 of the next state will be φ,ψ, 0 ` 1. Otherwise, ∧:left is not
applicable to the subgoal and there can be no next state; conjL will return the
empty sequence.

If subgoal 5 of st is 0 ` 1,φ ∧ ψ , then

conjR 5 st

will make a new state whose subgoal 5 is 0 ` 1,φ and whose subgoal 6 is
0 ` 1,ψ . Subgoals numbered greater than 5 in st are shifted up.

Calling basic i st checks whether subgoal i of state st is a basic sequent. If
subgoal i has a common formula on both sides then it is deleted in the next state.
Otherwise, the tactic signals failure by returning the empty sequence. A more
elaborate treatment of basic sequents is tactic unify .

Calling unify i st attempts to solve subgoal i of state st by converting it into
a basic sequent. If it can unify a formula on the left with a formula on the right
then it deletes subgoal i and applies the unifying substitution to the rest of the
proof state. There may be several different pairs of unifiable formulæ; applying
unify to the subgoal

P(?a),P(?b) ` P(f (c)),P(c)

430 10 A Tactical Theorem Prover

generates a sequence of four next states. Only the first of these is computed,
with the others available upon demand, since sequences are lazy.

10.10 Tactics for basic sequents
Structure Rule is presented in parts. The first part (Figure 10.7) defines

the representation of type state and its primitive operations, and declares tactics
for basic sequents.

Declaring type state . The datatype declaration introduces type state with
its constructor State . The constructor is not exported, allowing access to the
representation only inside the structure body. Type tactic is declared to abbre-
viate the type of functions from state to state sequences.

Functions main and subgoals return the corresponding parts of a proof state.
The third component of a proof state is an integer, for generating unique names
in quantifier rules. Its value is initially 0 and is increased as necessary when
the next state is created. If this name counter were kept in a reference cell and
updated by assignment, much of the code would be simpler — especially where
the counter plays no rôle. However, applying a quantifier rule to a state would
affect all states sharing that reference. Resetting the counter to 0, while produc-
ing shorter names, could also lead to re-use of names and faulty reasoning. It is
safest to ensure that all tactics are purely functional.

Calling initial p creates a state containing the sequent ` p as its only subgoal,
with p as its main goal and 0 for its variable counter. Predicate final tests for an
empty subgoal list.

The definitions of basic and unify . All tactics are expressed using spliceGoals ,
a function to replace subgoal i by a new list of subgoals in a state. The List
functions take and drop extract the subgoals before and after i , so that the new
subgoals can be spliced into the correct place.

The declaration of propRule illustrates how proof states are processed. This
function makes a tactic from a function goalF of type goal → goal list . Applied
to an integer i and a state, it supplies subgoal i to goalF and splices in the
resulting subgoals; it returns the new state as a one-element sequence. It returns
the empty sequence if any exception is raised. Exception Subscript results from
the call List.nth(gs,i-1) if there is no i th subgoal; recall that nth numbers
a list’s elements starting from zero. Other exceptions, such as Match , can result
from goalF .

The tactic basic is a simple application of propRule . It supplies as goalF
a function that checks whether the goal (ps, qs) is a basic sequent. If so then

10.10 Tactics for basic sequents 431

Figure 10.7 First part of Rule — tactics for basic sequents

structure Rule :> RULE =
struct
datatype state = State of Fol.goal list * Fol.form * int

type tactic = state -> state ImpSeq.t;

fun main (State(gs,p,_)) = p
and subgoals (State(gs,p,_)) = gs;

fun initial p = State([([],[p])], p, 0);

fun final (State(gs,_,_)) = null gs;

fun spliceGoals gs newgs i = List.take(gs,i-1) @ newgs @ List.drop(gs,i);

fun propRule goalF i (State(gs,p,n)) =
let val gs2 = spliceGoals gs (goalF (List.nth(gs,i-1))) i
in ImpSeq.fromList [State(gs2, p, n)] end
handle _ => ImpSeq.empty;

val basic = propRule
(fn (ps,qs) =>
if List.exists (fn p => List.exists (fn q => p=q) qs) ps
then [] else raise Match);

fun unifiable ([], _) = ImpSeq.empty
| unifiable (p::ps, qs) =

let fun find [] = unifiable (ps,qs)
| find (q::qs) = ImpSeq.cons(Unify.atoms(p,q), fn()=> find qs)

handle Unify.Failed => find qs
in find qs end;

fun inst env (gs,p,n) =
State (map (Unify.instGoal env) gs, Unify.instForm env p, n);

fun unify i (State(gs,p,n)) =
let val (ps,qs) = List.nth(gs,i-1)

fun next env = inst env (spliceGoals gs [] i, p, n)
in ImpSeq.map next (unifiable(ps,qs)) end
handle Subscript => ImpSeq.empty;

432 10 A Tactical Theorem Prover

it returns the empty list of subgoals; the effect is to delete that subgoal from
the next state. But if (ps, qs) is not a basic sequent then the function raises an
exception.

The tactic unify is more complicated: it can return multiple next states. It
calls unifiable to generate a sequence of unifying environments, and inst to
apply them to the other subgoals. Function next , which performs the final pro-
cessing, is applied via the functional ImpSeq.map.

The function unifiable takes lists ps and qs of formulæ. It returns the se-
quence of all environments obtained by unifying some p of ps with some q
of qs . The function find handles the ‘inner loop,’ searching in qs for some-
thing to unify with p. It generates a sequence whose head is an environment and
whose tail is generated by the recursive call find qs , but if Unify.atoms raises
an exception then the result is simply find qs .

Look out for other goals. When unify solves a subgoal, it may update the state
so that some other subgoal becomes unprovable. Success of this tactic does

not guarantee that it is the right way to find a proof; in some cases, a different tactic
should be used instead. Any search procedure involving unify should use backtracking.
On the other hand, solving a goal by basic is always safe.

Exercise 10.21 Give an example to justify the warning above.

10.11 The propositional tactics
The next part of Rule implements the rules for ∧, ∨, ¬, → and ↔.

Since each connective has a ‘left’ rule and a ‘right’ rule, there are ten tactics
altogether. See Figure 10.8.

The tactics employ the same basic mechanism. Search for a suitable formula
on the given side, left or right; detach the connective; generate new subgoals
from its operands. Each tactic returns a single next state if it succeeds. A tactic
fails, returning an empty state sequence, if it cannot find a suitable formula.
We can express them succinctly with the help of propRule and a new function,
splitConn .

An example demonstrates the workings of splitConn . Given the string "&"
and a formula list qs , it finds the first element that matches Conn("&",ps),
raising exception Match if none exists. It also copies qs , omitting the matching
element. It returns ps paired with the shortened qs . Note that ps contains the
operands of the selected formula.

The functional propL helps express sequent rules. Given a sequent, it searches
for a connective on the left side. It supplies the result of the splitConn call to

10.11 The propositional tactics 433

Figure 10.8 Part of Rule — the propositional tactics

fun splitConn a qs =
let fun get [] = raise Match

| get (Fol.Conn(b,ps) :: qs) = if a=b then ps else get qs
| get (q::qs) = get qs;

fun del [] = []
| del ((q as Fol.Conn(b,_)) :: qs) = if a=b then qs

else q :: del qs
| del (q::qs) = q :: del qs

in (get qs, del qs) end;

fun propL a leftF = propRule (fn (ps,qs) => leftF (splitConn a ps, qs));

fun propR a rightF = propRule (fn (ps,qs) => rightF (ps, splitConn a qs));

val conjL = propL "&" (fn (([p1,p2], ps), qs) => [(p1::p2::ps, qs)]);

val conjR = propR "&"
(fn (ps, ([q1,q2], qs)) => [(ps, q1::qs), (ps, q2::qs)]);

val disjL = propL "|"
(fn (([p1,p2], ps), qs) => [(p1::ps, qs), (p2::ps, qs)]);

val disjR = propR "|" (fn (ps, ([q1,q2], qs)) => [(ps, q1::q2::qs)]);

val impL = propL "-->"
(fn (([p1,p2], ps), qs) => [(p2::ps, qs), (ps, p1::qs)]);

val impR = propR "-->" (fn (ps, ([q1,q2], qs)) => [(q1::ps, q2::qs)]);

val negL = propL "˜" (fn (([p], ps), qs) => [(ps, p::qs)]);

val negR = propR "˜" (fn (ps, ([q], qs)) => [(q::ps, qs)]);

val iffL = propL "<->"
(fn (([p1,p2], ps), qs) => [(p1::p2::ps, qs), (ps, p1::p2::qs)]);

val iffR = propR "<->"
(fn (ps, ([q1,q2], qs)) => [(q1::ps, q2::qs), (q2::ps, q1::qs)]);

434 10 A Tactical Theorem Prover

another function leftF , which creates new subgoals. The functional propR is
similar, but searches on the right side.

The tactics are given by val declarations, since they have no explicit argu-
ments. Each tactic consists of a call to propL or propR. Each passes in fn nota-
tion the argument leftF or rightF . Each function takes an analysed subgoal and
returns one or two subgoals. Thus conjL searches for a conjunction in the left
part and inserts the two conjuncts into the new subgoal, while conjR searches
for a conjunction in the right part and makes two subgoals.

10.12 The quantifier tactics
The mechanism presented above is easily modified to express the quan-

tifier tactics. There are a few differences from the propositional case. The code
appears in Figure 10.9, which completes the presentation of structure Rule .

The function splitQuant closely resembles splitConn . It finds the first for-
mula having a particular quantifier, "ALL" or "EX". It returns the entire for-
mula (rather than its operands) because certain quantifier tactics retain it in the
subgoal.

Although our sequent calculus is defined using multisets, it is implemented
using lists. The formulæ in a sequent are ordered; if the list contains two suitable
formulæ, the leftmost one will be found. To respect the concept of multisets, Hal
provides no way of reordering the formulæ. The quantifier tactics ensure that no
formula is permanently excluded from consideration.

The tactics need a source of fresh names for variables and parameters. Calling
letter n , for 0 ≤ n ≤ 25, returns a one-character string from "a" to "z". The
function gensym — whose name dates from Lisp antiquity — generates a string
from a natural number. Its result contains a base 26 numeral whose ‘digits’ are
lower-case letters; the prefix " " prevents clashes with names supplied from
outside.

The functional quantRule creates a tactic from a function goalF . It supplies
both a subgoal and a fresh name to goalF , which accordingly has type goal ×
string → goal list . When constructing the next state, it increments the variable
counter. Otherwise, quantRule is identical to propRule .

Each tactic is expressed by applying quantRule to a function in fn notation.
The function takes the subgoal (ps, qs) and the fresh name b; it returns one
subgoal.

Tactics allL and exR expand a quantified formula. They substitute a variable
with the name b into its body. They include the quantified formula (bound to qnt-
Form using as) in the subgoal. The formula is placed last in the list; thus, other
quantified formulæ can be selected when the tactic is next applied.

10.12 The quantifier tactics 435

Figure 10.9 Final part of Rule — the quantifier tactics

fun splitQuant qnt qs =
let fun get [] = raise Match

| get ((q as Fol.Quant(qnt2,_,p)) :: qs) = if qnt=qnt2 then q
else get qs

| get (q::qs) = get qs;
fun del [] = []
| del ((q as Fol.Quant(qnt2,_,p)) :: qs) = if qnt=qnt2 then qs

else q :: del qs
| del (q::qs) = q :: del qs

in (get qs, del qs) end;

fun letter n = String.substring("abcdefghijklmnopqrstuvwxyz", n, 1)

fun gensym n =
if n<26 then "_" ˆ letter n
else gensym(n div 26) ˆ letter(n mod 26);

fun quantRule goalF i (State(gs,p,n)) =
let val gs2 = spliceGoals gs (goalF (List.nth(gs,i-1), gensym n)) i
in ImpSeq.fromList [State(gs2, p, n+1)] end
handle _ => ImpSeq.empty;

val allL = quantRule (fn ((ps,qs), b) =>
let val (qntForm as Fol.Quant(_,_,p), ps ′) = splitQuant "ALL" ps

val px = Fol.subst 0 (Fol.Var b) p
in [(px :: ps ′ @ [qntForm], qs)] end);

val allR = quantRule (fn ((ps,qs), b) =>
let val (Fol.Quant(_,_,q), qs ′) = splitQuant "ALL" qs

val vars = Fol.goalVars ((ps,qs), [])
val qx = Fol.subst 0 (Fol.Param(b, vars)) q

in [(ps, qx::qs ′)] end);

val exL = quantRule (fn ((ps,qs), b) =>
let val (Fol.Quant(_,_,p), ps ′) = splitQuant "EX" ps

val vars = Fol.goalVars ((ps,qs), [])
val px = Fol.subst 0 (Fol.Param(b, vars)) p

in [(px::ps ′, qs)] end);

val exR = quantRule (fn ((ps,qs), b) =>
let val (qntForm as Fol.Quant(_,_,q), qs ′) = splitQuant "EX" qs

val qx = Fol.subst 0 (Fol.Var b) q
in [(ps, qx :: qs ′ @ [qntForm])] end);

end;

436 10 A Tactical Theorem Prover

Tactics allR and exL select a quantified formula and substitute a parameter
into its body. The parameter has the name b and carries, as forbidden variables,
all the variables in the subgoal.

As we reach the end of Rule , we should remember that the tactics declared
in it are the only means of creating values of type state . All proof procedures
— even if they demonstrate validity using sophisticated data structures — must
ultimately apply these tactics, constructing a formal proof. If the code given
above is correct, and the ML system is correct, then Hal proofs are guaranteed to
be sound. No coding errors after this point can yield faulty proofs. This security
comes from defining state as an abstract type.

Exercise 10.22 Suggest a representation of type state that would store the
entire proof tree. Best would be an encoding that uses little space while allowing
the proof tree to be reconstructed. Sketch the modifications to RULE and Rule .

Exercise 10.23 Our set of tactics provides no way of using a previously proved
theorem in a proof. A tactic based on the rule

` φ φ, 0 ` 1

0 ` 1

could insert the theorem ` φ as a lemma into a goal.3 Describe how such a
tactic could be implemented.

Exercise 10.24 ‘Structure Rule does not involve ParseFol or DisplayFol , so
faults in parsing and pretty printing cannot result in the construction of faulty
proofs.’ Comment on this statement.

Searching for proofs
Most of the programming is now behind us. We are nearly ready to

attempt proofs on the machine. We shall implement a package of commands
for applying tactics to a goal. This will demonstrate the treatment of proof
states, but will also reveal the tedium of rule-by-rule proof checking. Tacticals,
by providing control structures for tactics, will allow us to express automatic
theorem provers in a few lines of code.

3 This rule is a special case of ‘cut’; its first premise could be 0 ` 1,φ.

10.13 Commands for transforming proof states 437

10.13 Commands for transforming proof states
The user interface does not read from the terminal, but consists of a set

of commands to be invoked from the ML top level. This is typical of tactical
theorem provers. The most important command is ‘apply a tactic,’ and the tactic
could be given by an arbitrary ML expression; therefore, the command language
is ML itself. Remember that ML stands for Meta Language.

Hal’s interface is crude. It merely provides commands for setting, updating
and inspecting a stored proof state. Practical theorem proving requires addi-
tional facilities, such as an undo command for reverting to a previous state.
Because a tactic can return several next states, applying tactics defines a search
tree rooted in the initial state. A graphical user interface would provide means
for exploring this tree. To keep the code simple, such facilities are left as ex-
ercises. Some ML systems can communicate with scripting languages such as
Tcl/Tk, making it easy to put windows and menus on the screen. Good interface
design requires, in addition, careful study of users’ work habits.

Signature COMMAND specifies the user interface:

signature COMMAND =
sig
val goal : string -> unit
val by : Rule.tactic -> unit
val pr : Rule.state -> unit
val getState : unit -> Rule.state
end;

The interface consists of the following items, which (except pr) act upon a
stored proof state:

• The goal command accepts a formula φ, given as a string; it sets the
stored proof state to the initial state for φ.
• The by command applies a tactic to the current state. If the resulting

sequence of next states is non-empty, its head is taken to update the
stored proof state. Otherwise, the tactic has failed; an error message is
displayed.
• The pr command prints its argument, a proof state, on the terminal.
• The function getState returns the stored proof state.

Structure Command implements these items (Figure 10.10). The current state is
stored in a reference cell, initialised with the fictitious goal "No goal yet!".

Recall that a parameter, such as b?c,?d , is displayed simply as b. The inter-
face displays a table of each parameter, with its forbidden variables. Function
printpar prints the line

438 10 A Tactical Theorem Prover

Figure 10.10 User interface commands

structure Command : COMMAND =
struct

val currState = ref (Rule.initial (Fol.Pred("No goal yet!",[])));

fun question (s,z) = " ?" :: s :: z;

fun printParam (a,[]) = () (*print a line of parameter table*)
| printParam (a,ts) =

print (String.concat (a :: " not in " ::
foldr question ["\n"] ts));

fun printGoals (_, []) = ()
| printGoals (n, g::gs) = (DisplayFol.goal n g; printGoals (n+1,gs));

fun pr st = (*print a proof state*)
let val p = Rule.main st

and gs = Rule.subgoals st
in DisplayFol.form p;

if Rule.final st then print "No subgoals left!\n"
else (printGoals (1,gs);

app printParam (foldr Fol.goalParams [] gs))
end;

(*print new state, then set it*)
fun setState state = (pr state; currState := state);

val goal = setState o Rule.initial o ParseFol.read;

fun by tac = setState (ImpSeq.hd (tac (!currState)))
handle ImpSeq.Empty => print "** Tactic FAILED! **\n"

fun getState() = !currState;
end;

10.14 Two sample proofs using tactics 439

b not in ?c ?d

for b?c,?d ; it prints nothing at all for a parameter that has no forbidden vari-
ables. Function printgoals prints a list of numbered subgoals. With the help of
these functions, pr prints a state: its main goal, its subgoal list, and its table of
parameters.

Exercise 10.25 Design and implement an undo command that cancels the ef-
fect of the most recent by command. Repeated undo commands should revert
to earlier and earlier states.

Exercise 10.26 There are many ways of managing the search tree of states.
The interface could explore a single path through the tree. Each node would
store a sequence of possible next states, marking one as the active branch.
Changing the active branch at any node would select a different path. Develop
this idea.

10.14 Two sample proofs using tactics
To demonstrate the tactics and the user interface, let us do some proofs

on the machine. For convenience in referring to commands, we open the corre-
sponding module:

open Command;

Now we can perform proofs. The first example is brief, a proof of φ ∧ ψ →
ψ ∧ φ. The goal command gives this formula to Hal.

goal "P & Q --> Q & P";
> P & Q --> Q & P
> 1. empty |- P & Q --> Q & P

Now φ ∧ ψ → ψ ∧ φ is the main goal and the only subgoal. We must apply
→:right to subgoal 1; no other step is possible:

by (Rule.impR 1);
> P & Q --> Q & P
> 1. P & Q |- Q & P

Subgoal 1 becomes φ ∧ ψ ` ψ ∧ φ, which we have proved on paper. Although
∧:right could be applied to this goal, ∧:left leads to a shorter proof because it
makes only one subgoal.

by (Rule.conjL 1);
> P & Q --> Q & P

440 10 A Tactical Theorem Prover

> 1. P, Q |- Q & P

Again we have no choice. We must apply ∧:right to subgoal 1. Here is what
happens if we try a different tactic:

by (Rule.disjR 1);
> ** Tactic FAILED! **

This time, apply ∧:right. It makes two subgoals.

by (Rule.conjR 1);
> P & Q --> Q & P
> 1. P, Q |- Q
> 2. P, Q |- P

Tactics are usually applied to subgoal 1; let us tackle subgoal 2 for variety. It is
a basic sequent, so it falls to Rule.basic.

by (Rule.basic 2);
> P & Q --> Q & P
> 1. P, Q |- Q

Subgoal 1 is also a basic sequent. Solving it terminates the proof.

by (Rule.basic 1);
> P & Q --> Q & P
> No subgoals left!

Most theorem provers provide some means of storing theorems once proved, but
this is not possible in Hal. We go on to the next example, ∃z . φ(z)→ ∀x . φ(x),
which was discussed earlier.

goal "EX z. P(z) --> (ALL x. P(x))";
> EX z. P(z) --> (ALL x. P(x))
> 1. empty |- EX z. P(z) --> (ALL x. P(x))

The only possible step is to apply ∃:right to subgoal 1. The tactic generates a
variable called ?_a.

by (Rule.exR 1);
> EX z. P(z) --> (ALL x. P(x))
> 1. empty
> |- P(?_a) --> (ALL x. P(x)),
> EX z. P(z) --> (ALL x. P(x))

We could apply ∃:right again, but it seems sensible to analyse the other formula
in subgoal 1. So we apply→:right.

by (Rule.impR 1);
> EX z. P(z) --> (ALL x. P(x))

10.14 Two sample proofs using tactics 441

> 1. P(?_a)
> |- ALL x. P(x),
> EX z. P(z) --> (ALL x. P(x))

Continuing to work on the first formula, we apply ∀:right. The tactic generates a
parameter called _b, with ?_a as its forbidden variable. A table of parameters
is now displayed.

by (Rule.allR 1);
> EX z. P(z) --> (ALL x. P(x))
> 1. P(?_a) |- P(_b),
> EX z. P(z) --> (ALL x. P(x))
> _b not in ?_a

Since the subgoal contains P(?_a) on the left and P(_b) on the right, we
could try unifying these formulæ by calling Rule.unify . However, the forbid-
den variable of _b prevents this unification. Replacing ?_a by _bwould violate
the proviso of ∀:right.

by (Rule.unify 1);
> ** Tactic FAILED! **

The situation is like it was at the start of the proof, except that the subgoal
contains two new atomic formulæ. Since they are not unifiable, we have no
choice but to expand the quantifier again, using ∃:right. The variable ?_c is
created.

by (Rule.exR 1);
> EX z. P(z) --> (ALL x. P(x))
> 1. P(?_a)
> |- P(?_c) --> (ALL x. P(x)), P(_b),
> EX z. P(z) --> (ALL x. P(x))
> _b not in ?_a

The proof continues as it did before, with the two atomic formulæ carried along.
We avoid applying ∃:right a third time and instead apply→:right.

by (Rule.impR 1);
> EX z. P(z) --> (ALL x. P(x))
> 1. P(?_c), P(?_a)
> |- ALL x. P(x), P(_b),
> EX z. P(z) --> (ALL x. P(x))
> _b not in ?_a

The subgoal has a new formula on the left, namely P(?_c), and ?_c is not a
forbidden variable of _b. Therefore P(?_c) and P(_b) are unifiable.

by (Rule.unify 1);

442 10 A Tactical Theorem Prover

> EX z. P(z) --> (ALL x. P(x))
> No subgoals left!

Although the first attempt with Rule.unify failed, a successful proof was finally
found. This demonstrates how parameters and variables behave in practice.

10.15 Tacticals
The sample proofs of the previous section are unusually short. The

proof of even a simple formula can require many steps. To convince yourself of
this, try proving

((φ ↔ ψ)↔ χ)↔ (φ ↔ (ψ ↔ χ)).

Although proofs are long, each step is usually obvious. Often, only one or two
rules can be applied to a subgoal. Moreover, the subgoals can be tackled in any
order because a successful proof must prove them all. We can always work on
subgoal 1. A respectable proof procedure can be expressed using tactics, with
the help of a few control structures.

The basic tacticals. Operations on tactics are called tacticals by analogy with
functions and functionals. The simplest tacticals implement the control struc-
tures of sequencing, choice and repetition. They are analogous to the parsing
operators --, || and repeat (see Section 9.2). So they share the same names,
with the additional infix operator |@|.

Tacticals in Hal involve operations on sequences. Type multifun abbreviates
types in the signature (Figure 10.11). The tacticals are not restricted to tactics.
They are all polymorphic; type state appears nowhere. Let us describe these
tacticals by their effect on arbitrary functions of suitable type, not just tactics.

The tactical -- composes two functions sequentially. When the function
f --g is applied to x , it computes the sequence f (x) = [y1, y2, . . .] and returns
the concatenation of the sequences g(y1), g(y2), With tactics, -- applies
one tactic and then another to a proof state, returning all ‘next next’ states that
result.

The tactical || chooses between two functions. When the function f ||g
is applied to x , it returns f (x) if this sequence is non-empty, and otherwise
returns g(y). With tactics, || applies one tactic to a proof state, and if it fails,
tries another. The tactical |@| provides a less committal form of choice; when
f |@|g is applied to x , it concatenates the sequences f (x) and g(x).

The tactics all and no can be used with tacticals to obtain effects such as
repetition. For all x , all(x) returns the singleton sequence [x] while no(x)

10.15 Tacticals 443

Figure 10.11 The signature TACTICAL

infix 6 $--;
infix 5 --;
infix 0 || |@|;

signature TACTICAL =
sig
type (′a,′b) multifun = ′a -> ′b ImpSeq.t
val -- : (′a,′b)multifun * (′b,′c)multifun -> (′a,′c)multifun
val || : (′a,′b)multifun * (′a,′b)multifun -> (′a,′b)multifun
val |@| : (′a,′b)multifun * (′a,′b)multifun -> (′a,′b)multifun
val all : (′a,′a)multifun
val no : (′a,′b)multifun
val try : (′a,′a)multifun -> (′a,′a)multifun
val repeat : (′a,′a)multifun -> (′a,′a)multifun
val repeatDeterm : (′a,′a)multifun -> (′a,′a)multifun
val depthFirst : (′a->bool) -> (′a,′a)multifun -> (′a,′a)multifun
val depthIter : (′a->bool) * int -> (′a,′a)multifun -> (′a,′a)multifun
val firstF : (′a -> (′b,′c)multifun) list -> ′a -> (′b,′c)multifun
end;

returns the empty sequence. Thus, all succeeds with all arguments while no
succeeds with none. Note that all is the identity element for --:

all--f = f --all = f

Similarly, no is the identity for || and |@|.

Implementing the tacticals. Let us turn to the structure Tactical (Figure 10.12).
The rôle of sequence concatenation in -- is clear, but its rôle in |@| may be
obscure. What is wrong with this obvious definition?

fun (tac1 |@| tac2) x = ImpSeq.append(tac1 x, tac2 x);

This version of |@| may prematurely (or needlessly) call tac2. Defining |@|
using ImpSeq.concat ensures that tac2 is not called until the elements pro-
duced by tac1 have been exhausted. In a lazy language, the obvious definition
of |@| would behave properly.

The tactical try attempts to apply its argument.
The tactical repeat applies a function repeatedly. The result of repeat f x

is a sequence of values obtained from x by repeatedly applying f , such that a

444 10 A Tactical Theorem Prover

Figure 10.12 Tacticals

structure Tactical : TACTICAL =
struct
type (′a,′b)multifun = ′a -> ′b ImpSeq.t

fun (tac1 -- tac2) x = ImpSeq.concat (ImpSeq.map tac2 (tac1 x));

fun (tac1 || tac2) x =
let val y = tac1 x
in if ImpSeq.null y then tac2 x else y end;

fun (tac1 |@| tac2) x =
ImpSeq.concat(ImpSeq.cons(tac1 x, (*delay application of tac2!*)

fn()=> ImpSeq.cons(tac2 x,
fn()=> ImpSeq.empty)));

fun all x = ImpSeq.fromList [x];

fun no x = ImpSeq.empty;

fun try tac = tac || all;

fun repeat tac x = (tac -- repeat tac || all) x;

fun repeatDeterm tac x =
let fun drep x = drep (ImpSeq.hd (tac x))

handle ImpSeq.Empty => x
in ImpSeq.fromList [drep x] end;

fun depthFirst pred tac x =
(if pred x then all else tac -- depthFirst pred tac) x;

fun depthIter (pred,d) tac x =
let val next = ImpSeq.toList o tac

fun dfs i (y, sf) () =
if i<0 then sf ()
else if i<d andalso pred y

then ImpSeq.cons(y, foldr (dfs (i-1)) sf (next y))
else foldr (dfs (i-1)) sf (next y) ()

fun deepen k = dfs k (x, fn()=> deepen (k+d)) ()
in deepen 0 end;

fun orelseF (tac1, tac2) u = tac1 u || tac2 u;

fun firstF ts = foldr orelseF (fn _ => no) ts;
end;

10.15 Tacticals 445

further application of f would fail. The tactical is defined recursively, like the
analogous parsing operator.

The tactical repeatDeterm also provides repetition. It is deterministic: it
considers only the first outcome returned at each step. When the other outcomes
are not needed, repeatDeterm is much more efficient than repeat .

The tactical depthFirst explores the search tree generated by a function. Call-
ing depthFirst pred f x returns a sequence of values, all satisfying the predi-
cate pred , that were obtained from x by repeatedly applying f .

The tactical depthIter explores the search tree using depth-first iterative deep-
ening. It searches first to depth d , then depth 2d , then 3d and so forth; this en-
sures that no solutions are missed. Its other arguments are as in depthFirst . Its
rather messy implementation is based upon the code discussed in Section 5.20.

Finally, firstF is a convenient means of combining primitive inference rules;
see Figure 10.13 below.

Some examples. In order to demonstrate the tacticals, we first open their struc-
ture, making available the infixes.

open Tactical;

Now let us prove the following formula, which concerns the associative law for
conjunction:

goal "(P & Q) & R --> P & (Q & R)";
> (P & Q) & R --> P & (Q & R)
> 1. empty |- (P & Q) & R --> P & (Q & R)

The only rule that can be applied is →:right. Looking ahead a bit, we can
foresee two applications of ∧:left. With repeat we can apply both rules as often
as necessary:

by (repeat (Rule.impR 1 || Rule.conjL 1));
> (P & Q) & R --> P & (Q & R)
> 1. P, Q, R |- P & (Q & R)

Now ∧:right must be applied twice. We repeatedly apply the corresponding
tactic along with Rule.basic, which detects basic sequents:

by (repeat (Rule.basic 1 || Rule.conjR 1));
> (P & Q) & R --> P & (Q & R)
> No subgoals left!

We have proved the theorem using only two by commands; a rule-by-rule proof
would have needed eight commands. For another demonstration, let us prove a
theorem using one fancy tactic. Take our old quantifier example:

446 10 A Tactical Theorem Prover

goal "EX z. P(z) --> (ALL x. P(x))";
> EX z. P(z) --> (ALL x. P(x))
> 1. empty |- EX z. P(z) --> (ALL x. P(x))

Let us repeat the tactics used in Section 10.14, choosing their order carefully.
Certainly Rule.unify should be tried first, since it might solve the goal alto-
gether. And Rule.exR must be last; otherwise it will apply every time and
cause an infinite loop.

by (repeat (Rule.unify 1 || Rule.impR 1 ||
Rule.allR 1 || Rule.exR 1));

> EX z. P(z) --> (ALL x. P(x))
> No subgoals left!

A brief history of tacticals. Tacticals originated with Edinburgh LCF (Gordon
et al., 1979). Similar control structures crop up in rewriting (Paulson, 1983),

for expressing rewriting methods called conversions. The HOL system relies upon this
approach to rewriting (Gordon and Melham, 1993, Chapter 23).

Tacticals in LCF and HOL resemble our parsing operators: they use exceptions instead
of returning a sequence of outcomes. Isabelle tacticals return sequences in order to allow
backtracking and other search strategies (Paulson, 1994). Hal’s tacticals are closely
based on Isabelle’s.

Tacticals traditionally have names such as THEN, ORELSE, REPEAT, etc., but this
violates the convention that only constructor names should start with a capital letter.

Exercise 10.27 What does the tactic repeat(f --f)(x) do?

Exercise 10.28 Does depthFirst really perform depth-first search? Explain in
detail how it works.

Exercise 10.29 Describe situations where the sequence returned by -- or |@|
omits some elements that intuitively should be present. Implement new tacticals
that do not have this fault. Do -- and |@| have any compensating virtues?

Exercise 10.30 Tacticals repeat and depthFirst appear in their traditional
form. Their efficiency is adequate for interactive proof but not for use in proof
procedures. Code more efficient versions, not using --.

10.16 Automatic tactics for first-order logic
Using tacticals, we shall code two simple tactics for automatic proof.

Given a subgoal, depth attempts to solve it by unification, or by breaking down
some formula, or by expanding quantifiers. Quantifiers can be expanded repeat-
edly without limit; the tactic may run forever.

10.16 Automatic tactics for first-order logic 447

The components of depth are themselves useful for interactive proof, espe-
cially when depth fails. They are specified in signature TAC:

signature TAC =
sig
val safeSteps: int -> Rule.tactic
val quant : int -> Rule.tactic
val step : int -> Rule.tactic
val depth : Rule.tactic
val depthIt : int -> Rule.tactic
end;

The signature specifies five tactics:

• safeSteps i applies a nonempty series of ‘safe’ rules to subgoal i . These
are any rules except ∃:right and ∀:left. Tactic unify is also excluded,
because it can affect other goals.
• quant i expands quantifiers in subgoal i . It applies both ∃:right and
∀:left, if possible.
• depth solves all subgoals by depth-first search. It uses safeSteps , unify

and quant .
• step i refines subgoal i by safe steps if possible, otherwise trying unifi-

cation and quantifier expansion.
• depthIt d solves all subgoals by depth-first iterative deepening with in-

crement d . It uses step 1, and is exhaustive but slow.

Structure Tac (Figure 10.13) shows how succinctly tactics can express proof
procedures. The declaration of safe simply lists the necessary tactics, combined
by firstF . Tactics that create one subgoal precede tactics that create two; apart
from this, their order is arbitrary. Repeating safe via the tacticals -- and repeat-
Determ yields safeSteps . We can see that quant expands at least one quantifier,
perhaps two: if allL succeeds then it attempts exR too.

Of the two search tactics, depth is the faster, but is incomplete. It employs
depth-first search, which can go down blind alleys. Also it applies Rule.unify
whenever possible, regardless of its effect on other goals. Tactic depthIt reme-
dies these points. Note that step uses not || but |@| to combine Rule.unify
with the quantifier tactics; even if unification is successful, the search may in-
vestigate quantifier expansions too. Both search tactics test for final proof states
using Rule.final (declared on page 431).

Let us try Tac.depth on some of the problems of Pelletier (1986). This is
problem 39:

goal "˜ (EX x. ALL y. J(x,y) <-> ˜J(y,y))";

448 10 A Tactical Theorem Prover

Figure 10.13 The structure Tac

structure Tac : TAC =
struct
local open Tactical Rule

in
val safe =

firstF [basic,
conjL, disjR, impR, negL, negR, exL, allR, (*1 subgoal*)
conjR, disjL, impL, iffL, iffR (*2 subgoals*)];

fun safeSteps i = safe i -- repeatDeterm (safe i);

fun quant i = (allL i -- try (exR i)) || exR i;

val depth = depthFirst final (safeSteps 1 || unify 1 || quant 1);

fun step i = safeSteps i || (unify i |@| allL i |@| exR i);

fun depthIt d = depthIter (final, d) (step 1);
end

end;

> ˜(EX x. ALL y. J(x, y) <-> ˜J(y, y))
> 1. empty |- ˜(EX x. ALL y. J(x, y) <-> ˜J(y, y))

Applying Tac.depth proves it:

by Tac.depth;
> ˜(EX x. ALL y. J(x, y) <-> ˜J(y, y))
> No subgoals left!

Problem 40 is more complicated.4

goal "(EX y. ALL x. J(y,x) <-> ˜J(x,x)) --> \
\ ˜ (ALL x. EX y. ALL z. J(z,y) <-> ˜ J(z,x))";
> (EX y. ALL x. J(y, x) <-> ˜J(x, x)) -->
> ˜(ALL x. EX y. ALL z. J(z, y) <-> ˜J(z, x))
> 1. empty
> |- (EX y. ALL x. J(y, x) <-> ˜J(x, x)) -->
> ˜(ALL x. EX y. ALL z. J(z, y) <-> ˜J(z, x))

This problem too is easily proved.

by Tac.depth;

4 Since the goal formula does not fit on one line, the \...\ escape sequence
divides the string over two lines.

10.16 Automatic tactics for first-order logic 449

> (EX y. ALL x. J(y, x) <-> ˜J(x, x)) -->
> ˜(ALL x. EX y. ALL z. J(z, y) <-> ˜J(z, x))
> No subgoals left!

Problem 42 is harder still: Tac.depth never returns.

goal "˜(EX y. ALL x. p(x,y) <-> ˜(EX z. p(x,z) & p(z,x)))";
> ˜(EX y. ALL x. p(x, y) <-> ˜(EX z. p(x, z) & p(z, x)))
> 1. empty
> |- ˜(EX y.
> ALL x.
> p(x, y) <-> ˜(EX z. p(x, z) & p(z, x)))

But our other search tactic succeeds:

by (Tac.depthIt 1);
> ˜(EX y. ALL x. p(x, y) <-> ˜(EX z. p(x, z) & p(z, x)))
> No subgoals left!

It is worth reiterating that our tactics cannot compete with automatic theorem
provers. They work by applying primitive inference rules, whose implemen-
tation was designed for interactive use. Their ‘inner loop’ (the tactic safe)
searches for connectives in a profligate manner. No heuristics govern the ex-
pansion of quantifiers. This simple-looking example (problem 43) is not solved
in a reasonable time:

goal "(ALL x. ALL y. q(x,y) <-> (ALL z.p(z,x)<->p(z,y))) \
\ --> (ALL x. (ALL y. q(x,y) <-> q(y,x)))";

Tactics work best when the logic has no known automatic proof procedure. Tac-
ticals allow experimentation with different search procedures, while the abstract
type state guards against faulty reasoning.

Other theorem provers. Most automatic theorem provers are based on the res-
olution principle (Chang and Lee, 1973). They prove a formula A by convert-

ing ¬A to clause form (based upon conjunctive normal form) and deriving a contradic-
tion. A popular resolution prover is W. McCune’s Otter. For example, Quaife (1992) has
used Otter for proofs in Peano arithmetic, geometry and set theory. Another impressive
system is SETHEO (Letz et al., 1992).

Tableau provers are less powerful, but more natural than resolution provers, since
they do not require conversion to clause form. Examples include HARP (Oppacher and
Suen, 1988) and the amazingly simple leanTAP (Beckert and Posegga, 1995), which
consists of a few lines of Prolog. Tactic depthIt is loosely based upon leanTAP but is
much slower.

The tactical approach combines modest automation with great flexibility. Systems
apply it not for classical first-order logic, but for other logics of computational impor-
tance. LCF supports a logic of domain theory (Gordon et al., 1979; Paulson, 1987). The
HOL system supports Church’s higher-order logic (Gordon and Melham, 1993). Nuprl

450 10 A Tactical Theorem Prover

supports a form of constructive type theory (Constable et al., 1986). Isabelle is a generic
theorem prover, supporting several different logics (Paulson, 1994).

Exercise 10.31 Draw a diagram showing the structures, signatures and func-
tors of Hal and their relationships.

Exercise 10.32 Implement a tactic for the rule of mathematical induction, in-
volving the constant 0 and the successor function suc:

0 ` 1,φ[0/x] φ, 0 ` 1,φ[suc(x)/x]
0 ` 1,∀x . φ

proviso: x must not
occur free in the con-
clusion

Can you foresee any difficulties in adding the tactic to an automatic proof pro-
cedure?

Exercise 10.33 Declare a tactical someGoal such that, when applied to a state
with n subgoals, someGoal f is equivalent to

f (n) || f (n − 1) || . . . || f (1).

What does repeat (someGoal Rule.conjR) do to a proof state?

Exercise 10.34 Our proof procedure always works on subgoal 1. When might
it be better to choose other subgoals?

Summary of main points
• The sequent calculus is a convenient proof system for first-order logic.
• Unification assists reasoning about quantifiers.
• The occurs check in unification is essential for soundness.
• Quantified variables can be treated like the bound variables of the λ-

calculus.
• Inference rules can be provided as operations on an abstract type of

theorems or proofs.
• The operations --, || and repeat have analogues throughout functional

programming.
• The tactical approach allows a mixture of automatic and interactive the-

orem proving.

