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1 Previous Research and Track Record

Lawrence C. Paulson is Professor of Computational Logic at the University of
Cambridge, where he has held established posts since 1983. One of his main
activities is developing proof tools. His early work made fundamental
contributions to Prof. M. J. C. Gordon’s proof assistant, HOL. In 1986, Paulson
introduced Isabelle, a generic proof assistant. Isabelle supports higher-order logic
(HOL), Zermelo-Fraenkel set theory (ZF) and other formalisms. Many
developments are due to Prof. Tobias Nipkow’s group at the Technical University
of Munich. Automatic proof search, one of Isabelle’s particular strengths, is
however due to Paulson [22].

The work will be done within the Cambridge Automated Reasoning Group.
Hardware verification was pioneered here by Prof. Gordon and his students. They
introduced what have become standard techniques, such as the use of
higher-order logic to model hardware and software systems. The group’s work
continues to attract worldwide attention. Former members such as Dr. John
Harrison have taken formal verification to Intel and other companies. The group
has built two of the world’s leading proof environments, namely HOL and Isabelle.
Institutes using Isabelle as a basis for their research include the University of
Edinburgh, Carnegie-Mellon University and Australia’s Defence Science and
Technology Organisation (DSTO). The Verisoft project, which uses Isabelle
extensively, comprises 11 partners, including Infineon Technologies and BMW.1

The EPSRC has funded several projects at Cambridge involving Isabelle.
They include the following:

• Verifying Electronic Commerce Protocols (EPSRC ref. GR/R 01156/01),
2000–03. This project had the objective of verifying security protocols of
industrial complexity. The huge SET protocol suite was analysed and some
vulnerabilities found. The research assistant, Giampaolo Bella, investigated
the Zhou-Gollmann non-repudiation protocol and a certified electronic mail
protocol designed by Abadi et al. This project produced numerous
publications.

• Automation for Interactive Proof (EPSRC ref. GR/S57198/01), 2004–07.
This project gave interactive proof tools improved automation through an

1http://www.verisoft.de/ProjectConsortium.html

1



effective combination of interactive and automatic tools. It developed
techniques for transferring subgoals from an interactive prover to an
automatic one and for transferring proofs in the opposite direction. A
complete working system was built, linking Isabelle to the resolution
provers E, SPASS and Vampire. The hardest phase concerned
reconstruction of the proofs within Isabelle.

• Beyond Linear Arithmetic: Automatic Proof Procedures for the Reals
(EPSRC ref. EP/C013409/1), 2005–08. This project is investigating
advanced methods of proving theorems about the transcendental functions:
log, exp, sin, cos, etc. [2]. A prototype prover has been constructed [1],
combining a resolution theorem prover (Metis) with a decision procedure
for the theory of Real Closed Fields (QEPCAD) and axioms concerning the
elementary functions. This prover can already prove numerous problems
involving log and exp, with runtimes typically below one second.

This last project is the main inspiration for the new proposal. We now have
automatic techniques for proving complicated assertions involving the reals. The
use of a powerful decision procedure (QEPCAD) is crucial to this work, but
unfortunately its output is not a proof in the traditional sense. How do we prove
statements about the reals within an interactive verification environment such as
Isabelle, achieving both automation and soundness? The key point is to identify
practicable and verifiable techniques that cover a variety of common special
cases. The two projects are complementary, one using general methods
(resolution and QEPCAD), the other using a selection of highly focused
methods.

The designated Research Assistant, Amine Chaieb, is currently completing
his PhD at the Technical University of Munich. He is an experienced Isabelle
developer, with the detailed knowledge necessary to implement reflected proof
procedures within Isabelle. He also has a through knowledge of the mathematical
theories relevant to the project. He has already implemented proof procedures
that are similar in spirit to those proposed below, such as a decision procedure
for ordered fields. He has experience of using computer algebra systems to
increase proof automation, for example applying Gröbner bases to universal
problems over rings.
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2 Description of Proposed Research

The proposal is to investigate methods for automating formal proofs about
polynomials and transcendental functions, and to implement them within an
interactive theorem prover, Isabelle. The problems are formulated as universal
polynomial or transcendental properties or even as general first order arithmetic
formulae. We expect a tremendous increase in automation for the universal case
and for several cases of the general first order case as well. We also expect
improved automation for proofs about power series and transcendental functions.

2.1 Background

Interactive proof tools such as Isabelle and HOL are widely used for verification,
even in industry. Their reliance on the LCF proof architecture ensures soundness,
and they have many facilities for managing complex specifications and proofs.
However, they can be difficult to use; for example, proving even obvious facts
involving the real numbers can take days.

The problems we want to solve are inherently non-linear and arise in many
applications and formalizations of mathematics [4], algorithm and program
verification [13], hardware implementations of transcendental functions, electrical
engineering (circuit networks [27]), control theory, scheduling, robotics [18] and
many other fields. Although we know since Tarski [23] that the first order theory
of real closed fields admits quantifier elimination and is decidable, the intractable
complexity of the problem and all known methods make it almost useless. The
only procedures seriously integrated (by yielding a proof of their result) in an
LCF theorem prover are very simple [12, 15, 17, 20]; they have non-elementary
complexity bounds, making them useless even for simple examples. Sophisticated
algorithms like cylindrical algebraic decomposition (CAD) seem to be a serious
challenge for theorem provers and might require several years to verify [19].

Our approach is to design and implement efficient methods for special and
practical cases, and to have one simple complete algorithm as a fall-back solution
to eliminate one quantifier. Chaieb [9] has almost finished the implementation of
Cohen’s procedure [12]. The techniques we want to employ can be classified in
two categories: theorem proving and mathematical techniques.

Theorem proving

We shall use computational reflection for several subproblems, along with a
certificate-based integration of external tools. Reflection is a major strength of
higher order logic: we formalize proof procedures inside an executable fragment
of the logic and prove them correct. For subsequent applications, the prover
simply executes ML code generated from the formalizations. This approach has
been used with great success in the Coq system [24]. Reflection is also available
in Isabelle, and we have already used this mechanism for serious examples:
quantifier elimination for the first-order theory of linear arithmetic over the reals,
the integers and their combination [6, 8, 10]. Another application is to check
ideal membership certificates generated by computer algebra systems [9]. Using
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this technique, we achieved a speed-up by a factor of 200, compared with a
traditional proof-producing procedure.

For the certificate-based approach, we identify subproblems that have
efficiently checkable certificates and tools that can generate such certificates.
For instance, proving that a polynomial has a sum of squares representation
yields a simple proof of its non-negativity. The integration of such procedures
then reduces to implementing a checker for the certificates. We successfully
employed this technique to implement proof procedures for universal statements
over rings (no ordering) using Gröbner Bases and Hilbert’s Nullstellensatz
together with computer algebra systems generating ideal membership certificates
and to prove large numbers prime [9, 11]. We also intend to combine reflection
and the certificates approach: find a certificate by external tools and check it by
a verified, reflected checker. We expect our approach to scale up to serious
applications.

Mathematical techniques

Since the general methods tend to be inefficient, we intend to investigate some
practically (and also mathematically) interesting special cases.

For universal equations and inequations, we propose to use Gröbner bases.
This is not complete over the reals, but most problems in practice hold in all
rings or fields. This technique is already available in Isabelle.

For universal inequalities, we can use the efficient semi-definite
programming (SDP) tools to obtain a Stengle’s Positivstellensatz refutation
[16, 21]. Given a formula

F =

n∧
i=1

pi(~x) = 0 ∧
m∧
i=1

qi(~x) ≥ 0 ∧
t∧
i=1

ri(~x) 6= 0,

Stengle’s Positivstellensatz guarantees that this statement is false over the reals
if and only if there exist p =

∑n
i=1 aipi and q in the cone of q1, . . . , qm and

r =
∏t
i=1 r

ki
i , for some a1, . . . , an and k1, . . . , kt , such that p + q + r2 = 0,

which obviously contradicts F . Finding such a refutation can be formulated as a
semidefinite program [21].

Problems with quantifiers, where the quantified variables only occur linearly,
fall into the case of parametric linear arithmetic. It is efficiently solvable using
established methods [14, 18]. This already covers many interesting applications
in electrical engineering, transportation problems and expert systems [18, 27].
More generally, if the quantified variable occurs only in polynomials with degree
n ≤ 4, then we can use the standard techniques for solving an algebraic equation
of degree n to eliminate the quantifier [25, 26]. This approach is much more
efficient than generic quantifier elimination methods, but it is not applicable if
n > 4 due the Abel-Ruffini theorem on the unsolvability of the general polynomial
equation.

For univariate universal problems, a naive use of SDP can be unsatisfactory,
especially if the coefficients are ratios of large integers. This is the case for
power series and their approximations. For this case, we know that any positive
semidefinite univariate polynomial is the sum of two squares. Here we intend to
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use computer algebra systems to approximate complex roots and compute
square-free decompositions of (possibly perturbated) polynomials, which already
gives a squares part. For the irreducible parts, we use SDP.

The first order theories of mixed linear arithmetic with a transcendental
function (such as the exponential, hyperbolic functions or arctan) and simple
trigonometric functions (sin applied to a polynomial) are decidable. In contrast
to previous developments, Weispfenning [3, 28] does not rely on Shnuel’s
conjecture but uses only Lindemann’s theorem. The procedures and Lindemann’s
theorem itself are challenging in the context of a theorem prover. We consider
this last part as follow-on research, but should tackle it if we have time.
Problems of this kind occur frequently in formalizations [4].

If none of these cases are applicable, then we fall back to a complete
procedure. We have almost finished an implementation of Cohen’s quantifier
elimination procedure [12] in Isabelle [9]. We aim to eliminate only as many
quantifiers as are needed to reduce the problem to a tractable case.

2.2 Programme and Methodology

We envisage the following workplan for the 12 months. We have already done
preliminary investigations for this work. Note that some of the tasks will take
place concurrently.

Task 1: Theoretical issues and investigation of external tools.

To begin with, we shall develop the proof algorithms and investigate their
soundness and completeness for certain relevant subclasses. The problems we
address here are the universal univariate case for polynomials and methods to
automate reasoning about power series and transcendental functions. At the
same time, we shall investigate computer algebra systems and other software to
solve the resulting subproblem of the algorithms and their way of interaction. It
is important to us that the theoretical study yields an efficient implementation.
We already have a modest experience with Singular, PARI/GP, and M2. (months
1–4)

Task 2: Proof infrastructure in Isabelle.

To build proof procedures, we shall need to prove a body of theorems (in
Isabelle) in order to argue that the transformations are correct in the underlying
logical calculus. This part is the formalization of the previous theoretical
investigations and constitutes the logical core of the work. Note also that for
reflection-based methods there is no difference between proof and
implementation. (months 4–10)

Task 3: Implementation and integration.

Finally, we shall implement all our results and integrate them into Isabelle. This
is a rather technical part, but we already have experience with the Isabelle
internals as system developers. The new abstract specification mechanisms in
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Isabelle [5] are highly flexible, but require care during implementation. We shall
integrate most methods as abstractly as possible, making them available for a
class of structures including the reals as a special case. For example, a sum of
squares yields non-negativity in every ordered semiring, and not only over the
reals. We successfully used this technique [9, 11] for universal and interesting
existential problems over commutative rings. This kind of integration meets the
expectations of mathematicians and yields maximum generality. For example, our
methods will apply to the nonstandard real numbers with no additional effort.
(months 8–12)

2.3 Relevance to Beneficiaries

The beneficiaries are chiefly in the research world, but the types of problems we
intend to solve have many industrial applications.

• The formal methods and theorem proving community will benefit from the
techniques we develop. Our formalized theories and procedures will be
valuable in their own right. Developers of other proof tools, such as HOL
and PVS, will be able to adapt many of them for their purposes.

• Practitioners of engineering, control theory and scheduling (among other
fields) will be able to apply our methods for verifying mathematical
assertions [18, 27].

• Practitioners of program analysis and verification will benefit directly from
our Isabelle implementation, in order to prove verification conditions,
properties of control flow or termination [13]. The results should easily
surpass our previous work [7, 29].

2.4 Dissemination and Exploitation

The new proof tools will be included in Isabelle and thereby distributed via the
Internet under an open source license. Technical and theoretical findings will be
presented at conferences and published in academic journals.
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