
Beyond Linear Arithmetic:
Automatic Proof Procedures for the Reals

Prof. Lawrence C. Paulson

Computer Laboratory, University of Cambridge

1 Previous Research and Track Record
Lawrence C. Paulson is Professor of Computational Logic at the University of
Cambridge, where he has held established posts since 1983. Paulson’s early
work on LCF contributed much (both code and concepts) to HOL. Paulson
introduced Isabelle in 1986 and has been building upon it ever since. Isabelle is
a generic proof tool that supports higher-order logic (HOL), Zermelo-Fraenkel
set theory (ZF) and other formalisms. Isabelle is widely used in research. Many
developments are due to Prof. Tobias Nipkow’s group at the Technical University
of Munich. Automatic proof search, one of Isabelle’s particular strengths, is
however due to Paulson [10, 11].

The present proposal involves developing automatic proof procedures for the
theory of the reals, including transcendental functions. It builds upon Paulson’s
existing experience of developing heuristic proof procedures and building proof
tools, as well as his extensive knowledge of the automated reasoning literature.

The work will be done within the Cambridge Automated Reasoning Group.
Hardware verification was pioneered here by Prof. M. J. C. Gordon and his stu-
dents. They introduced what have become standard techniques, such as the use
of higher-order logic to model hardware and software systems. The group’s work
continues to attract worldwide attention. Former members such as Dr. John
Harrison have taken formal verification to Intel and other companies. The group
has built two of the most important proof environments used today, namely
HOL and Isabelle. Institutes using Isabelle as a basis for their research include
the University of Edinburgh, Carnegie-Mellon University and Australia’s Defence
Science and Technology Organisation (DSTO).

Several past projects at Cambridge involve Isabelle. Recent projects include
the following:

• Authentication Logics: New Theory and Implementations (EPSRC ref.
GR/K77051), 1996–99. This project was concerned with proving the correct-
ness of security protocols. It produced the inductive method for protocol
verification, whereby detailed protocol models are proved to be correct or
shown to be flawed. The results of this project have been widely cited and
have been incorporated into many of today’s protocol verification tools.

1

• Verifying Electronic Commerce Protocols (EPSRC ref. GR/R 01156/01), 2000–
03. This continued the previous project, with the objective of verifying
security protocols of industrial complexity. The huge SET protocol suite
was analysed and some vulnerabilities found. The research assistant, Gi-
ampaolo Bella, investigated the Zhou-Gollmann non-repudiation protocol
and a certified electronic mail protocol designed by Abadi et al. This project
produced numerous publications.

• Compositional Proofs of Concurrent Programs (EPSRC ref. GR/M75440),
2000–03. This project investigated the verification of reactive systems using
UNITY and the guarantees-calculus of Sanders and Chandy. It made much
progress on the problem of formalizing states; toward this objective, it
produced an untyped UNITY environment, formalized within Isabelle/ZF.
A number of journal and conference papers have appeared.

• Automation for Interactive Proof (EPSRC ref. GR/S57198/01), 2004–07. This
project aims to give interactive proof tools improved automation through
an effective combination of interactive and automatic tools. It is develop-
ing techniques for transferring subgoals from an interactive prover to an
automatic one and for transferring proofs in the opposite direction. The
returned proofs are reconstructed (and thus verified) within the interactive
prover. This project has been underway for less than a year, but a prototype
incorporating these elements is already completed, linking Isabelle to the
resolution provers Vampire and SPASS.

The designated Research Assistant, Jia Meng, is currently working on Automa-
tion for Interactive Proof as a project student. She therefore has experience with
Isabelle and with resolution provers. She will have finished her PhD by the time
this project starts. She is capable, hard-working and enthusiastic, and already
has two research publications.

2

2 Description of Proposed Research
A primary goal of formal verification research is improved automation. Many
verification tasks involve proving equations and inequations over the reals. For
example, Denney et al. [4] describe an application of automated theorem proving
to aerospace software; they intend that all proof obligations should be eliminated
by simplification or other means, leaving none to be presented to the user. An
example involving interactive proof is the formalization in Isabelle/HOL of the
Prime Number Theorem [1], where the authors spent much time proving simple
facts involving transcendental functions.

Linear arithmetic is well understood, and many proof tools provide efficient
decision procedures, at least for the quantifier-free case. Such procedures can
automatically prove propositional combinations of inequalities between linear
combinations of variables. Unfortunately, linear arithmetic restricts us to the
language of =, <, ≤, + and multiplication by integer constants. How can we
extend this language?

The alternatives are to employ more general decision procedures or to seek
heuristic methods. More general decision procedures do exist, because the the-
ory of real closed fields is decidable: thus, our language can be extended with
multiplication and quantifiers. Dolzmann et al. [5] survey the main algorithms,
which work by quantifier elimination. Heuristic methods tend to be extensions
of elementary variable elimination methods. In the 1980s, Boyer and Moore [3]
showed how such a procedure could share information with other parts of a
theorem prover. Hunt et al. [8] describe a more elaborate procedure that can
handle some problems involving polynomials (and thus, products of variables).
Tiwari [14] describes a different heuristic procedure for polynomials, using ideas
from Gröbner basis methods.

Decision procedures interest mathematicians, since they represent solutions
to decision problems, while heuristic methods may seem to be ad-hoc. For ver-
ification purposes, heuristic methods are typically broader in scope and more
efficient than decision procedures. Tiwari [14] shows that for many problems, his
heuristic procedure easily outperforms QEPCAD [7], a decision procedure that
performs partial cylindrical algebraic decomposition (and whose complexity is
doubly exponential). Richardson’s theorem tells us not to expect a useful deci-
sion procedure for any theory that includes the transcendental functions [16].
Weispfenning [15] has published a decision procedure for linear arithmetic aug-
mented with a single, well-behaved transcendental function; although the work
may contribute useful insights, this type of highly specialized procedure does not
address our objectives. Heuristic methods are therefore appropriate.

This project will focus on heuristic procedures to prove arithmetic statements
that may refer to transcendental functions and polynomials. The statements
must be quantifier-free, with free variables being implicitly universally quantified.
The project will include two other components:

• A disproof procedure will identify invalid arithmetic statements so that

3

further proof attempts can be abandoned. A successful disproof procedure
for functional programs already exists for Isabelle [2].

• A problem library for real arithmetic will assist the research community by
allowing comparisons between different implementations and procedures.
These problems will be published via TPTP (Thousands of Problems for
Theorem Provers) [13], if possible, and otherwise on a dedicated website.1

The Project Objectives are pragmatic, and focus equally on interactive and
automatic verification.

1. To develop heuristic automatic proof procedures for the theory of real
arithmetic with transcendental functions.

2. To develop disproof procedures for this theory.

3. To publish a problem library suitable for evaluating such procedures.

The aim is to develop procedures that are sound and effective against real-world
examples.

Background
Most heuristic proof procedures for arithmetic [3, 8, 14] extend the Fourier-
Motzkin decision procedure. They use proof by contradiction: the conjecture
is negated and converted to disjunctive normal form (DNF). The original con-
jecture is true if and only if all disjuncts are unsatisfiable. Each disjunct is a
conjunction of inequalities, so the proof procedures work by refuting such con-
junctions. Disproving the conjecture, conversely, requires showing that one of
the conjunctions is satisfiable.

The Fourier-Motzkin procedure works by repeated variable elimination. For
example, given 2x < 3y − 1∧ 2y − x < 0∧ y ≥ −1, we obtain 4y < 2x from the
second conjunct and thus 4y < 3y −1 from the first conjunct by transitivity. Thus
y <−1, and from the third conjunct we obtain −1 <−1, contradiction.

Hunt et al. [8] and Tiwari [14] both extend this procedure to polynomials by
including mechanisms to eliminate nonlinear leading terms, while the earlier
procedure of Boyer and Moore [3] is able to eliminate certain function applica-
tions by using stored facts about those functions. Looking further afield, Ratschan
is undertaking a programme of research [12] that may be relevant to both proof
and disproof procedures, though set in the context of constraint programming.

PROOF PROCEDURE OUTLINE

The proposed extension of Fourier-Motzkin starts with the observation that most
of the well-known functions on the reals are continuous. Moreover, a typical
function’s domain can be segmented such that the function is monotonic or anti-
monotonic on each interval. Functions such as

p
x, ex , log(x), and K · x (product

1Geoff Sutcliffe has already indicated his willingness to include such problems in TPTP.

4

by a variable known to be positive) are monotonic over their entire domain, while
other functions are monotonic on intervals: sin(x) is monotonic on [−π/2,π/2].
If f is a monotonic and continuous segment of a function, then f −1 will also be
monotonic and continuous with a suitable domain and range. The existence of
inverses will assist in eliminating occurrences of f .

The heuristic procedure has several ways to eliminate occurrences of func-
tions. It can appeal to monotonicity, for example reducing f (A) < f (B) to A < B,
or reducing f (A) < B to A < f −1(B); such steps require checking, through a recur-
sive call to the procedure, that A and B lie within the same monotonic segment
of f . If there is no other way to proceed, function occurrences can be elimi-
nated by appealing to linear upper or lower bounds. For typical functions, these
can be obtained from Taylor expansions around a suitable point. Examples of
such bounds include ex ≥ x +1; log(x) ≤ x −1 for x ≥ 1; x2 ≥ 0; x2 ≥ x for x ≥ 1;
sin(x) ≤ x for x ≥ 0; 1/x < 2− x if |x − 1| < 1. The procedure would probably
not compute bounds during its execution, but would be equipped with suitable
information prior to execution. Users would be able to augment the procedure
with new information about functions used in their application.

For example, the proof of u ≤ v ∧ x ≤ y → eu + ex ≤ ev + e y would involve
refuting the set of inequalities u ≤ v, x ≤ y , ev + e y < eu + ex . To isolate y , the use
of monotonicity and inverses would yield y < log(eu + ex − ev), concluding x <
log(eu + ex − ev) by transitivity. To isolate x, the pattern f −1(· · · f (x) · · ·) suggests
applying f to both sides, here yielding ex < eu +ex −ev and therefore ev < eu . By
monotonicity we obtain v < u, which contradicts u ≤ v and we are done.

Clearly a practical procedure will require many further elements. Few func-
tions are as well-behaved as ex . We need to take into account the division of
a function into monotonic segments, on intervals that may be open, closed or
unbounded at either end. Moreover, many examples seem to require additional
knowledge such as e0 = 1 and sin(0) = 0.

DISPROOF PROCEDURE OUTLINE

The disproof procedure will accept the same input language as the proof pro-
cedure, and it will also begin by transforming the negated conjecture into DNF.
The obvious approach to disproving a conjecture is simply to generate random
variable assignments. This can be done separately on each conjunctive part of
the DNF: satisfying one of them yields a counterexample to the conjecture.

Floating-point arithmetic, however, could give incorrect results due to round-
ing errors. False positives (incorrect “counterexamples”) are unacceptable: they
could lead to the abandonment of a valid goal. False negatives (overlooked coun-
terexamples) are less serious, but they are still failures. If the conjecture is an
equality, say f (x) = g (x), then a floating-point calculation from a random value x
could erroneously “disprove” the equality: a false positive. We should never ac-
cept a claimed counterexample unless all conjuncts evaluate to true using an
exact real arithmetic package such as iRRAM [9].

The counterexample search does not have to be entirely random. We can

5

separate the set of conjuncts into a linear part and a non-linear part. The Fourier-
Motzkin procedure can be used to generate variable assignments satisfying the
linear part. These can then be tested against the non-linear part.

Programme and Methodology
Task 1: Gathering of test data. Several sources of sample problems are available,
including Isabelle’s formal development of the reals and Avigad’s formalization of
the Prime Number Theorem. Avigad has offered to contribute such problems; see
the attached letter of support. Other examples could be obtained from published
PVS theories and by making enquiries over various mailing lists. We shall organize
them, put them into a uniform format and publish them, probably via the TPTP.
Estimated time: 2 person-months.

Task 2: Preliminary development of heuristic proof procedures. The outline has
been given above, but many details need to be fleshed out, driven by experimen-
tation with our corpus of test data. Estimated time: 12 person-months.

Task 3: Evaluation of exact real arithmetic packages. There exist many packages
for exact real arithmetic. Criteria for preferring one to another include reliability,
support for transcendental functions, efficiency and likelihood of continued
development. We may decide to develop a communication mechanism so that
the disproof procedure can be developed independently from any particular
arithmetic package. Estimated time: 2 person-months.

Task 4: Preliminary development of disproof procedures. This task may appear
to be straightforward, but many questions require investigation. For example,
should we use floating-point arithmetic in the initial search for counterexamples,
and only use exact real arithmetic to confirm a claimed counterexample? Such an
approach avoids false positives, and the use of floating-point arithmetic makes
it more efficient, but it leaves open the risk of false negatives. Estimated time: 9
person-months.

Task 5: Integration with interactive proof tools. One objective of this project is
to support interactive proofs in arithmetic. We intend to work with Prof. Tobias
Nipkow (of the Technical University of Munich) to extend his arithmetic proof
procedure to use the methods developed in the project. The main difficulty
concerns reconstructing the proofs in the host prover’s formal system, but the
heuristic proof methods will be designed to make proof reconstruction as simple
as possible. We shall also co-operate with interested developers of other proof
tools; in particular, many developers of the HOL system are based at Cambridge.
Integration of the disproof procedures with other proof tools is simpler, because
there are no proofs to be reconstructed.

Estimated time: 9 person-months.

6

Task 6: Testing and refinement. The proof and disproof procedures will undergo
continual testing with new problems, and will be refined accordingly. We also
intend to evaluate them in their role of supporting interactive proof.

Estimated time: 9 person-months.
The total effort of 43 person-months allows 36 for the research assistant and

7 for the principal investigator (who will dedicate 20% of his time to the project).

Relevance to Beneficiaries
The project is designed to benefit a broad range of parties, both academic and
industrial.

• Developers of proof tools, both interactive and automatic, will be able to
provide increased automation to their users.

• The many research groups using arithmetic reasoning (for example, to
verify hybrid systems) will benefit from increased automation.

• Formal arithmetic reasoning will increasingly benefit mathematicians. Al-
ready the Flyspeck Project [6] exists to produce a machine-assisted formal
proof of the Kepler Conjecture, because the existing proof is too compli-
cated for human referees.

Dissemination and Exploitation
The source code arising from this project will be freely distributed via the Internet.
The techniques and the experimental results will be presented in journal and
conference papers.

Justification of Resources
Staff. Paulson will work part-time on the project, specifically to support tasks
2, 4 and 5. He proposes to supervise one full-time research assistant, Jia Meng.
She will undertake all of the project tasks, with day-to-day guidance from Prof.
Paulson. We are requesting the top scale point because Meng is already receiving
job offers from overseas: we need to be able to offer a competitive salary. The
project also requires a Computer Officer (10% time) to maintain the hardware
and software used in the research.

Travel and Subsistence. Conference attendance is essential to keep abreast of
developments and to disseminate results. We are requesting funds to attend
some of the main conferences, such as CADE, CAV, IJCAR and TPHOLs. We may
wish to attend relevant workshops at Schloß Dagstuhl and elsewhere. We are also
requesting funds for visits to other institutions such as TUM, as detailed on the
application form.

Consumables. The figure shown comprises UNIX-based computers for Paulson
and Meng, one laptop (to be shared), and various other computing-related costs.

7

References
[1] J. Avigad. Notes on a formalization of the prime number theorem. On the Internet

at http://www.andrew.cmu.edu/user/avigad/isabelle/pntnotes_a4.pdf,
Sept. 2004.

[2] S. Berghofer and T. Nipkow. Random testing in Isabelle/HOL. In Software
Engineering and Formal Methods (SEFM’04), pages 230–239. IEEE Computer
Society, 2004.

[3] R. S. Boyer and J. S. Moore. Integrating decision procedures into heuristic theorem
provers: A case study of linear arithmetic. In J. E. Hayes, D. Michie, and J. Richards,
editors, Machine Intelligence 11, pages 83–124. Oxford University Press, 1988.

[4] E. Denney, B. Fischer, and J. Schumann. Using automated theorem provers to
certify auto-generated aerospace software. In D. Basin and M. Rusinowitch, editors,
Automated Reasoning — Second International Joint Conference, IJCAR 2004, LNAI
3097, pages 198–212. Springer, 2004.

[5] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in
practice. Technical Report MIP-9720, Universität Passau, D-94030, Germany, 1997.

[6] T. C. Hales. The flyspeck project fact sheet. On the Internet at
http://www.math.pitt.edu/~thales/flyspeck/.

[7] H. Hong. QEPCAD — quantifier elimination by partial cylindrical algebraic
decomposition. On the Internet at
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html. Web site includes
sources and documentation.

[8] W. A. Hunt, Jr., R. B. Krug, and J. Moore. Linear and nonlinear arithmetic in ACL2.
In D. Geist and E. Tronci, editors, Correct Hardware Design and Verification
Methods (CHARME), LNCS 2860, pages 319–333, 2003.

[9] N. Mueller et al. iRRAM — exact arithmetic in C++. Sources and documentation
available at http://www.informatik.uni-trier.de/iRRAM/, 2004.

[10] L. C. Paulson. Generic automatic proof tools. In R. Veroff, editor, Automated
Reasoning and its Applications: Essays in Honor of Larry Wos, chapter 3. MIT Press,
1997.

[11] L. C. Paulson. A generic tableau prover and its integration with Isabelle. Journal of
Universal Computer Science, 5(3):73–87, 1999.

[12] S. Ratschan. Convergent approximate solving of first-order constraints by
approximate quantifiers. ACM Trans. Comput. Logic, 5(2):264–281, 2004.

[13] G. Sutcliffe and C. Suttner. The TPTP problem library for automated theorem
proving. On the Internet at http://www.cs.miami.edu/~tptp/, 2004.

[14] A. Tiwari. Abstraction based theorem proving: An example from the theory of reals.
In C. Tinelli and S. Ranise, editors, PDPAR: Workshop on Pragmatics of Decision
Procedures in Automated Deduction, pages 40–52. INRIA, Nancy, 2003.

[15] V. Weispfenning. Deciding linear-transcendental problems. Technical Report
MIP-0005, Universität Passau, D-94030 Passau, Germany, 2000.

[16] E. W. Weisstein. Richardson’s theorem. From MathWorld—A Wolfram Web
Resource, 1999. On the Internet at
http://mathworld.wolfram.com/RichardsonsTheorem.html.

8

Project Plan
The chart below indicates the dependencies among the tasks. Gathering of test
data will continue throughout the project.

1: Gathering of
test data

2: Development of
proof procedures

4: Development of
disproof procedures

5: Integration
with interactive

tools

3: Evaluation
of arithmetic

packages

6: Testing
and

Refinement

9

