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1 Previous Research and Track Record
Lawrence C. Paulson is Professor of Computational Logic at the University of
Cambridge, where he has held established posts since 1983. This proposal involves
adding first-order automation to the interactive theorem provers Isabelle and HOL.
Paulson’s early work on LCF contributed much (both code and concepts) to HOL.
Paulson introduced Isabelle in 1986, under the Alvey programme, and has been
improving it ever since. Isabelle is a generic system, with support for higher-order
logic (HOL), Zermelo-Fraenkel set theory (ZF) and other formalisms. Isabelle is
widely used in research. Many developments are due to Prof. Tobias Nipkow’s
group at the Technical University of Munich. Automatic proof search, one of Isa-
belle’s particular strengths, is however due to Paulson [7, 8]. The present proposal
has many of the same technical issues in common with this previous research.

The designated Research Assistant, Dr. Joe Hurd, did a small-scale version [4]
of this project as an exercise in the first year of his PhD. study. His experience
is directly relevant. During his years as a PhD. student, he proved to be capa-
ble, imaginative and hard-working. Earlier he earned a First in the Cambridge
Mathematics Tripos and Distinctions in Part III Mathematics and the Diploma in
Computer Science.

The work will be done within the Cambridge Automated Reasoning Group.
Hardware verification was pioneered here by Prof. M. J. C. Gordon and his stu-
dents. They introduced what have become standard techniques, such as the use
of higher-order logic to model hardware and software systems. The group’s work
continues to attract worldwide attention. Former members such as Dr. John Har-
rison have taken formal verification to Intel and other companies. The group has
built two of the most important proof environments used today, namely HOL and
Isabelle.

Several past projects at Cambridge involve Isabelle:

• Combining HOL and Isabelle(SERC ref. GR/H40570), 1992-95. This
project applied Isabelle to HOL-style problems, the main application being
proof support for Lamport’s TLA (Temporal Logic of Actions).

• Verifying ML Programs using Evaluation Logic(SERC ref. GR/G53279),
1991–95. This project has clarified some of the subtle interactions that occur
when references to a store interact with higher-order functions.
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• Authentication Logics: New Theory and Implementations(EPSRC ref.
GR/K77051), 1996-99. This project was concerned with proving the cor-
rectness of security protocols. It produced the inductive method, which can
be used to analyze a great variety of protocols in depth. The results of this
project have been highly influential.

• Mechanising Temporal Reasoning(EPSRC ref. GR/K57381), 1995-99. This
project investigated the verification of reactive systems using logics such
as TLA and UNITY. An Isabelle/HOL proof environment for UNITY was
developed and distributed.

• Compositional Proofs of Concurrent Programs(EPSRC ref. GR/M75440),
2000-03. This project continuesMechanising Temporal Reasoning. It con-
centrates on UNITY and the guarantees-calculus of Sanders and Chandy.
The research assistant, Sidi Ehmety, started in September 2000. Much ef-
fort has gone into the problem of formalizing states; towards this objective,
an untyped UNITY environment has been developed within Isabelle/ZF. A
number of journal and conference papers have appeared.

• Verifying Electronic Commerce Protocols(EPSRC ref. GR/R 01156/01),
2000-03. This project continuesAuthentication Logics. The objectives have
largely been achieved already: most of the huge SET protocol has been an-
alyzed, and some vulnerabilities found. The research assistant, Giampaolo
Bella, has investigated the Zhou-Gollmann non-repudiation protocol and is
currently examining a protocol for secure electronic mail. A visitor to Cam-
bridge, Fŕed́eric Blanqui, has recently analyzed some novel protocols for
agent-based shopping.
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2 Description of Proposed Research
Interactive proof tools support rich, expressive formalisms. The user can express a
complex model of, say, aCPU design, and develop its formal theory consisting of
hundreds of theorems. The user constructs proofs by applyingtactics: commands
based upon sound inference rules. Unfortunately, interactive proof construction is
extremely tedious. Verifying a significant system requires months of an expert’s
time, making the cost prohibitive. At the opposite extreme, resolution systems
are automatic and powerful. However, they are restricted to first-order logic with
equality. Can we combine the advantages of these two technologies?

Today’s interactive tools are much better than those of 20 years ago, but the
improvements are incremental and largely stem from better hardware. Many of
today’s decision procedures and rewriting heuristics were in use 20 years ago.
Predicate calculus theorem proving techniques are the main novelty, having only
recently been incorporated into interactive tools. They are highly successful: Isa-
belle’sblast [8] and fast [7] methods can prove complicated theorems, while
HOL users accomplish much usingMESONTAC. This proposal aims to go much
further, combining interactive proof tools with a leading resolution theorem prover.

Twenty years ago, when many users had to share a single computer, a proof
command could realistically take at most a few seconds of processor time. Now
that 2GHz processors are commonplace, we should abandon the traditional mode
of interaction, where the proof tool does nothing until the user types a command.
Background processes (perhaps on several computers) should try to prove the out-
standing subgoals. Better automation could make formal verification affordable.

The theoretical aspect of this proposal concerns the relationships between logi-
cal formalisms. For example, translating a first-order resolution proof into a higher-
order logic natural deduction proof is difficult. Resolution relies on Skolemization.
While Skolemization does not presuppose the axiom of choice (AC), all known
ways of importing resolution proofs into an interactive proof tool require the latter
to assume a strong form of AC, so-called global choice. Some recent formal theo-
ries are inconsistent with AC, which suggests that we seek a different approach to
proof translation.

TheProject Objectives, therefore, are both practical and theoretical:

1. to give interactive proof tools greatly improved automation

2. to develop the concept of an interactive proof tool using background pro-
cessing

3. to explore the formal relationships between first- and higher-order logic,
from the perspective of mechanical theorem proving

Background
Vampire [9] is one of the world’s leading resolution theorem provers. In each of
the past few years, Vampire came first in some category of the System Competition
held at the Conference on Automated Deduction (CADE). Prof. Voronkov has
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suggested integrating his system with Isabelle, and he is eager to co-operate with
this project (see attached letter of support). Voronkov has received EPSRC funding
for the development of Vampire, with integration as an objective.

There have been several previous attempts at integrating interactive and auto-
matic theorem provers. Ahrendt et al. [1] combined KIV with the tableau prover

3T AP. Their results were disappointing, but3T AP was an ill-advised choice, hav-
ing never ranked in the first category of automatic provers.

John Harrison implemented a model elimination prover and integrated it with
a version of the (interactive) HOL system [3]. This was a success:MESONTAC
is among the most powerful of HOL tools. However, the user must collect the
relevant lemmas manually, and support for equality is limited.

Joe Hurd [4] integrated the HOL system with the prover Gandalf. His system
translated the Gandalf proofs into HOL proofs to ensure soundness. The results
were disappointing:MESONTACwas usually faster. However, this was a brief ex-
periment undertaken by a first-year research student. More recently, Hurd has made
simple implementations of some first-order calculi, comparing their performance
on subgoals arising in interactive proof. The main result so far is the production
of a generic interface for converting higher-order logic goals to first-order clauses,
and for translating first-order refutations back to higher-order logic proofs [5].

Isabelle’sblast is a successful instance of integration. A major difference
from the present proposal is thatblast ’s prover is designed specifically to sim-
plify the integration, including the translation into Isabelle proofs. That prover uses
simplistic tableau methods. It cannot tackle problems that are trivial for resolution
provers, and its treatment of equality is rudimentary. Resolution theorem provers
are powerful but less easy to modify. We must work harder at the integration.

Programme and Methodology
Most of the tasks are similar to those done during the implementation ofblast .

Task 1: First experiments (no equality).The objective is to make a standard reso-
lution prover undertake proofs previously performed interactively. The procedure
is to take existing Isabelle proofs, including those using theblast tactic, and at-
tempt to reproduce them using Vampire. This involves dumping Isabelle’s current
context of default classical rules and translating them into first-order clauses; we
must omit the many rules for basic logical reasoning, which Vampire provides al-
ready. The initial experiments will be basic: some of the translations may even be
done by hand and Vampire input files prepared manually.

Task 2: First experiments (equality).The objective is to exploit a resolution
prover’s treatment of equality. The procedure is to identify Isabelle proofs that
require a combination of equality and classical reasoning, attempting to reproduce
them using Vampire.

Interactive tools such as Isabelle and HOL use separate tactics for simplifica-
tion and predicate calculus reasoning. Therefore, even an elementary fact involv-
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ing equality may require a lengthy proof script. A resolution prover may find such
proofs automatically, since these provers integrate equality with their other infer-
ence methods.

The outcome of these two tasks will include test suites derived from actual
Isabelle proofs.

Task 3: Basic functionality (untyped).The objective is to implement a tactic that
transfers a subgoal and its context from a proof assistant to a resolution prover
and reports the outcome. The procedure is to write code to automate the steps
performed manually in the previous two tasks.

We shall use Isabelle/ZF, which provides untyped set theory. Many difficult
proofs are available for experimentation, and the lack of types is an important sim-
plification. The “context” mentioned above will include a list of potentially useful
lemmas. Some lemmas could be chosen by the user, but the great majority would
be chosen automatically — using the existing labelling in Isabelle libraries — as
being good for simplification or classical reasoning.

Network programming will allow Isabelle to communicate with a Vampire pro-
cess, possibly running on another machine. Hurd’s HOL-Gandalf integration uses
PROSPER[2], a toolkit for allowing various proof tools to communicate. We shall
build upon the lessons learned from PROSPER.

Task 4: Basic functionality (typed).This is the same as the previous task, with
the added complication of types. The objective is to obtain sound reasoning in a
simply typed formalism using an untyped resolution prover.

We shall use Isabelle/HOL, which provides higher-order logic. Overloading
and polymorphism are complications. For example, the equality symbol (=) is
polymorphic: that is, any two terms of the same type can be compared for equality.
But equality between sets is special: we can proveA = B by proving A ⊆ B
and B ⊆ A. Equality between booleans is also special: we can proveA = B by
proving A → B and B → A. Unless the resolution prover is given information
about Isabelle’s type system, it will have no way of knowing which inference rules
are applicable.

This problem arose in the development ofblast , and a similar solution will
be tried. Overloaded constants will carry their type as an additional argument. The
target prover will not need to have a type system: Isabelle types will be represented
as terms. First-order unification will propagate type constraints.

Task 5: Full modelling of Isabelle types.The objective is to extend the tactic de-
veloped in the previous task to handle order-sorted polymorphism. The procedure
is to encode the relevant concepts, such as type classes, in first-order logic.

Order-sorted polymorphismoriginated with the Haskell programming lan-
guage and is also available in Isabelle. For example, the theoremorder refl
assertsx ≤ x. At first sight, this theorem is polymorphic, holding regardless of
the type ofx. But, more precisely, it holds only ifx’s type belongs to thetype
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classof partial orders [10]. To prevent unsound resolution proofs, we must model
type classes in Vampire. If we represent types as constants, then membership in
type classes can be expressed by atomic facts or by implications. The Isabelle
declarations that enter types into classes must be communicated to Vampire.

Task 6: New reductions to first-order logic.The objective is to increase the scope
of resolution by introducing translations from higher-order logic into first-order
logic. Most proof tools allow variable binding within terms, but resolution provers
do not. Even Isabelle/ZF, which is first-order set theory, admits terms such as⋃

x∈A B(x). Sometimes the problematical term can be removed by transformation.
For example,u ∈

⋃
x∈A B(x) is equivalent to∃x [x ∈ A∧u ∈ B(x)]. The formula

φ(
⋃

x∈A B(x)) is equivalent (in ZF) to

∃v [φ(v) ∧ ∀u [u ∈ v ↔ u ∈

⋃
x∈A

B(x)]] ,

allowing the previous equivalence to remove the union. More generally, Joe Hurd
has tried translatingλ-abstractions into combinatory expressions. Trials can show
whether such transformations are practical. An alternative is to allow some of the
background processes to run a higher-order theorem prover, such as LEO [6].

Task 7: Transparency.The objective is to minimize the requirement for the user
to trust the resolution prover. The many proof tools descended from Edinburgh
LCF enforce soundness by allowing only a small part of the code to generate the-
orems. To follow this principle requires translating the resolution proof into one
acceptable to the tool. (Having the translated proof would also let us re-run the
verification without the background resolution processes.) Automatic proof trans-
lation is therefore the ideal solution. A preliminary, minimal objective would be
for Vampire to return the precise list of lemmas used, which would make it much
easier for the user to find an alternative proof, e.g. viablast .

Task 8: Transferring the technology.The objective is to show that the techniques
developed above are general, and not restricted to specific tools. At this stage, we
should understand how to overcome the differences between an interactive proof
tool for higher-order logic and an automatic theorem prover for first-order logic.
We shall demonstrate this understanding by linking the HOL system (probably
hol4) to Vampire and perhaps to other resolution provers.

Task 9: Performance refinements.Even when all functionality has been achieved,
tuning will be needed in order to obtain high performance. Experimentation will
determine how to obtain the best results from the available machine resources. For
example, a background job can be allowed to run for a long time, but many shorter
runs using a variety of prover settings may be more effective. Multiple processors
can work on separate subgoals or on a single subgoal with different prover settings.
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Relevance to Beneficiaries
The beneficiaries can be found in several academic disciplines as well as industry.

• Users of Isabelle and HOL will benefit from a much higher degree of au-
tomation. Our techniques will be valuable to the developers of other interac-
tive proof tools.

• Methods for translating resolution proofs into natural deduction proofs will
interest logicians.

• Interactive verification will become cheaper and thus more widely available.
Over time, the verification community will grow, also in industry.

Dissemination and Exploitation
The improved versions of Isabelle and HOL arising from this project will be freely
distributed via the Internet. The solutions to the technical problems will be pre-
sented in journal and conference papers and in lectures.

Justification of Resources
Staff. Paulson will work part-time on the project. He proposes to supervise one
full-time research assistant, Dr. Joe Hurd, and one research student, Jia Meng.
The number and variety of project tasks, any one of which could easily overrun
its estimated time, makes two assistants necessary. Meng is able (Firsts in all
three undergraduate years), diligent and enthusiastic. Concerning the allocation
of tasks, Hurd is an able mathematician who can investigate the logical side of
proof reconstruction, where he already has experience. Hurd can also help with
the practical issues, such as inter-process communications. His HOL experience
makes him ideally suited to transferring the technology to the HOL system. Meng
can work on most of the early tasks, on modelling the Isabelle type system, and on
getting the best performance out of resolution.

Note. By the time this project starts, Meng will have completed one year of
study at her family’s expense, so only two years of support are requested.

Travel and Subsistence.Conference attendance is essential to keep abreast of de-
velopments and to disseminate results. We are requesting funds to attend some of
the main conferences, such as CADE and TPHOLs. We may wish to attend rele-
vant workshops at Schloß Dagstuhl and elsewhere. We are also requesting funds
for visits to other institutions, as detailed on the application form.

Equipment. The RA and student each need a fast, dual-processor workstation.
The second processor adds little to the price tag while doubling the computational
power, allowing us to exploit parallelism. Following Prof. Voronkov’s advice, each
processor is to have one gigabyte of memory. A laptop computer is useful for dis-
semination; we expect to be able to perform convincing (if small) demonstrations
at conferences. We also expect to need a disc and other small items.
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Consumables.In addition to the usual small items, we request£1400 per annum
for a Poly/ML support contract. This will ensure that any problems we encounter
with Poly/ML are promptly addressed. It also encourages continued improvements
to Poly/ML, such as the new interactive debugger, which become available to all.
Poly/ML is vital: compared with Standard ML of New Jersey, it executes Isabelle
with twice the speed and something like half the memory.
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3 Diagrammatic project plan
The allocation of time to various tasks is approximate, but it indicates how difficult
each task is and how it depends upon the others. Tasks 1–5 and 9 are mainly
for the student, with Prof. Paulson’s assistance. Obviously, she will devote time
later to writing her PhD. thesis. Hurd will mainly work on tasks 6–8; note that
Transparency is particularly difficult.

0 months 12 months 24 months 36 months

9. Performance refinements

8. Transferring the technology

7. Transparency

6. New reductions to FOL

5. Full Isabelle types

4. Basic Functionality (typed)

3. Basic Functionality (untyped)

2. First experiments (equality)

1. First experiments (no equality)
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