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ABSTRACT
Existing operating systems share a common kernel text sec-
tion amongst all processes. Therefore it is not possible to
perform kernel specialization or tuning such that different
applications execute text optimized for their kernel use. Ex-
isting work has shown the benefits of kernel specialization
for performance guided optimization, exokernels, kernel fast-
paths, and cheaper hardware access. Yet current specializa-
tion primitives involve system-wide changes to kernel text,
which can have adverse effects on other processes sharing
the kernel due to the global side-effects.

We present shadow kernels: a primitive that allows mul-
tiple kernel text sections to coexist in a contemporary op-
erating system. By remapping kernel virtual memory on a
context-switch, or for individual system calls, we specialize
the kernel on a fine-grained basis. Our implementation of
shadow kernels uses the Xen hypervisor so can be applied to
any operating system that runs on Xen.

1. INTRODUCTION
Traditional monolithic operating design design has a

shared kernel that is mapped into the top of the ad-
dress space of every process. This design has numerous
advantages: system calls are fast as they don’t require
a context switch, shared-code has a low memory foot-
print, there is a higher cache-hit rate, and the shared
state eases kernel design and implementation.

At the same time, kernel specialization has been shown
to be beneficial: profile-guided optimization of Linux
can improve performance by up to 10% for some appli-
cations [17], exokernels eliminate abstractions for appli-
cations so that applications communicate more directly
with hardware thereby reducing kernel overheads [6, 7],
??

Such kernel specialization is often process-specific,
in that the specializations applied to one process may
have an adverse effect on other processes. For instance,
profile-guided optimization of the kernel improves the
performance of some applications and deminishes the
performance of others. Similarly, removal of security

checks may be desirable for trusted processes, but un-
desirable for non-trusted processes.

Yet, current production operating systems do not
have a primitive for kernel specialization on a per-process
level. The shared kernel means that any changes to the
kernel text or data have global effects; there is no way
to isolate kernel modifications to individual processes.
As such, it is not currently possible to execute an in-
dividual process with different kernel optimizations or
instrumenation to the rest of the processes executing on
the system.

In order to provide a performant, useful and effective
application augmentation primitive, it is important to
have the ability to limit the scope of kernel specializa-
tion. A new low-level primitive is needed to support
this: one that isolates kernel specialization for a sin-
gle process and allows for quick changes to its scope.
To this end we propose shadow kernels: kernel variants
with specialized text sections that are modified with
the specialization required, but share their data sec-
tions with the booted kernel. Non-specialized processes
continue to run the original unmodified kernel instruc-
tion stream whereas those that require specialization
are dynamically switched to execute the modified code
of a shadow kernel.

When process-specific kernel specialization is required,
a copy of an existing kernel instruction stream is made
and remapped into the requesting process kernel ad-
dress space. Because the specialized kernel instruction
stream is limited to executing in the requesting process
context, it has no performance side-effects on other pro-
cesses in the system.

In the remainder of this paper we argue the bene-
fits of per-process kernel text regions (§2); introduce a
design for shadow kernels (§3); and evaluate (§4) our
Xen-based implementation of shadow kernels (§5).

2. MOTIVATION
Shadow kernels allow kernel-text specialization with-

out affecting processes other than those being special-
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ized. We discuss such use cases, highlighting the main
benefits of shadow kernels.

2.1 Per-process kernel profile-guided optimiza-
tion

Recent work has considered applying profile-guided
optimization to operating system kernels to improve
performance. An unsolved issue with profile-guided op-
timization is that the optimization must be based on
a representative workload. In particular, if the kernel
is optimized based on one application then other appli-
cations executing on the same system often see a slow-
down in performance. Yuan et al. show that profile-
guided optimization of the Linux kernel can improve
performance of some applications by 10%, and reduce
performance of others [17], even when executing a single
application on a machine.

Shadow kernels allow applications executing on the
same machine to each execute with their own kernel
that is optimized with profile-guided optimization spe-
cific to that program. This therefore allows a training-
phase per-process that generates a shadow kernel per
process. So-long as the profile-guided optimizations
do not modify the data sections—which can be en-
sured through compiler flags—then each process can
have its own shadow kernel. Each time that the sched-
uler schedules-in a process, it remaps the kernel to the
appropriate shadow kernel. This can be further ex-
tended to allow multiple shadow kernels per-process by
creating shadow kernels per process subsection.

2.2 Scoping probes
Modern operating system kernels provide a range of

instrumentation primitives, for example DTrace and Kprobes.
The basic mechanism for most of these approaches is
identical: probe handlers are attached to kernel ad-
dresses by rewriting the instruction at the probed ad-
dress with a software breakpoint, or jump instruction.
CPUs executing the code raise an interrupt, or perform
a jump, upon executing the instruction.

The Achilles’ heel of this approach is that any process
that executes the instrumented address or function calls
into the instrumentation system regardless of whether
it is required. It is impossible for users to restrict the
scope of the instrumentation to a particular process.
The unavoidable penalty of hitting the probe is incurred
by every process each time it is executed, regardless of
whether it is applicable to the executing process.

This is particularly problematic if the application be-
ing investigated consumes a minority of the system’s
CPU cycles, since if hot functions are probed—those
that are an obvious cause of poor performance—every
system call made by the rest of the applications on the
system could become substantially slower.

With shadow kernels, probes can be set so they are

only fired for an individual application, thereby leav-
ing the performance of the well-behaving programs un-
touched. The overall probe effect of the added instru-
mentation is also reduced: setting kernel probes on hot
functions such as kmalloc or tcp sendmsg on a busy
server no longer degrades overall system performance.

2.3 Changing kernel optimization
Adding debugging for locks

2.4 Kernel fastpaths
A key rôle of the operating system kernel is to per-

form security checks, however applying these checks
can take a substantial amount of compute resource [?].
Often, some processes—such as system processes—are
trusted whereas others ought to be subject to the usual
kernel security checks. Moreover, applications such as
debuggers often need so subvert the usual security checks
to introspect the memory of another process. However,
with current kernel models, the same checks are applied
to all processes. With shadow kernels, priviliged pro-
cesses can be mapped onto shadow kernels that contain
exactly the security checks relevant to each application.

3. DESIGN
An operating system with shadow kernels support

boots in the traditional manner, with all programs ini-
tially sharing the kernel. An application can spawn
a new shadow kernel through a call to a kernel mod-
ule. This creates a copy-on-write version of the cur-
rently running kernel, which is mapped into the mem-
ory of the process that created it. As a process registers
probes, the specialization mechanism makes modifica-
tions to the kernel’s instruction stream. Due to the use
of copy-on-write, every page that has a probe registered
is then physically copied, leaving the original kernel text
untouched.

Where a function’s definition is to be replaced by a
definition that is the same length or shorter, we replace
the function in place. However, where the specialized
text is longer we allocate additional memory for the
new function, and replace the first instruction of the
function in the shadow kernel with a jump to the new
function.

Figure 1 shows each time a shadow kernel is spawned,
the shadow kernel API returns a shadow kernel handle,
which can be used to switch the process between the
original and the shadow kernel. To perform this switch,
the application remaps the top of its address space to
be the shadow kernel. This handle can also be shared
amongst processes, applied to all processes in Linux
container, or even used within a resource container [2].
For instance, a system may have a shadow kernel with
complete instrumentation that any process can use to
get a function call graph. On fork, shadow kernels are
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Figure 1: Overview of shadow kernel design

inherited by the child.
As shadow kernels only fork the text section of the

kernel, and do not modify the address of function entry
points, the benefits of having a shared memory kernel
remain and the semantics of function pointers are pre-
served.

Shadow kernels are also compatible with kernel mod-
ules: each time a module is inserted, or removed, we
iterate over the page tables, and perform a mapping, or
unmapping for each shadow kernel.

3.1 Asynchronous tasks
One of the challenges of a shadow kernel design is

dealing with code that runs in kernel mode outside par-
ticular processes. This includes code executed in kwork-
ers, interrupts, timers or during scheduling. Asynchronous
actions like these are routinely executed by the kernel
for the benefit of multiple processes.

If a given application requires specialization (for ex-
ample, for creating a hot path), it is difficult to obtain
complete isolation of the specialization from the other
applications: Take the example of a kworker that occa-
sionally flushes data to disk. Some of these data might
belong to instrumented applications, some of it to regu-
lar un-instrumented processes. The key challenge is to
correctly identify the correct kernel text section for the
kworker to execute.

Further complicating matters, two applications might
want to set different probes for the code executed by
that kworker (one application could be interested in
measuring the number of bytes committed to disk, an-
other in the time it takes to complete the same opera-
tion).

A solution to the issue is to give up isolation for these
particular use cases and make the kworker run the code

of a “union” shadow kernel that contains all the probes
set by the various applications for their own shadow
kernels. This provides correctness of results but in the
worst-case incurs the same overheads as current mech-
anisms.

For some cases, a better alternative exists: using
hardware virtualization primitives. Single-Root I/O Vir-
tualization support on recent network cards and flash
storage makes it possible to assign per-process virtual
devices (and reserve corresponding hardware resources—
such as receive/send queues). This approach has al-
ready been shown to be viable in systems such as Ar-
rakis [12, 13].

Once a process is given ownership of a particular vir-
tualized PCI device, the problem of “routing” asyn-
chronous tasks towards executing a given shadow kernel
becomes solvable: All the code that is executed in ker-
nel space when interacting with the device (interrupts,
timers) uses the text section of the shadow kernel asso-
ciated with the process that owns the device.

4. IMPLEMENTATION
Our current implementation of shadow kernels is a

Linux kernel module, built on a Xen-paravirtualised
Linux kernel. We chose to implement shadow kernels
using Xen, as it uses a paravirtualised memory manage-
ment unit (MMU), that forces all guests to update page
tables by issuing hypercalls. As any operating system—
including HVM containers—can issue hypercalls, this
allows the core of our implementation to be used in
any contemporary operating system. Moreover, a criti-
cism of existing work on kernel specialization has been
that it requires invasive changes to the core memory-
management of the operating system. As virtual ma-
chines have loose-coupling between kernel virtual ad-
dresses and machine physical addresses our implemen-
tation is less invasive than modifying bare-metal kernel
memory assumptions.

When a shadow kernel has been created, it initially
uses the same memory as the booted kernel to reduce
memory overheads and ensure high cache-hit rates. Each
time a program modifies the kernel text, if that page has
not previously been modified, we first allocate a new
page and copy the original text section into this new
page. After the modifications have been applied, we is-
sue a multicall that updates the machine-to-physical,
physical-to-machine, and virtual-to-machine page ta-
bles. Whilst this design does invoke extra hypervisor-
load, we note that on x86 the lack of protection rings
1 and 2 require domains to trap into Xen on each sys-
tem call anyway, therefore the additional load added by
shadow overheads is minimal.

Our implementation has two methods of scoping shadow
kernels. Firstly, per-process scoping interposes the op-
erating system scheduler—using Kprobes for Linux—
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Figure 2: Probing hot functions in the Linux
kernel causes a performance impact of up to 62%
to applications that are not executing any in-
strumentation code. This is caused by the in-
creased time to execute a system call, due to
the probes. All results are the average of six
runs. All samples were within 5% of the mean
value.

that swaps shadow kernels whenever a process is sched-
uled in-or-out. Secondly, manual-scoping allows pro-
cesses to use a shadow kernel for a subset of their system
calls.

5. EVALUATION

5.1 Scoping probes
We initially show that the lack of per-process ker-

nel specialization can be prohibitive by considering the
case of inserting Kprobes on hot Linux kernel func-
tions to profile system call latency of a specific process
on a production system. This system is also running
memcached—an application whose performance ought
to be unaffected. We illustrate that Memcached’s per-
formance is substantially affected by the inserted probes
by measuring its single-CPU single-threaded through-
put degradation. This experiment runs on a Xeon E5-
2660v2 serving a production workload at 10 Gbps on
Linux 2.6.32.1 We insert empty probe points into kernel
hot functions (as determined by profiling the most com-
monly called functions across all CPUs in the server).
Inserting probes on hot kernel functions is a common
technique used to comprehend the interaction of ker-
nel locks with applications semantics. We are therefore
showing how the performance of Memcached is affected

1This is the latest longterm kernel release of the 2.6 branch,
used by RHEL6. It contains all major performance improve-
ments between 2.6.32 and HEAD as of Nov 2014.
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Figure 3: The time to switch to a shadow kernel
is proportional to the number of pages that are
modified in the shadow kernel.

when instrumenting the interactions of other applica-
tions with the kernel.

Figure 2 shows that adding these probes reduces through-
put. Probing the most popular kernel function called
across all CPUs in the system reduces single thread per-
formance by 30%. Performance worsens with increasing
numbers of probe points—with the top three functions
being probed, performance is less than 50% of baseline
performance. If the scope of the probes were isolated
to only fire for other processes on the system the per-
formance of memcached would not decrease.

5.2 Overheads of shadow kernel creation
Having shown that the lack of per-process kernel spe-

cialization causes substantial performance degradations
we now consider the costs of creating a shadow kernel,
an action that we expect to be rare as it only occurs
when an application requires new specialization.

5.3 Overheads of switching shadow kernel
We now consider the costs of switching to an exist-

ing shadow kernel, an action typically performed on
each context switch. We execute all experiments on
an Intel Xeon E3-1230 V2 @ 3.3 GHz, running Ubuntu
14.10, with a Linux 3.19 kernel compiled from the Linus
branch.

5.3.1 Microbenchmark analysis
To measure (ii) we use a microbenchmark that re-

peatedly switches to a shadow kernel with a varying
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number of pages, and performs a single system call
(socket). We issue the system call in order to trigger
a mode change into the kernel, so that we can update
the page tables.

Performing the socket system call, without switch-
ing to a shadow kernel, takes 5.19µs ± 1.61µs Figure 3
shows the time to perform the microbenchmark, varying
the number of specialized pages between 1 and 1927, the
number of pages in the text section of our kernel. This
time is directly proportional to the number of pages
modified, since for each page Xen performs an unmap
and remap operation. To specialize ten pages—in order
to specialize the ten most-hot kernel functions—and ex-
ecute ten pages takes 9.4µs. Therefore, the overheads
of performing such specialization on hot kernel func-
tions are minimal. Whilst the overheads for remap-
ping the entire kernel are higher, we envisage that a
hybrid scheme whereby we use a huge page to represent
a shadow kernel that changes a large proportion of the
kernel. Despite improving switching cost, using large
pages does increase the memory footprint of shadow
kernels, from n 4 KB pages (whereby n is the number
of pages changed) to at least 2 MB.

An alternative approach is to assign virtual machines
a vCPU for each process executing a shadow kernel
so that the hypervisor, rather than the OS scheduler
performs scheduling decisions for the application. This
prevents the need to remap shadow kernels, as the OS
scheduler will not deschedule the specialized applica-
tion.

5.3.2 Application to realistic workload
Having shown a microbenchmark cost of switching to

a shadow kernel, we now show the overheads when ap-
plied to a realistic workload. We modify lighttpd in
order to switch to a shadow kernel whenever it is sched-
uled in by the operating system scheduler. Lighttpd
serves a 217 KB file. We increase the number of pages
in the shadow from 0 to 1920 in increments of 10, mea-
suring the response time for 100 requests at each level,
with a concurrency level of 1.

Figure ?? shows that as the number of pages in the
shadow kernel increases, the server response time de-
creases. The server side response time without using
shadow kernels is 3.54 ms ± 5.50 ms. With a shadow
kernel that remaps every page the server response time
is 4.34 ms ± 5.32 ms. Of this increase, approximately
0.6 ms can be explained by the cost of switching to the
shadow kernel when lighttpd is scheduled in due to the
arrival of a request, as shown in Figure 3. The remain-
ing slowdown, of 0.2 ms, is caused by an increased cache-
miss rate.

6. RELATED WORK
Shadow kernels isolate processes from unintended spe-
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Figure 4: As the number of pages in the
shadow kernel increases the server side latency
of lighttpd increases.

cialization overhead by only specializing a fork of the
current kernel’s text section. Since the 1980s, the ben-
efits of kernel specialization for performance have been
well known [?], however invasive changes have prevented
uptake by mainstream kernels. Yet, the idea of kernel
specialization has been reconsidered in research oper-
ating systems—such as Babelfish—for many core com-
puters whereby each core runs an entirely different ker-
nel [14].

In production operating systems, tools such as Ksplice [1]
enable the live patching of kernel code; once patched,
the whole system is then switched to run the new mod-
ified kernel. Moreover, modern malware often uses sim-
ilar page-table tricks to shadow kernels, for instance
by desynchronizing the instruction and data TLBs [15].
Shadow kernels differ from these systems by allowing
multiple kernel text variants to coexist. This is simi-
lar to systems that make use of multiple text sections
to offer kernel hardening [11] or to run specific system
calls in trusted kernels [16].

Virtualization techniques allow the running of mul-
tiple operating systems (kernel and user spaces) on a
single machine [4]. Shadow kernels differ from virtual-
ization however, by not requiring separate kernel data
and user spaces; and instead isolate only the kernel
text. Multikernels apply a similar technique by shar-
ing a common user space but add support for running
separate kernels on each CPU core with explicit com-
munication between them [5].

A key feature of shadow kernels is that the user is
able to switch a process to using one on demand. This
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is similar to on-demand virtualization [10], where a user
migrates their operating system onto a virtual machine
when they require isolation and checkpointing.

Instrumentation tools have been built to obtain per-
formance data from an operating system kernel [3, 8].
Fowler et. al show that program performance can be
improved by both kernel space and user space having
access to kernel performance data [9]. However, what
can be achieved with current instrumentation primitives
is limited by the performance issues we show in §??. In
that sense, our work is orthogonal to the instrumenta-
tion mechanism that an application uses, removing ex-
isting limitations and providing the isolation required
to apply such instrumentation with a low performance
overhead.

7. CONCLUSION
Current kernel probing mechanisms rely on rewriting

the shared kernel instruction stream. This prevents the
isolation of probes to specific processes. When probes
are inserted to debug the performance of one program,
this lack of isolation causes a system-wide performance
degradation.

To solve this problem we present shadow kernels. By
switching between multiple kernel text sections, shadow
kernels allow uninstrumented processes to execute with
a kernel that contains no probes. By restricting the
scope of firing probes, shadow kernels improve perfor-
mance, allow switching between probe sets, and de-
crease the number of unprobeable kernel functions.
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