Endosparm

Resourceful

Cell Fllod with
Starch Granules
in Protein
Matrin

Eellalose Watls
of Cells

Algurene Cell

L~ Layer [porf of
endotperm but
separoted .
with bran)

Lucian Carata g pir ~=- - T

Seed Coot

{Tesial

James Snee e

= Cross Cells

Oliver Chick e o ek
Ripduman Sohan

Seutelium

Sheath of Shoot

Rydimentary
Shoot

Ruydimentary
Primary Roof

Roat Sheath

y Reot Cap
-'_'_._-_-_.__-——-_‘—‘- y

SRG/NetOS talklet, Sept 23" 2014

The Problem

- Easily understanding (kernel space) resource
consumption for parts of an application

- Explaining variability in terms of resource
consumption

write(fd, buffer, BF_SZ)‘) 1us

write(fd, buffer, BF_SZ)‘) 10 us

Resourceful

- Kernel module

- Inserts kprobes in the kernel and does the
resource accounting

- Exposed as character device for mmap-ing

- API

rscfl_acct(..., NEXT, group_ID);
write(fd, buffer, BF _SZ);

rscfl_read(..., &ccounting);

Resourceful (the interesting bits)

- Kernel functional subsystem identification

sys_accept (call graph)

\ NET

sock _alloc file()

] = Subsystem boundary (kprobe)
new_inode_pseudo()

VFS

- Accounting for asynchronous resource
consumption

End to End Latency

4 Latency Explorer

11

104

Experiment 0

g

L -
[

T 6
o

Debug g 5

w44

GET DATA 3

24

1

o T T 1 I_lll I I I T

17 18 19 20 21 22 23

Resource consumption data

cpu memory vfs IO _WAIT scheduler sync network net_retransm
0~ 63 1.4 - 1.0 — 1.0+ q .
14 142 S e
1 5+ gy 304 2.0
¥ b5 0.5+
5 104 A
- A
g8 157
-3 3 0.0 0/0- 20
D‘.E_ 1_[}_
7 2-
% -05 ‘054 .0+
-5 0.5+
14 0.2 \
61 0- 0.0- 10 1.0 0J 0.0
. 20,482 -21.923 57.046-67313 X

ADD AXIS

Suggestions & Questions ?

getrusage
ftrace _
iotop/netstat Lucian Carata
Perf @Ic525
Dtrace/SystemTap

| Interested? Come talk to us:
Magpie/Fay

Dapper/X_Trace LUCIan, JameS, Ollle, Rlp
X-ray

Overheads

B lighttpd Amedian =3.90%
-| M lighttpd + Resourceful Aaverage =4.34% |-
A99" percentile =7.66%

(=2

L £ Ln

Frequency Density

lj.Er 1.8 2.0 2.2 2.4 2.6 2.8
Latency (ms)

Kernel-Space

Address Space
(Application)

2 - ?
S c® Rs!
O o c oVu
o S
8 £ o
s o W
o @) .m o
©
-
Q £
m = = nnu g
Y
5 _ S 211 © > S
o c = = _|
| o > > ©
3 &))
O 2T
a l-
lllllllllllll ..-j-lllllllllll‘lllllllll - e e - . G D S . ..
- p -
“- llllllllllllllllllllllllllllllll m.|l||| - —— - -
| -
]
]
]
]
_.Illllllllllllll Iy lllllllll.l..l..l..l.
S e -
o- """""""""""""" m
] —
T M =
] — —
=S _ 3
1 cC — o
< L= T,)
]
O Q — -
m © < kT °
“ = n o
' O
" ®
R ———

User-Space

Resourceful

Lucian Carata
James Snee
Oliver Chick
Ripduman Sohan

Sheath of Shoot
Rydinentory
Shoot
Rudimentory
rimary Rool

Roet Sheath

— ResiCar

SRG/NetOS talklet, Sept 23" 2014

- All team members part of Digital Technology Group
- Lucian Carata (presenting), supervised by Prof. Andy Hopper

The Problem

- Easily understanding (kernel space) resource
consumption for parts of an application

- Explaining variability in terms of resource
consumption

write(fd, buffer, BF_SZ)) 1us

write(fd, buffer, BF_SZ)) 10us

1. “parts” = function calls / application defined (i.e. all the syscalls made while servicing a
user request)

2. The example of writes taking different times is simple to explain (one write was buffered).
However, we aim to explain variability in terms of kernel subsystems for more complex
scenarios (resources consumed by a user request; why was a request slower than
another?)

3. (optional) Compared to ftrace, there is no “log processing” step, and we get more data
besides time (ie nr. of TCP retransmissions, memory allocated/deallocated, cache
misses)

Resourceful

- Kernel module
- Inserts kprobes in the kernel and does the
resource accounting
- Exposed as character device for mmap-ing

API

rscfl_acct(..., NEXT, group_ID);
write(fd, buffer, BF_SZ);

rscfl_read(..., &accounting);

High level overview
1. Minimal ammount of kprobes for breaking down accounting per kernel subsystem
* each application thread gets it's own mmap-ed memory for resources consumed
within it.
2. group_ID (application level aggregators)

3. On read, the app “sees” the resource data in its own memory space

Resourceful (the interesting bits)

- Kernel functional subsystem identification

sys_accept (call graph)
\
- sock_alloc_file()
* new_inode_pseudo()

NET
subsystem boundary (kprobe)

VFS

- Accounting for asynchronous resource
consumption

1. We identify kernel subsystems with Cscope (getting a kernel call graph) + directory
structure for determining the minimal number of probes that need to be inserted

2. Asynchronous accounting: I/O Buffers (simple example)

End to End Latency

A Latency Explorer

1

104
Experiment + 9
e
T -
9
5] ‘H m
5
5 54
o
L ao
GET DATA 1
2
A I
IS ELILIEE T | E . —
17 18 19 20 21 22 23
o - K
Resource consumption data
cpu memory vfs IO_WAIT scheduler sync network net_retransm
0+ 67 1.4+ 1.0 B B B
.14 12 A\ i
' P 0k 05 301 2
5] 104 % \ 3
. A4
a8 155
-3 3 0.0 00 20+
0.6 104
44 5 !
047 oY 054 04
-5 0.5+
15 0.2 \
63 0J ool 10l 10 ol 0o
Wl 20482-21.923 x 57.046-67.313 X
Y ADDAXIS -

Demo for Latency Explorer

Suggestions & Questions ?

getrusage
ftrace .
iotop/netstat Lucian Carata
Perf @Ic525
Dtrace/SystemTap
_ Interested? Come talk to us:
Magpie/Fay)))
Dapper/X-Trace Lucian, James, Ollie, Rip
X-ray

Related systems on the left (for compare & contrast)

Overheads

I lighttpd Amedian =3.90%
Bl lighttpd + Resourceful Aaverage =4.34% |
A99* percentile =7.66%

[=1]

Frequency Density
[} w £ (%)

[

(=]

2.0 2.2
Latency (ms)

Two latency distributions, overlayed. The one below (in green) is lighttpd only, the one
above (blue) lighttpd + resource accounting with resourceful. Median latency increases
by 3.9%

return

User-Space : syscall Kernel-Space
Address Space E
(Application) ! SoTkG
...................... ' acct_buff Probes
App H
acct_read() ' H
init() i
acct_next() | 1 E
|]
]
l ¢ ., Comm
R
]
H init
rscfl_api ! on mmap ®
]
mmap \E//gev/rscfl
]
,.\; /dev/r_ctl
2 : on mmap
(pid, syscall_num) H
[
] .
: ctl_page
i
]
]
]
[]

Overall architecture of Resourceful

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

