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ABSTRACT

Third-party libraries are vital components of Android apps, yet
they can also introduce serious security threats and impede the
accuracy and reliability of app analysis tasks, such as app clone
detection. Several library detection approaches have been proposed
to address these problems. However, we show these techniques
are not robust against popular code obfuscators, such as ProGuard,
which is now used in nearly half of all apps. We then present L1sID,
a library detection tool that is more resilient to code shrinking
and package modification than state-of-the-art tools. We show that
the library identification problem can be formulated using binary
integer programming models. LiBID is able to identify specific
versions of third-party libraries in candidate apps through static
analysis of app binaries coupled with a database of third-party
libraries. We propose a novel approach to generate synthetic apps
to tune the detection thresholds. Then, we use F-Droid apps as the
ground truth to evaluate LiBID under different obfuscation settings,
which shows that LiBID is more robust to code obfuscators than
state-of-the-art tools. Finally, we demonstrate the utility of LisID
by detecting the use of a vulnerable version of the OkHt tp library
in nearly 10% of 3,958 most popular apps on the Google Play Store.
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1 INTRODUCTION

In recent years, the smartphone ecosystem has developed rapidly,
reaching around 1.4 billion by 2018, with over 80% of the mar-
ket share controlled by Android [32]. The success of the Android

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °19, July 15-19, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6224-5/19/07...$15.00
https://doi.org/10.1145/3293882.3330563

Alastair R. Beresford
University of Cambridge
Cambridge, UK
arb33@cl.cam.ac.uk

55

Stephan A. Kollmann
University of Cambridge
Cambridge, UK
sak70@cl.cam.ac.uk

ecosystem is fueled by the rich variety of third-party apps. Third-
party libraries play a vital role in Android app development. They
enable developers to: promote their apps with social media support;
monetize their apps through advertisements; or simply facilitate
app development and extend app functionality. In fact, a previous
study has shown that, on average, over 60% of sub-packages in
Android apps are from common libraries [33]. Nevertheless, the
prevalence of third-party libraries can also bring new challenges
that may affect the security and privacy of the Android ecosystem.

One challenge is that the presence of libraries may constitute a
barrier for mobile app analysis. First, app clone detection schemes
should not take library code into account during analysis. Since a
large proportion of program code is contributed by libraries, which
may well be used in many other apps without modification, the
accuracy of detection schemes will be significantly skewed if library
code is not properly excluded. Second, library code may result in
significant overhead during static analysis. Static analysis is the
basis for many Android research topics, but it is often challenged
by computing power and resources [4]. Since libraries are often
irrelevant to the main functionality of an app, removing them, or
analyzing them separately, would improve efficiency [37].

Another major challenge is that third-party libraries may in-
troduce serious security and privacy threats. One vulnerability in
a popular library could compromise a great number of apps. For
example, Facebook Android SDK version 3.15 [23] and certain ver-
sions of the OkHttp library [38], both of which were popular in
Android apps, contained authentication vulnerabilities. In addition,
several popular libraries have spied on SMS messages [24] or even
established backdoors [25]. Attackers may also inject malicious
code into popular libraries and redistribute them through unofficial
platforms to remotely control smartphones or steal information.
According to recent research, more than half of all Android apps
with vulnerabilities were at risk due to libraries [36].

These challenges motivate the design of reliable and scalable
techniques to identify libraries in mobile apps. However, there
are several challenges. First, many apps adopt code obfuscators,
such as ProGuard [16], to obfuscate the name of classes, fields, and
methods; approaches based on simple identifier matching [28, 39]
are not applicable for such apps. Second, many detection schemes
tried to extract library candidates at scale by using clustering ap-
proaches [19, 21, 33]. Although these schemes require no prior
knowledge about the libraries before clustering, they require signif-
icant effort to label each cluster later. In addition, due to the lack of
detailed information on libraries, clustering-based schemes cannot
determine which version of a library is inside an app. Thus, they
cannot be used to study whether apps use a vulnerable version
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Figure 1: The workflow of LiBID

of libraries. Last, library code can be dynamically changed dur-
ing the build process by code optimizers. For instance, ProGuard,
an open source tool that has been integrated into the Android
build system, will, by default, optimize all code and remove un-
used dead-code during the build process. This process is called
code shrinking or dead-code elimination. In addition, ProGuard can
apply package modification operations, which includes package
flattening and class repackaging, to obfuscate packages and change
class hierarchies. A recent study has shown that 49% of apps (88%
of obfuscated apps) used ProGuard and 21% of them applied pack-
age modification operations [34]. Most of the existing studies (e.g.,
LibRadar [21] and LibD [19]) failed to consider code shrinking and
package modification operations, while others that did consider
them (e.g., LibScout [5] and Orlis [35]) showed poor accuracy in
our experiments.

Aim. We design a novel third-party Android library detection
tool, LiBID, that can reliably identify the library version used in
Android apps given the library and app binaries. L1BID is resilient
to common code obfuscation techniques, including identifier re-
naming, code shrinking, control-flow randomization, and package
modification.

Design. We start by building library and app profiles directly
from their binaries by selecting obfuscation-resilient features. Then,
we match library classes with app classes based on their profile. In
particular, we formulate the constraints between matched classes
and construct novel Binary Integer Programming (BIP) models to
find the optimal match pairs that satisfy these constraints. LiBID
also leverages a special Locality-Sensitive Hashing (LSH) technique
to improve its efficiency and scalability by avoiding full pair-wise
feature comparisons. In terms of computation complexity, we de-
sign two schemes for LiBID: LiBID-S and LiBID-A, with a focus
on scalability and accuracy, respectively. In addition, we develop
a systematic approach to generate synthetic apps with different
versions of libraries. We use generated apps as the ground truth
to tune the detection thresholds of LiBID and tentatively compare
the results with state-of-the-art library detectors: LibScout, Orlis,
and LibPecker [40]. Furthermore, we apply all library detectors to
open source apps on F-Droid and benchmark their performance.
Finally, we conduct a large-scale study on popular Google Play apps
and identify a high proportion of popular apps using vulnerable
libraries.
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Contributions. We make the following contributions:

(1) We use recent software engineering methods, such as LSH
ensemble, to design and implement a state-of-the-art third-
party library detection system for Android.

(2) We are the first to formulate library matching constraints
and convert library detection into a BIP problem.

(3) We propose a method of generating synthetic apps, where
the ground truth is known, in order to empirically determine
appropriate detection thresholds.

(4) We show LiBID achieves higher F; score than other state-of-
the-art methods both when no obfuscator is used and when
ProGuard/Allatori/DashO is used.

(5) We show that L1BID successfully detects vulnerable versions
of the OKHttp library in nearly 10% of popular Google Play
apps; LibScout only finds 7.5%.

(6) We make all source code available for other researchers!.

2 SYSTEM DESIGN

The aim of LiBID is to reliably identify third-party libraries from
Android binaries against popular obfuscation techniques, which
requires fine-grained analysis that is usually time-consuming. To
improve the usability of LiBID, we introduce two library identi-
fication schemes: LiBID-S (§3) and LiBID-A (§4), which focus on
scalability and accuracy, respectively.

The workflow of LiID is illustrated in Fig. 1. It consists of
two major steps: profiling and matching. In particular, L1BID first
generates a profile for every library and app binary. Then, these
profiles are compared using a matching process. The output of
the matching process allows L1BID to report the likelihood of any
given library appearing in any given app. If there is a match, LisID
additionally reports the in-app package names of all matching
libraries in an app, which enables researchers to quickly find the
library code in the app.

3 LIBID-S

3.1 Profiling

As shown in Fig. 1, the profiling step can be divided into three stages.
We do not differentiate the profiling of apps and libraries here be-
cause they use the same techniques. In particular, L1BID-S first

!https://github.com/ucam-cl-dtg/LibID
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Table 1: Grammar for the basic block signature

Instruction Type Abbreviation
Basic Block B
Field Read Fo
Wirite F1
Method Call New Instance Mo
Other M1
String S
If I
Return R
Goto G

constructs the Control Flow Graph (CFG) from a library binary and
extracts all basic blocks from it. Then, LiBID-S builds a collection of
basic block signatures that are invariant to identifier renaming, code
shrinking, control flow randomization, and package modification
techniques. The challenge is to do this while preserving as much
information about the original code as possible. In this paper, we
use the features and grammar presented in Table 1 to build a textual
representation of the basic block signature, which records, in order,
all field-related operations (read or write), method calls, the exis-
tence of strings inside each block, etc. If there are multiple field or
method instructions in a basic block, there will be an abbreviation
for each instruction in the signature. For example, if there are two
field reads in a basic block, we will record two instances of F@. The
basic block signature also includes the name of called methods if
they are from the Android SDK.

Furthermore, we associate the class features with each basic
block signature by prefixing the basic block signature with four
new components as shown in Fig. 2, which include:

o Class Access Flag: This field keeps the native Java access flag
of the class since obfuscators typically do not change these
class access flags.

o Superclass Name: If the class is extended from a class in the
Android SDK, then this field will record the name of the
superclass. Otherwise, this field is [X].

o Class Interfaces: This field only records class interfaces that
are from the Android SDK. If there are multiple qualified in-
terfaces, a separator | will be inserted in this field to separate
them. This field is [] if the class does not implement any
class from the Android SDK.

e Method Descriptor: We use the same format as LibScout [5]
and OSSPolice [12] to profile class methods. Each method
parameter is represented by its type in Dalvik and non-
framework types will be replaced with a placeholder X.

This augmented basic block signature represents a feature of the
class, and thus we call it a class signature; a class typically has a
set of class signatures. An example of a class signature is given in
Fig. 2. Then, each Android app or library can be characterized by a
class signature dictionary, where the key is the name of its member
class and the value is the set of class signatures of that class.
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Figure 2: Format of a class signature with an example

3.2 Matching

After generating both app and library profiles, LIBID-S compares
their similarity and calculates the confidence of the library being
used in the app. We refer to this procedure as the matching process.
As shown in Fig. 1, the matching process can be broken down into
the following three steps: class matching, dependency matching and
library matching.

Class Matching. This stage aims to find the candidate matches
between library and app classes. An intuitive way to achieve our
goal is to compare whether the signatures of these classes are the
same. However, obfuscators can remove unused basic blocks from
the original class or even delete the whole class, and thus a library
class may have various signatures in different apps. In this regard,
instead of looking for the same class signature sets, we define
the class signature containment index as follows to quantify the
similarity between two classes.

Definition 3.1 (Class Signature Containment). For two classes
c1 and ¢, whose signature set is s; and sy, respectively, the class
signature containment of ¢ in ¢y is defined as:

[s1 N sz
Scler,e2) = ———
[s1]

(1)

In LiBID, library profiles are extracted directly from their binaries,
and thus they contain a complete set of library class signatures.
However, in-app versions of a library class may contain only a small
subset of signatures due to the dead-code elimination. Therefore,
LiBID-S only considers an app class ¢, as a candidate match to a
library class ¢; if Sc(cq, cp) is equal to 1, since code shrinking does
not change this index.

This containment index has been used to detect piggybacking
apps [11, 13]. However, it requires pair-wise comparison which is
time-consuming. Locality-Sensitive Hashing (LSH) [2] provides an
efficient solution to this problem. It pre-processes the dataset by
creating signature hashes such that similar items have a higher
chance of sharing the same hash. Here, L1BID applies a special LSH
index technique named LSH Ensemble [42], which supports the
containment query, to speed up the matching process.

Dependency Matching. The dependency matching stage aims
to find the true match pairs from the candidates. Based on Defi-
nition 3.1, it is likely that a single class in an app is matched to
multiple candidate library classes, or vice versa. However, this is
problematic since each library class can produce at most one match-
ing in-app class, and vice versa. For example, in Fig. 3, it is clear
that L1.class and L2. class cannot both be matched to A1.class.
In fact, there can be at most two true matching pairs in Fig. 3.
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Library

Figure 3: Class Matching result (ellipses stand for classes and
the connections between them indicate a candidate match)

In general, suppose there are m library classes Cy, that have can-
didate matches in the app and n app classes Cp that have candidate
matches in the library. Then, we can generate a candidate match
matrix R € {0,1}"" where Re,,¢, = 1if and only if ¢; € Cf,
and ¢; € Cp are a candidate match. A true class match matrix
C € {0,1}™*" ensures a unique match between library and app
classes should have the following uniqueness constraints:

CC[,Ca < Rcl,ca, Vep € Cp,eq € Cp

Z Cepe, <1, Yo €Cy

cq€Ca

Z Cepe, <1, Ya; €Cp

cjeCy,

@)

Or in words, there should be at most one non-zero value in each
row and column in C and C is a subset of R.

In Android apps and libraries, each package may include a set of
classes and several sub-packages. In most instances, obfuscators do
not change the internal package structures. Therefore, L1BID-S by
default will only match an app class with a library class if they are
at the same level in the matching package. For example, in Fig. 4,
suppose each library class is a candidate match to an app class.
Here, we use the superscript * to denote candidate match pairs (e.g.,
a.class is a candidate match to a*.class). If we want to check
whether the library package Okio and app package a is a match,
then the match pair (Okio/o.class, a/o0*.class) is valid while
(Okio/a.class, a/b/a*.class) is invalid because classes in the
latter pair are at a different level to the matching package. However,
if we are comparing package Okio with sub-package b in Fig. 4
(a), then that pair is valid because both a.class and a*. class are
directly under the matching package.

To make sure the matched class pairs are valid, we need some
additional constraints. Suppose there are m,, library packages P,
and n, app packages Pp that contain matched classes or their
sub-packages contain matched classes. For example, if Cy, consists
of two classes (a/b/x.class and a/c/y.class), then Py would
have three elements (a/b, a/c, a). Let P € {0, 1}"»*"» be the true
package match matrix, then the hierarchy relation between classes
can be ensured by the following hierarchy constraints:

PPI,Pa = Pparent(pl),parent(pa)’ Vpl € PL’pa € Pa (33)

Z PPI’Pa <1, VpjeP

4 (3b)
aSFA

58

Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann

APP A

(a) Package flattening

LIBRARY £

= okhttp3 @ a.class

[ internal

@ p.class

(b) class repackaging

Figure 4: Class hierarchy in app and library packages

Z Ppp. <1, ¥pa €P4 59
PIEPL
Ceriea < Ppackage(cr), package(c,)> 7¢I € CL,ca € Ca (3d)

Constraint 3a ensures the app and library packages can only
be a match if their parent package also matches. In particular, if a
matching package is already a top-level package (no parent pack-
age), this constraint will be ignored. Constraint 3b and 3¢ make
sure each library package can only be matched to at most one app
package. Constraint 3d ensures that classes can only be matched
if their packages match. Collectively, these hierarchy constraints
guarantee that matched class pairs have the same hierarchy.

The objective of LiBID-S is to find the maximum number of
matched class pairs, which can be formulated to the following
Binary Integer Programming (BIP) problem:

maximize Ceeq
(9] €Cr,cqa€Ca

subject to Constraint 2 and 3

The BIP problem has been extensively studied for many decades
and there are many sophisticated software packages available to
help solve this problem [30]. Previous work has shown that 21% of
apps using ProGuard have applied package modification operations,
which includes package flattening and class repackaging [34]. If
package flattening is enabled, rule-specified packages will be put
into a single parent package, but the structure of the package will
be preserved. Notably, we do not require the hierarchy of packages
to be the same. For instance, it is possible to have a match between
package Okio and a/b in Fig. 4 (a). Therefore, L1BID-S is robust to
package flattening and package renaming tools that could change
the hierarchy of root packages but not internal package structures.
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By contrast, if class repackaging is applied, rule-specified classes
will be moved to a single parent package, and thus the classes
hierarchies in the original package will no longer be preserved. An
example is given in Fig. 4 (b), where all classes in the library have
been repackaged to package a in the app. If we still use Constraint 3,
then many true class matches would be missed. To address this
problem, we create a Class Repackaging Detection (CRD) mode.
When LiBID-S runs in the CRD mode, every app package that does
not have sub-packages could be the parent package of repackaged
classes. Let PA be the collection of these app packages, then L1BID-S
has the following hierarchy constraints when the CRD mode is on:

Z Pprpa <1, Vp € Py
pa€P,
_ 1,2 4
Ppll,pa = pr,pu’ Vpl,pl €PL,pa € Py

Cepe, < Ppackage(e,),package(ca)’ Ycy € Cp,cq € Cp

©

Or in words, all library packages could only be matched to a single
app package that does not contain a sub-package. For example, in
Fig. 4 (b), app package a could be a candidate match to the library
package OkHttp3. In this way LiBID-S is also able to deal with class
repackaging techniques if shrinking is not applied at the same time.

Library Matching. L1sID aims to pinpoint the third-party li-
brary version in Android apps. An intuitive solution is to check the
proportion of library classes that are present in the app. However,
some classes may have no viable signature, which we call unpro-
ductive classes. An example of an unproductive class is a class that
contains only abstract methods (i.e., no basic block). Unproductive
classes contribute little to the uniqueness of the library and will
never be matched to other classes. Therefore, we exclude them from
the proportion calculation. Nevertheless, this evaluation index is
not robust against code shrinking. As a fix, we also consider the
proportion of matched classes in the matched app package and
define the library match index as follows:

Definition 3.2 (Library Match Index). Suppose the root package
Py of library L is matched to a package P4 in app A, and there are
Nc true class match pairs between L and A, then the library match
index of L in A is:

M(L,A) = L

min(Np,,Np,)

Where Np, and Np, are the number of productive classes in Py,
and Py, respectively.

The library match index is suitable for quantifying the confidence
of the presence of the library in the app. On the one hand, apps may
use several libraries that share the same root package. In this case,
Nc/Np, can be pretty low even if the library is used by the app. On
the other hand, if code shrinking is applied, then Nc/Np, could be
very low but Nc/Np, would remain high. In both cases, Sc(L, A)
can still retain a high value. Therefore, we can decide whether app
A uses library L using two thresholds:

N
M(L,A) > Tj and —<
Np,
The threshold I ensures there is enough information about the
library for us to make a meaningful decision. In most cases, M(L, A)

should be close to 100% if app A uses library L. Although LSH

>

®)
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will inevitably introduce false negatives and false positives, the
relation constraints can help to reduce false alarms during the
matching process. However, if both class repackaging and shrinking
are applied, then M(L, A) can still be a small value. In this case, we
can adjust the value of I3 to balance between the detection of
libraries and introducing false positives.

In general, each library update may modify only a small fraction
of the code, and thus there may be multiple library versions that
satisfy Constraint 5. For each matched library, L1BID-S only keeps
the versions that have the highest value of M(L, A).

Summary. LiBID-S only relies on features that are consistent
under code shrinking, control flow randomization, and package
modification. The use of the LSH Ensemble greatly reduces the
matching time by avoiding pair-wise comparison between classes
and all calculations in L1BID-S are relatively light-weight. Therefore,
LiBID-S is a suitable tool when computing resources are limited.
Nevertheless, although we have considered the uniqueness and
hierarchy constraints during the matching process, this coarse-
grained analysis can still result in false matches between classes.
In addition, if multiple libraries share the same root package in the
app and each library only has a few classes remained in the app,
L1BID-S may not be able to identify these libraries.

4 LIBID-A
4.1 Profiling

On the basis of L1BID-S, we design a more accurate library detection
system named L1BID-A. LiBID-A employs finer-grained features
(invocation, interface, and inheritance dependencies) during the
library detection process, which enables it to not only find library
matches for each app more precisely but also pinpoint class match
pairs with higher accuracy. Overall, LIBID-S does not make use
of the information about dependencies between different classes,
which may result in incorrect matching. To address this problem,
LiBID-A further records the following additional information:

e Method Calls: If a callee is obfuscatable, L1BID-A will record
the name of the called class and method under the key of
the caller class in the invocation dictionary.

o Class Inheritance:If a class’s superclass is obfuscatable, L1BID-
A will record the name of the superclass under the key of
the current class in the inheritance dictionary.

o Class Interfaces: If the class’s interface is obfuscatable, LiBID-
A will record the name of the interface under the key of the
current class in the interface dictionary.

Notably, we only keep records of the above information if the
relating entities are obfuscatable (i.e., not from the Android SDK).
Otherwise, they should have already been integrated into class
signatures. Then, L1BID-A will build dependency graphs based on
these dictionaries. Here, we define a dependency graph as an undi-
rected graph, where each node corresponds to a class and each
edge represents an invocation, inheritance or interface dependency
between these two classes. Notably, these dictionaries are only used
to construct the dependency graph. No static identifier (e.g., method
and class name) will be utilized for string matching as they can
easily be changed by identifier renaming.



ISSTA °19, July 15-19, 2019, Beijing, China

4.2 Matching

The matching process in L1BID-A also includes three major phases:

Class Matching. This process is the same as the class matching
in L1BID-S. We use the class containment similarity index in Defi-
nition 3.1 to find all candidate class matches while applying LSH
Ensemble to speed up the matching process.

Dependency Matching. In contrast to LiBID-S, apart from
uniqueness and hierarchy constraints, the dependency matching
in L1BID-A also includes the following constraints:

e Invocation Constraints: For any two app classes (c},c2 €
Ca), if ¢} invokes a method in ¢ and the formatted method
descriptor is d, and their true class match in the library is cl1
and clz, respectively, then there must be a method call from

cl1 to cl2 whose descriptor is also d. It is not necessarily true
the other way around.

e Inheritance Constraints: For any two app classes (cL,c2 €
Ca), if ¢} is the superclass of c2, and their true class match
in the library is cl1 and clz, respectively, then cl1 must also be
the superclass of cf, and vice versa.

e Interface Constraints: For any two app classes (cL, c2 € Ca),
if ¢2 is an interface of ¢}, and their true class match in the
library is cl1 and clz, respectively, then there must be a method
call from cl1 to cl2 whose descriptor is also d. It is not neces-
sarily true the other way around.

The formulation of these constraints are very similar to LiBID-S,
and thus we do not reiterate them here. Notably, the invocation
and interface constraints do not work the other way around. The
reason is that both method calls and interfaces can be deleted by
code shrinking, but the superclass will always be kept if the child
class exists. LIBID-A also has a CRD mode, which replaces the
default hierarchy constraints with Constraint 4 while keeping other
constraints the same.

The objective of L1BID-A can be formulated as follows:

2

c1€Cr,cq€Cha

maximize Cepyeg tW Z (V+H+T)a
a>“a

ch.cieCx

subject to five types of constraints described in this section

where V,H, T € {0,1}"*" are the invocation, inheritance, and in-
terface matrix, respectively. Their element is equal to 1 if and only
if there is corresponding dependency between c} and ¢Z. w is a
weighted parameter that should be small enough (e.g., 0.0001). In
other words, L1BID-A aims to find the optimal solution that has the
largest number of class match pairs. If there are multiple solutions,
it selects the one with the largest number of dependency matches.

Library Matching. To reliably detect libraries when both class
repackaging and shrinking are applied, LiBID-A utilizes the depen-
dency graph to perform better library matching.

Relation Pruning: Although class repackaging can move classes
from different packages into a single package, the dependency
graphs stay the same. Therefore, we should only consider classes
in the app package that are reachable from any matched classes.
In other words, an app class needs to be in the same connected
component with any matched class in the dependency graphs in
order to be considered. We name this process relation pruning.
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Ghost Hunting: Library classes may invoke methods from classes
that exist in another library under the same package name. This
is most common when libraries are developed by the same company.
For instance, Leakcanary calls methods from Leakcanary-Watcher
and they share the same root-package com/squareup/leakcanary.
In this case, we cannot eliminate the interference of other libraries
through relation pruning. Instead, for each library class, if it depends
on another class that is not in the library and not from Android
SDK, we will record this connection and refer to the connected
class as a ghost class. For each ghost class, we find its matched app
class by dependency matching and remove it from the dependency
graphs. This process is named ghost hunting.

For each library and app match, we first implement ghost hunting
to eliminate the distraction of ghost classes and then apply relation
pruning to avoid the interference of classes that are not from the
library but in the same app package. Let N IEA be the number of
qualified app classes, then the definition of library match index for
LiBID-A can be updated as:

Nc

M(L,A) = ————
(.4 min(NpL,NgA)

(6)

Where notations have the same meaning as in Definition 3.2. If
the class matching is accurate, M(L, A) should be the same after
applying class repackaging or when other classes are inside the
same package. Similar to L1BID-S, we can use the Constraint 5 to
decide if library L is used in app A.

Summary. Overall, LIBID-A has enhanced the abilities of LiBID-
S.By introducing finer-grained constraints, LIBID-A provides higher
accuracy in terms of class-level matching, which further enables
LiBID-A to pinpoint the version of libraries with greater accuracy.
In addition, L1BID-A utilizes the dependency graphs to separate
different library classes, which enables it to better deal with class
repackaging and the interference of shared-package libraries. The
adoption of finer-grained features will inevitably slow down the
execution of LiBID-A. To achieve a balance between time efficiency
and accuracy, LIBID-A also uses LSH Ensemble to speed up the
matching process and apply various constraints to minimize false
matches. The execution of L1BID-A for different apps is completely
parallelizable.

5 EVALUATION

LiBID uses Androguard [3] version 2.0 with the DAD decompiler to
construct the CFGs of methods. We extend the original Androguard
project to support multi-dex files and our signature algorithms. In
addition, we make use of the datasketch [41] package to imple-
ment the LSH Ensemble algorithm. All LSH parameters are set to
default values that are tuned by benchmarks. The BIP models are
implemented with the Gurobi [17] optimizer. We deploy LiBID on
a computing cluster node with 32 Intel Xeon Gold 6142 CPUs; each
CPU has 12040MB RAM.

To evaluate the effectiveness of LiBID, we collect 69 popular
libraries with 1,444 versions from central repositories (e.g., Maven
Central and JCenter), open-source platforms (e.g., Github), and
official websites. Since Androguard cannot directly parse the down-
loaded library jars, we convert these . jar files to .dex files using
the dex2jar [27] tool. The decompilation, however, does not work
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in all cases. During our experiment, around 94.17% of libraries are
successfully converted, while LibScout successfully loads 94.47%
libraries. In addition to LibScout, we compare LiBID with state-of-
the-art work, Orlis [35] and LibPecker [40], under different settings.

5.1 Library Detection on Synthetic Apps

To determine the detection threshold I'1 and I in Constraint 5,
we propose a novel way to generate synthetic apps with different
versions of libraries and different obfuscator configurations. We
use ProGuard as the obfuscator due to its popularity. A recent study
has shown that about 88% of obfuscated apps chose ProGuard as
their only obfuscator, and 70% of them used the default ProGuard
configuration [34].

Our method works by creating an Android project. Then, for
each library in our dataset, we manually collect code snippets that
provide main library functions from either the official documen-
tation or example projects. We store these snippets in a database,
along with the import statements, program, and dependencies for
each library. In our dataset, the main APIs of most libraries are con-
sistent for a wide range of versions. Therefore, a single generated
app can be used with many library versions. We compile each app
in the database under four different ProGuard settings, as shown in
Table 2. Identifier renaming is enabled in all groups except when
ProGuard is disabled.

We apply both tools to detect in-app libraries and calculate the
number of true positives (TP), false positives (FP) and negatives
(FN). Here, a false negative means the tool does not report any
version of the library, while a false positive is counted if the tool
reported some versions of the library excluding the correct one.
Since we know in advance which library is used in each app, these
evaluation indexes can be measured against ground truth. Then,
we calculate the F; score to quantify the performance of both tools.
To determine I'y and I, we first set them to 1 and 0, respectively,
to observe the result and then gradually adjust them to appropriate
values (I'1 = 0.8, = 0.1) to achieve the highest F; score.

Evaluation. We tentatively compare the performance of LiBID
with LibScout, Orlis, and LibPecker because they are state-of-the-art
library detection tools which are designed to handle code shrinking.
In particular, Orlis only reports matches between app and library
classes. Therefore, we regard all library versions reported by Orlis
as possible matches. For LibPecker, we set all thresholds based on
the original paper. LibPecker reports the similarity between the
app and each library candidate, and thus we choose the library
version(s) with the highest similarity, if above the threshold, as the
matched in-app library version(s).

Table 2 presents the experiment results under different ProGuard
settings. It shows that Li1BID achieves higher F; scores than other
tools in all cases. When ProGuard is disabled, all tools except Orlis
achieve high accuracy. Overall, Orlis is ineffective in identifying
in-app library versions. Table 2 (b) shows that LiBID is much more
effective than LibScout and LibPecker when class repackaging is
enabled. LiBID accurately identifies libraries for more than 98.4%
apps and reports fewer false negatives. In comparison, LibScout and
LibPecker are correct for 0.7% and 9.6% apps, respectively, because
they rely on the package hierarchy information.
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Table 2: Library Detection Results

(a) ProGuard Disabled

Tool #apps #TP  #FP  #FN Fq
Orlis 359 250 436 0.5114
LibScout 969 33 43 0.9623
LibPecker 1,045 984 38 23 0.9699
LisID-S 1044 1 0 0.9995

LisID-A 1045 0 0 1

(b) Class Repackaging Enabled

Tool #apps #TP #FP  #FN Fq
Orlis 499 276 270 0.6464
LibScout 7 2 1036 0.0133
LibPecker 1,045 100 66 879 0.1747
LisID-S 1029 5 11 0.9923
LisID-A 1028 14 3 0.9918

(c) Shrinking Enabled (Default ProGuard Setting)

Tool # apps #TP  #FP  #FN F1
Orlis 226 169 537 0.3903
LibScout 26 4 902 0.0543
LibPecker 932 126 90 716 0.2382
LiBID-S 924 8 0 0.9957
LisID-A 932 0 0 1
(d) Shrinking and Class Repackaging Enabled
Tool #apps #TP  #FP  #FN Fq
Orlis 225 165 542 0.3889
LibScout 0 0 932 N/A
LibPecker 932 22 47 863 0.0461
LisBID-S 305 145 482 0.4931
LiBID-A 831 40 61 0.9427

Table 2 (c) demonstrates that other tools are also ineffective
against code shrinking. In particular, if code shrinking is enabled,
library code may be partially removed in the app. We define an
index I¢ to quantify the library information remaining in the app:

(7)

Based on the definition, I~ will be 1 if code shrinking is disabled.
We calculate I for every synthetic app that applied code shrinking.
Because synthetic apps are relatively simple, most of them contain
only a small portion of library classes after code shrinking. Fig. 5
presents the relation between the recall and I when shrinking
is enabled. It reveals that L1BID behaves pretty well against code
shrinking, while LibScout, LibPecker and Orlis only detect libraries
when Ic > 70%, and still fail to detect many libraries in that case.

The weakness of LIBID-S is clear when both shrinking and class
repackaging are enabled. L1BID-S uses the library match index
M(L, A) in Definition 3.2 to quantify the confidence of a library L

_ # Signatures of Library Classes in App

I~ =
€7y Signatures of Library Classes in SDK
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Figure 5: Recall under different shrinking range

being used in an app A. However, this value can be very low if the
majority of library classes have been deleted (low N¢/Np, ) while
there are many other non-library classes in the same package (low
Nc/Np,). By contrast, LIBID-A only considers app classes that are
related to the library by eliminating other classes through ghost
hunting and relation pruning, and thus its library match index in
Equation 6 is still high for the right library. Nevertheless, LiBID-A
does produce several false alarms. There are two reasons for the
inaccuracy. First, class-level matching is not always accurate due
to lack of hierarchy information, which would further influence
the ghost hunting and relation pruning processes. Second, in a few
cases, ProGuard keeps some library classes in the original package
to ensure normal functioning while moving others to a single parent
package, which could influence the accuracy of LisID-A.

5.2 Library Detection on F-Droid Apps

Despite the promising results on synthetic apps, performance on
more sophisticated apps may vary. In general, commercial apps may
invoke more library functions than the collected code snippets, and
they usually have a much larger code base and more complicated
interactions between classes. In addition, using more advanced
obfuscators may also affect the result. Therefore, we need a more
realistic ground truth to evaluate the performance.

Wang et al. has compiled F-Droid projects under different ob-
fuscators, including ProGuard, Allatori, and DashO, and published
the dataset online [26]. The dataset contains 200-300 app binaries
for each obfuscation configuration, with the ground truth of in-app
library versions. However, apps in the dataset that should be ob-
fuscated by ProGuard were, in fact, unobfuscated. Therefore, we
manually compiled 215 F-Droid projects with Proguard applied
(both code shrinking and class repackaging are enabled). We use
both self-compiled apps and the dataset provided by Wang et al. as
the ground truth to evaluate the performance of library detectors on
commercial apps with different obfuscators. L1BID-S and LisID-A
are set with the thresholds determined in §5.1. Since all tools may
report multiple library versions, we define two types of precision:
pinpoint precision and in-range precision. In particular, the pinpoint
precision of a tool is the proportion of correctly identified libraries
over all the libraries reported. When calculating the in-range preci-
sion, we regard all reported versions of a library as a single entity. If
the reported versions of an entity include the correct version, then
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Table 3: Library Detection Results

(a) No Obfuscator

Tool Precision™ Recall Fi*
Orlis 49.82% (81.14%)  26.25%  0.3438 (0.3966)
LibScout  67.42% (69.35%)  94.09%  0.7855 (0.7984)
LibPecker  64.50% (65.26%)  91.68%  0.7573 (0.7625)
LiBID-S  67.42% (93.91%)  88.35%  0.7648 (0.9105)
LiBID-A  70.12% (88.16%)  96.30%  0.8115 (0.9205)

(b) ProGuard (both shrinking and class repackaging enabled)

Tool Precision® Recall F*

Orlis 29.41% (62.50%)  15.00%  0.1987 (0.2419)
LibScout  65.22% (65.22%)  15.00%  0.2439 (0.2439)
LibPecker  20.00% (20.00%)  4.00%  0.0667 (0.0667)

LiBID-S  58.67% (66.67%)  44.00%  0.5029 (0.5301)
LiBID-A  64.29% (72.58%)  45.00%  0.5294 (0.5556)
(c) Allatori

Tool Precision® Recall F{*

Orlis 46.46% (76.67%) 19.37% 0.2734 (0.3092)
LibScout 87.23% (91.11%) 8.63% 0.1571 (0.1577)
LibPecker 55.28% (65.26%) 66.11% 0.6021 (0.6103)

LisID-S 73.72% (92.74%) 48.42% 0.5845 (0.6362)
LiBID-A  75.86% (92.22%)  64.84%  0.6992 (0.7614)
(d) DashO

Tool Precision™ Recall Fi*

Orlis 54.43% (87.76%) 15.03% 0.2356 (0.2567)
LibScout 90.64% (92.81%) 54.20% 0.6783 (0.6843)
LibPecker 47.06% (47.06%) 55.94% 0.5112 (0.5112)

LiBID-S  69.55%(97.45%)  53.50%  0.6047 (0.6907)
LiBID-A  69.79% (91.11%)  57.34%  0.6296 (0.7039)

*: The value before the bracket is the pinpoint precision (or F;); the value inside
the brackets is the in-range precision (or Fy).

we refer to this entity as a correctly identified entity. The in-range
precision of a tool is the proportion of correctly identified enti-
ties over all the entities reported. For example, if L1BID-A reports
“ACRA-4.6.1, ACRA-4.6.2, Gson-2.5” while the ground truth is
ACRA-4.6.1, then the respective pinpoint and in-range precision of
LiBID-A are 1/3 and 1/2. The pinpoint and in-range F; scores are
calculated using the pinpoint and in-range precision, respectively.

Table 3 presents the experiment results. Overall, LIBID behaves
better than state-of-the-art tools in all four cases. The F; score
(both pinpoint and in-range) of LiBID is greater than 0.5 when
ProGuard is applied, while that of other tools is lower than 0.25. In
all cases, L1BID has the highest in-range precisions among these
tools. Nevertheless, results also reveal that the performance of
LiBID for these F-Droid apps is not as good as in §5.1. We investigate
several cases where LIBID-A does not identify the library correctly
and find the following causes: (i) I¢ is less than 5% for some libraries
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Table 4: Top 5 libraries identified by L1BID

Library #LiBID # LibScout # Common
Gson 1419 1114 1093
Facebook 1243 1082 1058
Okhttp 1157 690 689
Okio 1139 563 561
Bolts 918 317 316

(e.g., Guava) after code shrinking, which is lower than the threshold;
(i) LiBID-A fails to identify some libraries when both shrinking and
class repackaging are enabled for the same reason as in §5.1; and
(iii) the obfuscation in some apps changes the class access flag and
class interfaces and splits a single library class into several classes,
which could defeat the design of LiBID-A.

5.3 Libraries in Popular Google Play Apps

To study the library usage in production apps and further evaluate
our approach, we downloaded 3,958 apps from the top-100 apps
across 59 categories on the Google Play store in April 2017. We
employ both LiBID (using LiBID-A) and LibScout to analyze these
popular apps. On average, LIBID detects one more library per app
than LibScout. Table 4 gives the summary of top five most popular
libraries identified by LiBID. In particular, the columns respectively
present the number of apps using each library identified by LisID,
LibScout, and both of them. The table shows that a large proportion
of libraries have been missed by LibScout. We confirm the reason
is that LibScout struggles to detect libraries after code shrinking.

Vulnerable Library Detection. A primary use case of LiBID
is to identify vulnerable in-app libraries. Here, we use OkHttp, a
popular Android library used in 29% of apps in our dataset for
managing HTTP-based network requests, as an example. There is
a severe vulnerability in OkHttp for versions 2.x before 2.7.4, and
3.x before 3.1.2, that allows an attacker to bypass the certificate
pinning (CVE-2016-2402) [8].

We apply LibID, LibScout, Orlis, and LibPecker to check if a
vulnerable version of the OkHttp library is used in popular apps.
The results are presented in Table 5. All tools find that many pop-
ular apps use at least one version of vulnerable OkHttp libraries.
In particular, L1BID identifies 393 affected apps, while the figure
for LibScout and LibPecker is 296 and 339, respectively. All tools
but Orlis agree on 294 apps, but the remaining list of affected apps
differs. We notice that OkHttp contains a field marking the actual
version of the library, and this field has not been obfuscated in the
majority of our test apps. Therefore, we only need a little manual
effort to verify the results. Note that LiBID does not use string con-
stants as a feature to detect libraries. Thus, the version information
of OkHttp in the app binaries only helps us to confirm the result
instead of assisting L1BID directly. For those apps that LiBID and
LibScout disagree, all 99 additional apps reported by LiBID are true
positives. Meanwhile, LibScout uniquely reports 2 vulnerable apps,
and one of them is a false positive; the other one is missed by LisID.
We further analyze the app that L1BID fails to detect. It turns out
the app uses both a shrunk version of OkHttp 2.4.0 (vulnerable)
and an unobfuscated version of OkHttp 3.4.1 (patched). During the
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Table 5: Vulnerable OkHttp library detection result

Tool #TP #FP #FN F1

Orlis 172 165 222 0.4706
LibScout 295 1 99 0.8551
LibPecker 339 9 55 0.9137

LisID 393 0 1 0.9987

matching process, L1BID mismatches the OkHttp 2.4.0 library to the
OkHttp 3.4.1 package but the matching confidence does not reach
the threshold. As a result, this vulnerable app is missed by LisID.

Overall, the results demonstrate the accuracy and robustness
of LiBID, but it also raises security concerns about the Android
platform. Although the vulnerability of OkHttp was reported in
February 2016, around 10% of popular apps in the Google Play
dataset still use an insecure version of the OkHttp library. We find
more than 30% of apps in two categories (NEWS_AND_MAGAZINES and
TRAVEL_AND_LOCAL) and at least 10% of apps under 25 categories
use vulnerable versions of OkHttp. Meanwhile, a large proportion
of OkHttp libraries used in popular apps are unpatched, including
more than 44% of OkHttp libraries in the top 100 free apps and the
other six categories. We also discover that three of Google’s apps use
vulnerable versions of OkHttp libraries, all of which are installed
by millions of users. Although we confirm that these three apps do
not invoke the vulnerable certificate pinning method, it is still best
practice to upgrade the library version to ensure vulnerable code
is not introduced in a future release. Finally, we sent emails to the
developer of the reported 393 vulnerable apps on December 23, 2017.
As a result, we received 22 non-automatic replies. Among these
replies, 17 said they will investigate, 3 have updated the OkHttp
library, and 2 promised to update it in the future release.

5.4 Limitation

LiBID selects several features to profile and detect libraries. These
features, however, are not robust against more advanced obfusca-
tion techniques. For instance, the class access flag and class interfaces
can be modified if “allowaccessmodification” and “mergeinterface-
saggressively” are enabled in ProGuard. API hiding obfuscation
can also hide calls to the Android SDK through Java reflection.
Nevertheless, these cases are relatively rare compared with code
shrinking and package modification operations (§5.2). In addition,
ProGuard suggests users exploit these advanced features cautiously
because they can reduce the performance and may cause JVM prob-
lems [16]. The aim of LiBID is to be the first to reliably detect
libraries under the most popular obfuscation functions, including
code shrinking, identifier renaming, control flow randomization,
and package modifications. We achieve this goal.

One major concern of L1BID is the scalability. Using library de-
tection on unobfuscated F-Droid apps as an example (§5.2), we
calculate the average time spent on profiling a library, profiling an
app, and matching an app with libraries for each tool. The results
are presented in Table 6. Although LisID is more time efficient
than Orlis and LibPecker, it spent more time than LibScout. This is
because L1BID performs a finer-grained analysis compared with Lib-
Scout. Both the CFG construction and candidate class matching are



ISSTA °19, July 15-19, 2019, Beijing, China

Table 6: Average Time Consumption

Tool Library Profiling App Profiling Matching
Orlis 5.18s - 850.30 s
LibScout 1.01s - 1.63 s
LibPecker - - 509.40 s
LisID-S 413s 38.36 s 2.26s
LisID-A 4.13s 38.36 s 11.25s

time-consuming. The BIP solver could also take a long time to find
a solution if there are too many constraints. Nevertheless, the use of
LSH Ensemble has greatly improved the matching time by avoiding
pair-wise comparison and we design two working schemes to prior-
itize either scalability or accuracy. As seen in Table 6, LIBID-S spent
much less time in the matching process because it does not make
use of the dependency graph. In addition, for large-scale analysis,
we can run LiBID in parallel on a computing cluster since each
task is independent. In general, L1BID-A is preferred for small-scale
analysis, or large-scale analysis when there are enough computing
resources; L1BID-S is favored in other cases.

6 RELATED WORK

The high prevalence of third-party libraries in mobile apps has
been an obstacle to app clone detection research for many years.
Most of the existing studies employed naive whitelisting techniques
to identify and exclude common libraries before analysis, either
by comparing package names [1, 9] or the hash value of known li-
braries [10]. However, these approaches can miss many less-popular
libraries, and the lack of granularity makes them incapable of de-
tecting obfuscated libraries. More advanced work filters libraries by
clustering. WuKong [33] chose the frequency of Android API calls
as the feature to identify libraries by clustering. Andarwin [11]
grouped similar semantic blocks from the Program Dependence
Graph (PDG) to detect library and applied LSH techniques to accel-
erate the clustering process. LibDetect [14] identified and removed
in-app library classes from an app using fuzzy hashing to increase
the accuracy of app clone detection.

Grace et al. and Book et al. studied the presence and behavior of
advertising libraries using a whitelist [7, 15]. Li et al. harvested 1,113
common libraries from 1.5 million Google Play apps by compar-
ing the name of in-app methods and packages [18]. LibRadar [21]
implemented and improved WuKong by providing an online detec-
tion platform and designing a better cluster algorithm. LibD [19]
detected and classified library candidates based on dependencies
between methods and packages. LibSift [29] performed library de-
tection by comparing the primary components of the PDG. In ad-
dition, machine learning techniques have been applied to detect
third-party libraries [20, 22]. Nevertheless, these proposals rely on
the package hierarchies and can neither pinpoint library version
nor handle popular obfuscation techniques such as code shrinking.

MobScanner [6] used weighted features to identify in-app library
versions. However, it relies on string constants and is unreliable
when intensive code shrinking is applied. Similar to LisID, Lib-
Scout [5] built library profiles from pre-collected library binaries.
LibScout used a fuzzy descriptor to generate a method signature,
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and further obtain a class signature using the hash of in-class meth-
ods. Then, LibScout calculates the similarity of class signatures
between a candidate package and a known library package to de-
termine whether they are a match. Although LibScout is resilient
against identifier renaming operations, it performs poorly if ei-
ther dead-code elimination or class repackaging is enabled. OSSPo-
lice [12] was designed to identify license violations. It extracted
more features (e.g., string constants) from library binaries to better
pinpoint library versions. Nevertheless, OSSPolice is only resilient
to simple obfuscation techniques such as identifier renaming. Or-
dol [31] is another tool that can detect the library version in Android
binaries. It assigned a weight to every method and class based on
the number of instructions and tried to find the maximum weight
bipartite matchings. Although it does not rely on any hierarchy
information, Ordol requires pair-wise comparison and its threat
model does not include code shrinking and package modifications.

Recently, LibPecker [40] utilized the class dependencies to per-
form obfuscation-resilient library matchings. Instead of matching
the dependency graph, they encoded the graph into a set of fuzzy
class signatures and calculate the Jaccard similarity between the
library and app signatures to decide whether two classes are a
match. Nevertheless, LibPecker relies on the package hierarchy and
cannot handle drastic code shrinking. Orlis [35] was also designed
to be resilient to code shrinking and class repackaging. The authors
have shown that Orlis outperformed LibDetect when identifying
obfuscated in-app library classes. However, as shown in §5, Orlis is
not designed to detect specific library versions.

7 CONCLUSION

This paper has presented LiBID, a reliable tool that identifies third-
party Android libraries and their version in app binaries. L1BID
includes two detection schemes: L1BID-S and LiBID-A, which focus
on scalability and accuracy, respectively. We convert the abstract
library identification problem into a BIP problem that has been
well studied in the research community. Overall, L1BID overcomes
several limitations found in previous work and is able to determine
the version of third-party libraries used in an app binary using
identifier renaming, shrinking, control flow randomization, and
package modification techniques. Evaluation is supported by our
novel method that semi-automatically generates apps containing
third-party libraries, as well as an analysis of hundreds of F-Droid
apps. This provides valuable ground truth data to support accurate
evaluation and comparison of our approach to previous work. Our
experiments show that LiBID can detect many more libraries than
prior art, especially when code shrinking is enabled and the pack-
age hierarchy is modified. L1BID is open source software and we
encourage researchers to use this tool to assist their own research.
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