

 Navigation

 	
 index

 	
 next |

 	Ansible Documentation 1.5 documentation

Ansible Documentation

About Ansible

Welcome to the Ansible documentation!

Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks
such as continuous deployments or zero downtime rolling updates.

Ansible’s goals are foremost those of simplicity and maximum ease of use. It also has a strong focus on security and reliability, featuring a minimum of moving parts, usage of OpenSSH for transport (with an accelerated socket mode and pull modes as alternatives), and a language that is designed around auditability by humans – even those not familiar with the program.

We believe simplicity is relevant to all sizes of environments and design for busy users of all types – whether this means developers, sysadmins, release engineers, IT managers, and everywhere in between. Ansible is appropriate for managing small setups with a handful of instances as well as enterprise environments with many thousands.

Ansible manages machines in an agentless manner. There is never a question of how to
upgrade remote daemons or the problem of not being able to manage systems because daemons are uninstalled. As OpenSSH is one of the most peer reviewed open source components, the security exposure of using the tool is greatly reduced. Ansible is decentralized – it relies on your existing OS credentials to control access to remote machines; if needed it can easily connect with Kerberos, LDAP, and other centralized authentication management systems.

This documentation covers the current released version of Ansible (1.4.5) and also some development version features (1.5). For recent features, in each section, the version of Ansible where the feature is added is indicated. Ansible, Inc releases a new major release of Ansible approximately every 2 months. The core application evolves somewhat conservatively, valuing simplicity in language design and setup, while the community around new modules and plugins being developed and contributed moves very very quickly, typically adding 20 or so new modules in each release.

	Introduction

	Quickstart Video

	Playbooks

	Playbooks: Special Topics

	About Modules

	Module Index

	Detailed Guides

	Developer Information

	Ansible Tower

	Community Information

	Ansible Galaxy

	Frequently Asked Questions

	Glossary

	YAML Syntax

	Ansible Guru

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

Introduction

Before we dive into the really fun parts – playbooks, configuration management, deployment, and orchestration, we’ll learn how to get Ansible installed and some basic concepts. We’ll go over how to execute ad-hoc commands in parallel across your nodes using /usr/bin/ansible. We’ll also see what sort of modules are available in Ansible’s core (though you can also write your own, which we’ll also show later).

	Installation

	Getting Started

	Inventory

	Dynamic Inventory

	Patterns

	Introduction To Ad-Hoc Commands

	The Ansible Configuration File

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Introduction

Installation

Topics

	Installation
	Getting Ansible

	Basics / What Will Be Installed

	What Version To Pick?

	Control Machine Requirements

	Managed Node Requirements

	Installing the Control Machine
	Running From Source

	Latest Release Via Yum

	Latest Releases Via Apt (Ubuntu)

	Latest Releases Via pkg (FreeBSD)

	Latest Releases Via Pip

	Tarballs of Tagged Releases

Getting Ansible

You may also wish to follow the Github project [https://github.com/ansible/ansible] if
you have a github account. This is also where we keep the issue tracker for sharing
bugs and feature ideas.

Basics / What Will Be Installed

Ansible by default manages machines over the SSH protocol.

Once Ansible is installed, it will not add a database, and there will be no daemons to start or keep running. You only need to install it on one machine (which could easily be a laptop) and it can manage an entire fleet of remote machines from that central point. When Ansible manages remote machines, it does not leave software installed or running on them, so there’s no real question about how to upgrade Ansible when moving to a new version.

What Version To Pick?

Because it runs so easily from source and does not require any installation of software on remote
machines, many users will actually track the development version.

Ansible’s release cycles are usually about two months long. Due to this
short release cycle, minor bugs will generally be fixed in the next release versus maintaining
backports on the stable branch. Major bugs will still have maintenance releases when needed, though
these are infrequent.

If you are wishing to run the latest released version of Ansible and you are running Red Hat Enterprise Linux (TM), CentOS, Fedora, Debian, or Ubuntu, we recommend using the OS package manager.

For other installation options, we recommend installing via “pip”, which is the Python package manager, though other options are also available.

If you wish to track the development release to use and test the latest features, we will share
information about running from source. It’s not necessary to install the program to run from source.

Control Machine Requirements

Currently Ansible can be run from any machine with Python 2.6 installed (Windows isn’t supported for the control machine).

This includes Red Hat, Debian, CentOS, OS X, any of the BSDs, and so on.

Managed Node Requirements

On the managed nodes, you only need Python 2.4 or later, but if you are running less than Python 2.5 on the remotes, you will also need:

	python-simplejson

Note

Ansible’s “raw” module (for executing commands in a quick and dirty
way) and the script module don’t even need that. So technically, you can use
Ansible to install python-simplejson using the raw module, which
then allows you to use everything else. (That’s jumping ahead
though.)

Note

If you have SELinux enabled on remote nodes, you will also want to install
libselinux-python on them before using any copy/file/template related functions in
Ansible. You can of course still use the yum module in Ansible to install this package on
remote systems that do not have it.

Note

Python 3 is a slightly different language than Python 2 and most Python programs (including
Ansible) are not switching over yet. However, some Linux distributions (Gentoo, Arch) may not have a
Python 2.X interpreter installed by default. On those systems, you should install one, and set
the ‘ansible_python_interpreter’ variable in inventory (see Inventory) to point at your 2.X Python. Distributions
like Red Hat Enterprise Linux, CentOS, Fedora, and Ubuntu all have a 2.X interpreter installed
by default and this does not apply to those distributions. This is also true of nearly all
Unix systems. If you need to bootstrap these remote systems by installing Python 2.X,
using the ‘raw’ module will be able to do it remotely.

Installing the Control Machine

Running From Source

Ansible is trivially easy to run from a checkout, root permissions are not required
to use it and there is no software to actually install for Ansible itself. No daemons
or database setup are required. Because of this, many users in our community use the
development version of Ansible all of the time, so they can take advantage of new features
when they are implemented, and also easily contribute to the project. Because there is
nothing to install, following the development version is significantly easier than most
open source projects.

To install from source.

$ git clone git://github.com/ansible/ansible.git
$ cd ./ansible
$ source ./hacking/env-setup

If you don’t have pip installed in your version of Python, install pip:

$ sudo easy_install pip

Ansible also uses the following Python modules that need to be installed:

$ sudo pip install paramiko PyYAML jinja2 httplib2

Once running the env-setup script you’ll be running from checkout and the default inventory file
will be /etc/ansible/hosts. You can optionally specify an inventory file (see Inventory)
other than /etc/ansible/hosts:

$ echo "127.0.0.1" > ~/ansible_hosts
$ export ANSIBLE_HOSTS=~/ansible_hosts

You can read more about the inventory file in later parts of the manual.

Now let’s test things with a ping command:

$ ansible all -m ping --ask-pass

You can also use “sudo make install” if you wish.

Latest Release Via Yum

RPMs are available from yum for EPEL [http://fedoraproject.org/wiki/EPEL] 6 and currently supported
Fedora distributions.

Ansible itself can manage earlier operating
systems that contain Python 2.4 or higher (so also EL5).

Fedora users can install Ansible directly, though if you are using RHEL or CentOS and have not already done so, configure EPEL [http://fedoraproject.org/wiki/EPEL]

install the epel-release RPM if needed on CentOS, RHEL, or Scientific Linux
$ sudo yum install ansible

You can also build an RPM yourself. From the root of a checkout or tarball, use the make rpm command to build an RPM you can distribute and install. Make sure you have rpm-build, make, and python2-devel installed.

$ git clone git://github.com/ansible/ansible.git
$ cd ./ansible
$ make rpm
$ sudo rpm -Uvh ~/rpmbuild/ansible-*.noarch.rpm

Latest Releases Via Apt (Ubuntu)

Ubuntu builds are available in a PPA here [https://launchpad.net/~rquillo/+archive/ansible].

Once configured,

$ sudo add-apt-repository ppa:rquillo/ansible
$ sudo apt-get update
$ sudo apt-get install ansible

Debian/Ubuntu packages can also be built from the source checkout, run:

$ make deb

You may also wish to run from source to get the latest, which is covered above.

Latest Releases Via pkg (FreeBSD)

$ sudo pkg install ansible

You may also wish to install from ports, run:

$ sudo make -C /usr/ports/sysutils/ansible install

Latest Releases Via Pip

Ansible can be installed via “pip”, the Python package manager. If ‘pip’ isn’t already available in
your version of Python, you can get pip by:

$ sudo easy_install pip

Then install Ansible with:

$ sudo pip install ansible

Readers that use virtualenv can also install Ansible under virtualenv, though we’d recommend to not worry about it and just install Ansible globally. Do not use easy_install to install ansible directly.

Tarballs of Tagged Releases

Packaging Ansible or wanting to build a local package yourself, but don’t want to do a git checkout? Tarballs of releases are available on the Ansible downloads [http://releases.ansible.com/ansible] page.

These releases are also tagged in the git repository [https://github.com/ansible/ansible/releases] with the release version.

See also

	Introduction To Ad-Hoc Commands

	Examples of basic commands

	Playbooks

	Learning ansible’s configuration management language

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Introduction

Getting Started

Topics

	Getting Started
	Foreword

	Remote Connection Information

	Your first commands

	Host Key Checking

Foreword

Now that you’ve read Installation and installed Ansible, it’s time to dig in and get
started with some commands.

What we are showing first are not the powerful configuration/deployment/orchestration of Ansible, called playbooks.
Playbooks are covered in a separate section.

This section is about how to get going initially. Once you have these concepts down, read Introduction To Ad-Hoc Commands for some more
detail, and then you’ll be ready to dive into playbooks and explore the most interesting parts!

Remote Connection Information

Before we get started, it’s important to understand how Ansible is communicating with remote
machines over SSH.

By default, Ansible 1.3 and later will try to use native
OpenSSH for remote communication when possible. This enables both ControlPersist (a performance feature), Kerberos, and options in ~/.ssh/config such as Jump Host setup. When using Enterprise Linux 6 operating systems as the control machine (Red Hat Enterprise Linux and derivatives such as CentOS), however, the version of OpenSSH may be too old to support ControlPersist. On these operating systems, Ansible will fallback into using a high-quality Python implementation of
OpenSSH called ‘paramiko’. If you wish to use features like Kerberized SSH and more, consider using Fedora, OS X, or Ubuntu as your control machine until a newer version of OpenSSH is available for your platform – or engage ‘accelerated mode’ in Ansible. See Accelerated Mode.

In Ansible 1.2 and before, the default was strictly paramiko and native SSH had to be explicitly selected with -c ssh or set in the configuration file.

Occasionally you’ll encounter a device that doesn’t do SFTP. This is rare, but if talking with some remote devices that don’t support SFTP, you can switch to SCP mode in The Ansible Configuration File.

When speaking with remote machines, Ansible will by default assume you are using SSH keys – which we encourage – but passwords are fine too. To enable password auth, supply the option --ask-pass where needed. If using sudo features and when sudo requires a password, also supply --ask-sudo-pass as appropriate.

While it may be common sense, it is worth sharing: Any management system benefits from being run near the machines being managed. If running in a cloud, consider running Ansible from a machine inside that cloud. It will work better than on the open
internet in most cases.

As an advanced topic, Ansible doesn’t just have to connect remotely over SSH. The transports are pluggable, and there are options for managing things locally, as well as managing chroot, lxc, and jail containers. A mode called ‘ansible-pull’ can also invert the system and have systems ‘phone home’ via scheduled git checkouts to pull configuration directives from a central repository.

Your first commands

Now that you’ve installed Ansible, it’s time to get started with some basics.

Edit (or create) /etc/ansible/hosts and put one or more remote systems in it, for
which you have your SSH key in authorized_keys:

192.168.1.50
aserver.example.org
bserver.example.org

This is an inventory file, which is also explained in greater depth here: Inventory.

We’ll assume you are using SSH keys for authentication. To set up SSH agent to avoid retyping passwords, you can
do:

$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa

(Depending on your setup, you may wish to use Ansible’s --private-key option to specify a pem file instead)

Now ping all your nodes:

$ ansible all -m ping

Ansible will attempt to remote connect to the machines using your current
user name, just like SSH would. To override the remote user name, just use the ‘-u’ parameter.

If you would like to access sudo mode, there are also flags to do that:

as bruce
$ ansible all -m ping -u bruce
as bruce, sudoing to root
$ ansible all -m ping -u bruce --sudo
as bruce, sudoing to batman
$ ansible all -m ping -u bruce --sudo --sudo-user batman

(The sudo implementation is changeable in Ansible’s configuration file if you happen to want to use a sudo
replacement. Flags passed to sudo (like -H) can also be set there.)

Now run a live command on all of your nodes:

$ ansible all -a "/bin/echo hello"

Congratulations. You’ve just contacted your nodes with Ansible. It’s
soon going to be time to read some of the more real-world Introduction To Ad-Hoc Commands, and explore
what you can do with different modules, as well as the Ansible
Playbooks language. Ansible is not just about running commands, it
also has powerful configuration management and deployment features. There’s more to
explore, but you already have a fully working infrastructure!

Host Key Checking

Ansible 1.2.1 and later have host key checking enabled by default.

If a host is reinstalled and has a different key in ‘known_hosts’, this will result in a error message until corrected. If a host is not initially in ‘known_hosts’ this will result in prompting for confirmation of the key, which results in a interactive experience if using Ansible, from say, cron. You might not want this.

If you wish to disable this behavior and understand the implications, you can do so by editing /etc/ansible/ansible.cfg or ~/.ansible.cfg:

[defaults]
host_key_checking = False

Alternatively this can be set by an environment variable:

$ export ANSIBLE_HOST_KEY_CHECKING=False

Also note that host key checking in paramiko mode is reasonably slow, therefore switching to ‘ssh’ is also recommended when using this feature.

Ansible will log some information about module arguments on the remote system in the remote syslog. To enable basic
logging on the control machine see The Ansible Configuration File document and set the ‘log_path’ configuration file setting. Enterprise users may also be interested in Ansible Tower. Tower provides a very robust database logging feature where it is possible to drill down and see history based on hosts, projects, and particular inventories over time – explorable both graphically and through a REST API.

See also

	Inventory

	More information about inventory

	Introduction To Ad-Hoc Commands

	Examples of basic commands

	Playbooks

	Learning Ansible’s configuration management language

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Introduction

Inventory

Topics

	Inventory
	Hosts and Groups

	Host Variables

	Group Variables

	Groups of Groups, and Group Variables

	Splitting Out Host and Group Specific Data

	List of Behavioral Inventory Parameters

Ansible works against multiple systems in your infrastructure at the
same time. It does this by selecting portions of systems listed in
Ansible’s inventory file, which defaults to being saved in
the location /etc/ansible/hosts.

Not only is this inventory configurable, but you can also use
multiple inventory files at the same time (explained below) and also
pull inventory from dynamic or cloud sources, as described in Dynamic Inventory.

Hosts and Groups

The format for /etc/ansible/hosts is an INI format and looks like this:

mail.example.com

[webservers]
foo.example.com
bar.example.com

[dbservers]
one.example.com
two.example.com
three.example.com

The things in brackets are group names, which are used in classifying systems
and deciding what systems you are controlling at what times and for what purpose.

It is ok to put systems in more than one group, for instance a server could be both a webserver and a dbserver.
If you do, note that variables will come from all of the groups they are a member of, and variable precedence is detailed in a later chapter.

If you have hosts that run on non-standard SSH ports you can put the port number
after the hostname with a colon. Ports listed in your SSH config file won’t be used,
so it is important that you set them if things are not running on the default port:

badwolf.example.com:5309

Suppose you have just static IPs and want to set up some aliases that don’t live in your host file, or you are connecting through tunnels. You can do things like this:

jumper ansible_ssh_port=5555 ansible_ssh_host=192.168.1.50

In the above example, trying to ansible against the host alias “jumper” (which may not even be a real hostname) will contact 192.168.1.50 on port 5555. Note that this is using a feature of the inventory file to define some special variables. Generally speaking this is not the best
way to define variables that describe your system policy, but we’ll share suggestions on doing this later. We’re just getting started.

Adding a lot of hosts? If you have a lot of hosts following similar patterns you can do this rather than listing each hostname:

[webservers]
www[01:50].example.com

For numeric patterns, leading zeros can be included or removed, as desired. Ranges are inclusive. You can also define alphabetic ranges:

[databases]
db-[a:f].example.com

You can also select the connection type and user on a per host basis:

[targets]

localhost ansible_connection=local
other1.example.com ansible_connection=ssh ansible_ssh_user=mpdehaan
other2.example.com ansible_connection=ssh ansible_ssh_user=mdehaan

As mentioned above, setting these in the inventory file is only a shorthand, and we’ll discuss how to store them in individual files
in the ‘host_vars’ directory a bit later on.

Host Variables

As alluded to above, it is easy to assign variables to hosts that will be used later in playbooks:

[atlanta]
host1 http_port=80 maxRequestsPerChild=808
host2 http_port=303 maxRequestsPerChild=909

Group Variables

Variables can also be applied to an entire group at once:

[atlanta]
host1
host2

[atlanta:vars]
ntp_server=ntp.atlanta.example.com
proxy=proxy.atlanta.example.com

Groups of Groups, and Group Variables

It is also possible to make groups of groups and assign
variables to groups. These variables can be used by /usr/bin/ansible-playbook, but not
/usr/bin/ansible:

[atlanta]
host1
host2

[raleigh]
host2
host3

[southeast:children]
atlanta
raleigh

[southeast:vars]
some_server=foo.southeast.example.com
halon_system_timeout=30
self_destruct_countdown=60
escape_pods=2

[usa:children]
southeast
northeast
southwest
northwest

If you need to store lists or hash data, or prefer to keep host and group specific variables
separate from the inventory file, see the next section.

Splitting Out Host and Group Specific Data

The preferred practice in Ansible is actually not to store variables in the main inventory file.

In addition to the storing variables directly in the INI file, host
and group variables can be stored in individual files relative to the
inventory file.

These variable files are in YAML format. See YAML Syntax if you are new to YAML.

Assuming the inventory file path is:

/etc/ansible/hosts

If the host is named ‘foosball’, and in groups ‘raleigh’ and ‘webservers’, variables
in YAML files at the following locations will be made available to the host:

/etc/ansible/group_vars/raleigh
/etc/ansible/group_vars/webservers
/etc/ansible/host_vars/foosball

For instance, suppose you have hosts grouped by datacenter, and each datacenter
uses some different servers. The data in the groupfile ‘/etc/ansible/group_vars/raleigh’ for
the ‘raleigh’ group might look like:

ntp_server: acme.example.org
database_server: storage.example.org

It is ok if these files do not exist, as this is an optional feature.

Tip: In Ansible 1.2 or later the group_vars/ and host_vars/ directories can exist in either
the playbook directory OR the inventory directory. If both paths exist, variables in the playbook
directory will be loaded second.

Tip: Keeping your inventory file and variables in a git repo (or other version control)
is an excellent way to track changes to your inventory and host variables.

List of Behavioral Inventory Parameters

As alluded to above, setting the following variables controls how ansible interacts with remote hosts. Some we have already
mentioned:

ansible_ssh_host
 The name of the host to connect to, if different from the alias you wish to give to it.
ansible_ssh_port
 The ssh port number, if not 22
ansible_ssh_user
 The default ssh user name to use.
ansible_ssh_pass
 The ssh password to use (this is insecure, we strongly recommend using --ask-pass or SSH keys)
ansible_sudo_pass
 The sudo password to use (this is insecure, we strongly recommend using --ask-sudo-pass)
ansible_connection
 Connection type of the host. Candidates are local, ssh or paramiko. The default is paramiko before Ansible 1.2, and 'smart' afterwards which detects whether usage of 'ssh' would be feasible based on whether ControlPersist is supported.
ansible_ssh_private_key_file
 Private key file used by ssh. Useful if using multiple keys and you don't want to use SSH agent.
ansible_python_interpreter
 The target host python path. This is useful for systems with more
 than one Python or not located at "/usr/bin/python" such as *BSD, or where /usr/bin/python
 is not a 2.X series Python. We do not use the "/usr/bin/env" mechanism as that requires the remote user's
 path to be set right and also assumes the "python" executable is named python, where the executable might
 be named something like "python26".
ansible_*_interpreter
 Works for anything such as ruby or perl and works just like ansible_python_interpreter.
 This replaces shebang of modules which will run on that host.

Examples from a host file:

some_host ansible_ssh_port=2222 ansible_ssh_user=manager
aws_host ansible_ssh_private_key_file=/home/example/.ssh/aws.pem
freebsd_host ansible_python_interpreter=/usr/local/bin/python
ruby_module_host ansible_ruby_interpreter=/usr/bin/ruby.1.9.3

See also

	Dynamic Inventory

	Pulling inventory from dynamic sources, such as cloud providers

	Introduction To Ad-Hoc Commands

	Examples of basic commands

	Playbooks

	Learning ansible’s configuration management language

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Introduction

Dynamic Inventory

Topics

	Dynamic Inventory
	Example: The Cobbler External Inventory Script

	Example: AWS EC2 External Inventory Script

	Other inventory scripts

	Using Multiple Inventory Sources

Often a user of a configuration management system will want to keep inventory
in a different software system. Ansible provides a basic text-based system as described in
Inventory but what if you want to use something else?

Frequent examples include pulling inventory from a cloud provider, LDAP, Cobbler [http://cobbler.github.com],
or a piece of expensive enterprisey CMDB software.

Ansible easily supports all of these options via an external inventory system. The plugins directory contains some of these already – including options for EC2/Eucalyptus, Rackspace Cloud, and OpenStack, examples of some of which will be detailed below.

doc:tower also provides a database to store inventory results that is both web and REST Accessible. Tower syncs with all Ansible dynamic inventory sources you might be using, and also includes a graphical inventory editor. By having a database record of all of your hosts, it’s easy to correlate past event history and see which ones have had failures on their last playbook runs.

For information about writing your own dynamic inventory source, see Developing Dynamic Inventory Sources.

Example: The Cobbler External Inventory Script

It is expected that many Ansible users with a reasonable amount of physical hardware may also be Cobbler [http://cobbler.github.com] users. (note: Cobbler was originally written by Michael DeHaan and is now lead by James Cammarata, who also works for Ansible, Inc).

While primarily used to kickoff OS installations and manage DHCP and DNS, Cobbler has a generic
layer that allows it to represent data for multiple configuration management systems (even at the same time), and has
been referred to as a ‘lightweight CMDB’ by some admins. This particular script will communicate with Cobbler
using Cobbler’s XMLRPC API.

To tie Ansible’s inventory to Cobbler (optional), copy this script [https://raw.github.com/ansible/ansible/devel/plugins/inventory/cobbler.py] to /etc/ansible and chmod +x the file. cobblerd will now need
to be running when you are using Ansible and you’ll need to use Ansible’s -i command line option (e.g. -i /etc/ansible/cobbler.py).

First test the script by running /etc/ansible/cobbler.py directly. You should see some JSON data output, but it may not have anything in it just yet.

Let’s explore what this does. In cobbler, assume a scenario somewhat like the following:

cobbler profile add --name=webserver --distro=CentOS6-x86_64
cobbler profile edit --name=webserver --mgmt-classes="webserver" --ksmeta="a=2 b=3"
cobbler system edit --name=foo --dns-name="foo.example.com" --mgmt-classes="atlanta" --ksmeta="c=4"
cobbler system edit --name=bar --dns-name="bar.example.com" --mgmt-classes="atlanta" --ksmeta="c=5"

In the example above, the system ‘foo.example.com’ will be addressable by ansible directly, but will also be addressable when using the group names ‘webserver’ or ‘atlanta’. Since Ansible uses SSH, we’ll try to contact system foo over ‘foo.example.com’, only, never just ‘foo’. Similarly, if you try “ansible foo” it wouldn’t find the system... but “ansible ‘foo*’” would, because the system DNS name starts with ‘foo’.

The script doesn’t just provide host and group info. In addition, as a bonus, when the ‘setup’ module is run (which happens automatically when using playbooks), the variables ‘a’, ‘b’, and ‘c’ will all be auto-populated in the templates:

file: /srv/motd.j2
Welcome, I am templated with a value of a={{ a }}, b={{ b }}, and c={{ c }}

Which could be executed just like this:

ansible webserver -m setup
ansible webserver -m template -a "src=/tmp/motd.j2 dest=/etc/motd"

Note

The name ‘webserver’ came from cobbler, as did the variables for
the config file. You can still pass in your own variables like
normal in Ansible, but variables from the external inventory script
will override any that have the same name.

So, with the template above (motd.j2), this would result in the following data being written to /etc/motd for system ‘foo’:

Welcome, I am templated with a value of a=2, b=3, and c=4

And on system ‘bar’ (bar.example.com):

Welcome, I am templated with a value of a=2, b=3, and c=5

And technically, though there is no major good reason to do it, this also works too:

ansible webserver -m shell -a "echo {{ a }}"

So in other words, you can use those variables in arguments/actions as well.

Example: AWS EC2 External Inventory Script

If you use Amazon Web Services EC2, maintaining an inventory file might not be the best approach, because hosts may come and go over time, be managed by external applications, or you might even be using AWS autoscaling. For this reason, you can use the EC2 external inventory [https://raw.github.com/ansible/ansible/devel/plugins/inventory/ec2.py] script.

You can use this script in one of two ways. The easiest is to use Ansible’s -i command line option and specify the path to the script after
marking it executable:

ansible -i ec2.py -u ubuntu us-east-1d -m ping

The second option is to copy the script to /etc/ansible/hosts and chmod +x it. You will also need to copy the ec2.ini [https://raw.github.com/ansible/ansible/devel/plugins/inventory/ec2.ini] file to /etc/ansible/ec2.ini. Then you can run ansible as you would normally.

To successfully make an API call to AWS, you will need to configure Boto (the Python interface to AWS). There are a variety of methods [http://docs.pythonboto.org/en/latest/boto_config_tut.html] available, but the simplest is just to export two environment variables:

export AWS_ACCESS_KEY_ID='AK123'
export AWS_SECRET_ACCESS_KEY='abc123'

You can test the script by itself to make sure your config is correct:

cd plugins/inventory
./ec2.py --list

After a few moments, you should see your entire EC2 inventory across all regions in JSON.

Since each region requires its own API call, if you are only using a small set of regions, feel free to edit ec2.ini and list only the regions you are interested in. There are other config options in ec2.ini including cache control, and destination variables.

At their heart, inventory files are simply a mapping from some name to a destination address. The default ec2.ini settings are configured for running Ansible from outside EC2 (from your laptop for example) – and this is not the most efficient way to manage EC2.

If you are running Ansible from within EC2, internal DNS names and IP addresses may make more sense than public DNS names. In this case, you can modify the destination_variable in ec2.ini to be the private DNS name of an instance. This is particularly important when running Ansible within a private subnet inside a VPC, where the only way to access an instance is via its private IP address. For VPC instances, vpc_destination_variable in ec2.ini provides a means of using which ever boto.ec2.instance variable [http://docs.pythonboto.org/en/latest/ref/ec2.html#module-boto.ec2.instance] makes the most sense for your use case.

The EC2 external inventory provides mappings to instances from several groups:

	Instance ID

	These are groups of one since instance IDs are unique.
e.g.
i-00112233
i-a1b1c1d1

	Region

	A group of all instances in an AWS region.
e.g.
us-east-1
us-west-2

	Availability Zone

	A group of all instances in an availability zone.
e.g.
us-east-1a
us-east-1b

	Security Group

	Instances belong to one or more security groups. A group is created for each security group, with all characters except alphanumerics, dashes (-) converted to underscores (_). Each group is prefixed by security_group_
e.g.
security_group_default
security_group_webservers
security_group_Pete_s_Fancy_Group

	Tags

	Each instance can have a variety of key/value pairs associated with it called Tags. The most common tag key is ‘Name’, though anything is possible. Each key/value pair is its own group of instances, again with special characters converted to underscores, in the format tag_KEY_VALUE
e.g.
tag_Name_Web
tag_Name_redis-master-001
tag_aws_cloudformation_logical-id_WebServerGroup

When the Ansible is interacting with a specific server, the EC2 inventory script is called again with the --host HOST option. This looks up the HOST in the index cache to get the instance ID, and then makes an API call to AWS to get information about that specific instance. It then makes information about that instance available as variables to your playbooks. Each variable is prefixed by ec2_. Here are some of the variables available:

	ec2_architecture

	ec2_description

	ec2_dns_name

	ec2_id

	ec2_image_id

	ec2_instance_type

	ec2_ip_address

	ec2_kernel

	ec2_key_name

	ec2_launch_time

	ec2_monitored

	ec2_ownerId

	ec2_placement

	ec2_platform

	ec2_previous_state

	ec2_private_dns_name

	ec2_private_ip_address

	ec2_public_dns_name

	ec2_ramdisk

	ec2_region

	ec2_root_device_name

	ec2_root_device_type

	ec2_security_group_ids

	ec2_security_group_names

	ec2_spot_instance_request_id

	ec2_state

	ec2_state_code

	ec2_state_reason

	ec2_status

	ec2_subnet_id

	ec2_tag_Name

	ec2_tenancy

	ec2_virtualization_type

	ec2_vpc_id

Both ec2_security_group_ids and ec2_security_group_names are comma-separated lists of all security groups. Each EC2 tag is a variable in the format ec2_tag_KEY.

To see the complete list of variables available for an instance, run the script by itself:

cd plugins/inventory
./ec2.py --host ec2-12-12-12-12.compute-1.amazonaws.com

Note that the AWS inventory script will cache results to avoid repeated API calls, and this cache setting is configurable in ec2.ini. To
explicitly clear the cache, you can run the ec2.py script with the --refresh-cache parameter.

Other inventory scripts

In addition to Cobbler and EC2, inventory scripts are also available for:

BSD Jails
Digital Ocean
Linode
OpenShift
OpenStack Nova
Red Hat's SpaceWalk
Vagrant (not to be confused with the provisioner in vagrant, which is preferred)
Zabbix

Sections on how to use these in more detail will be added over time, but by looking at the “plugins/” directory of the Ansible checkout
it should be very obvious how to use them. The process for the AWS inventory script is the same.

If you develop an interesting inventory script that might be general purpose, please submit a pull request – we’d likely be glad
to include it in the project.

Using Multiple Inventory Sources

If the location given to -i in Ansible is a directory (or as so configured in ansible.cfg), Ansible can use multiple inventory sources
at the same time. When doing so, it is possible to mix both dynamic and statically managed inventory sources in the same ansible run. Instant
hybrid cloud!

See also

	Inventory

	All about static inventory files

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Introduction

Patterns

Topics

	Patterns

Patterns in Ansible are how we decide which hosts to manage. This can mean what hosts to communicate with, but in terms
of Playbooks it actually means what hosts to apply a particular configuration or IT process to.

We’ll go over how to use the command line in Introduction To Ad-Hoc Commands section, however, basically it looks like this:

ansible <pattern_goes_here> -m <module_name> -a <arguments>

Such as:

ansible webservers -m service -a "name=httpd state=restarted"

A pattern usually refers to a set of groups (which are sets of hosts) – in the above case, machines in the “webservers” group.

Anyway, to use Ansible, you’ll first need to know how to tell Ansible which hosts in your inventory to talk to.
This is done by designating particular host names or groups of hosts.

The following patterns are equivalent and target all hosts in the inventory:

all
*

It is also possible to address a specific host or set of hosts by name:

one.example.com
one.example.com:two.example.com
192.168.1.50
192.168.1.*

The following patterns address one or more groups. Groups separated by a colon indicate an “OR” configuration.
This means the host may be in either one group or the other:

webservers
webservers:dbservers

You can exclude groups as well, for instance, all machines must be in the group webservers but not in the group phoenix:

webservers:!phoenix

You can also specify the intersection of two groups. This would mean the hosts must be in the group webservers and
the host must also be in the group staging:

webservers:&staging

You can do combinations:

webservers:dbservers:&staging:!phoenix

The above configuration means “all machines in the groups ‘webservers’ and ‘dbservers’ are to be managed if they are in
the group ‘staging’ also, but the machines are not to be managed if they are in the group ‘phoenix’ ... whew!

You can also use variables if you want to pass some group specifiers via the “-e” argument to ansible-playbook, but this
is uncommonly used:

webservers:!{{excluded}}:&{{required}}

You also don’t have to manage by strictly defined groups. Individual host names, IPs and groups, can also be referenced using
wildcards:

*.example.com
*.com

It’s also ok to mix wildcard patterns and groups at the same time:

one*.com:dbservers

Most people don’t specify patterns as regular expressions, but you can. Just start the pattern with a ‘~’:

~(web|db).*\.example\.com

While we’re jumping a bit ahead, additionally, you can add an exclusion criteria just by supplying the --limit flag to /usr/bin/ansible or /usr/bin/ansible-playbook:

ansible-playbook site.yml --limit datacenter2

Easy enough. See Introduction To Ad-Hoc Commands and then Playbooks for how to apply this knowledge.

See also

	Introduction To Ad-Hoc Commands

	Examples of basic commands

	Playbooks

	Learning ansible’s configuration management language

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Introduction

Introduction To Ad-Hoc Commands

Topics

	Introduction To Ad-Hoc Commands
	Parallelism and Shell Commands

	File Transfer

	Managing Packages

	Users and Groups

	Deploying From Source Control

	Managing Services

	Time Limited Background Operations

	Gathering Facts

The following examples show how to use /usr/bin/ansible for running
ad hoc tasks.

What’s an ad-hoc command?

An ad-hoc command is something that you might type in to do something really
quick, but don’t want to save for later.

This is a good place to start to understand the basics of what Ansible can do
prior to learning the playbooks language – ad-hoc commands can also be used
to do quick things that you might not necessarily want to write a full playbook
for.

Generally speaking, the true power of Ansible lies in playbooks.
Why would you use ad-hoc tasks versus playbooks?

For instance, if you wanted to power off all of your lab for Christmas vacation,
you could execute a quick one-liner in Ansible without writing a playbook.

For configuration management and deployments, though, you’ll want to pick up on
using ‘/usr/bin/ansible-playbook’ – the concepts you will learn here will
port over directly to the playbook language.

(See Playbooks for more information about those)

If you haven’t read Inventory already, please look that over a bit first
and then we’ll get going.

Parallelism and Shell Commands

Arbitrary example.

Let’s use Ansible’s command line tool to reboot all web servers in Atlanta, 10 at a time. First, let’s
set up SSH-agent so it can remember our credentials:

$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa

If you don’t want to use ssh-agent and want to instead SSH with a
password instead of keys, you can with --ask-pass (-k), but
it’s much better to just use ssh-agent.

Now to run the command on all servers in a group, in this case,
atlanta, in 10 parallel forks:

$ ansible atlanta -a "/sbin/reboot" -f 10

/usr/bin/ansible will default to running from your user account. If you do not like this
behavior, pass in “-u username”. If you want to run commands as a different user, it looks like this:

$ ansible atlanta -a "/usr/bin/foo" -u username

Often you’ll not want to just do things from your user account. If you want to run commands through sudo:

$ ansible atlanta -a "/usr/bin/foo" -u username --sudo [--ask-sudo-pass]

Use --ask-sudo-pass (-K) if you are not using passwordless
sudo. This will interactively prompt you for the password to use.
Use of passwordless sudo makes things easier to automate, but it’s not
required.

It is also possible to sudo to a user other than root using
--sudo-user (-U):

$ ansible atlanta -a "/usr/bin/foo" -u username -U otheruser [--ask-sudo-pass]

Note

Rarely, some users have security rules where they constrain their sudo environment to running specific command paths only.
This does not work with ansible’s no-bootstrapping philosophy and hundreds of different modules.
If doing this, use Ansible from a special account that does not have this constraint.
One way of doing this without sharing access to unauthorized users would be gating Ansible with Ansible Tower, which
can hold on to an SSH credential and let members of certain organizations use it on their behalf without having direct access.

Ok, so those are basics. If you didn’t read about patterns and groups yet, go back and read Patterns.

The -f 10 in the above specifies the usage of 10 simultaneous
processes to use. You can also set this in The Ansible Configuration File to avoid setting it again. The default is actually 5, which
is really small and conservative. You are probably going to want to talk to a lot more simultaneous hosts so feel free
to crank this up. If you have more hosts than the value set for the fork count, Ansible will talk to them, but it will
take a little longer. Feel free to push this value as high as your system can handle it!

You can also select what Ansible “module” you want to run. Normally commands also take a -m for module name, but
the default module name is ‘command’, so we didn’t need to
specify that all of the time. We’ll use -m in later examples to
run some other About Modules.

Note

The command - Executes a command on a remote node module does not
support shell variables and things like piping. If we want to execute a module using a
shell, use the ‘shell’ module instead. Read more about the differences on the About Modules
page.

Using the shell - Execute commands in nodes. module looks like this:

$ ansible raleigh -m shell -a 'echo $TERM'

When running any command with the Ansible ad hoc CLI (as opposed to
Playbooks), pay particular attention to shell quoting rules, so
the local shell doesn’t eat a variable before it gets passed to Ansible.
For example, using double vs single quotes in the above example would
evaluate the variable on the box you were on.

So far we’ve been demoing simple command execution, but most Ansible modules usually do not work like
simple scripts. They make the remote system look like you state, and run the commands necessary to
get it there. This is commonly referred to as ‘idempotence’, and is a core design goal of Ansible.
However, we also recognize that running arbitrary commands is equally important, so Ansible easily supports both.

File Transfer

Here’s another use case for the /usr/bin/ansible command line. Ansible can SCP lots of files to multiple machines in parallel.

To transfer a file directly to many different servers:

$ ansible atlanta -m copy -a "src=/etc/hosts dest=/tmp/hosts"

If you use playbooks, you can also take advantage of the template module,
which takes this another step further. (See module and playbook documentation).

The file module allows changing ownership and permissions on files. These
same options can be passed directly to the copy module as well:

$ ansible webservers -m file -a "dest=/srv/foo/a.txt mode=600"
$ ansible webservers -m file -a "dest=/srv/foo/b.txt mode=600 owner=mdehaan group=mdehaan"

The file module can also create directories, similar to mkdir -p:

$ ansible webservers -m file -a "dest=/path/to/c mode=755 owner=mdehaan group=mdehaan state=directory"

As well as delete directories (recursively) and delete files:

$ ansible webservers -m file -a "dest=/path/to/c state=absent"

Managing Packages

There are modules available for yum and apt. Here are some examples
with yum.

Ensure a package is installed, but don’t update it:

$ ansible webservers -m yum -a "name=acme state=installed"

Ensure a package is installed to a specific version:

$ ansible webservers -m yum -a "name=acme-1.5 state=installed"

Ensure a package is at the latest version:

$ ansible webservers -m yum -a "name=acme state=latest"

Ensure a package is not installed:

$ ansible webservers -m yum -a "name=acme state=removed"

Ansible has modules for managing packages under many platforms. If your package manager
does not have a module available for it, you can install
for other packages using the command module or (better!) contribute a module
for other package managers. Stop by the mailing list for info/details.

Users and Groups

The ‘user’ module allows easy creation and manipulation of
existing user accounts, as well as removal of user accounts that may
exist:

$ ansible all -m user -a "name=foo password=<crypted password here>"

$ ansible all -m user -a "name=foo state=absent"

See the About Modules section for details on all of the available options, including
how to manipulate groups and group membership.

Deploying From Source Control

Deploy your webapp straight from git:

$ ansible webservers -m git -a "repo=git://foo.example.org/repo.git dest=/srv/myapp version=HEAD"

Since Ansible modules can notify change handlers it is possible to
tell Ansible to run specific tasks when the code is updated, such as
deploying Perl/Python/PHP/Ruby directly from git and then restarting
apache.

Managing Services

Ensure a service is started on all webservers:

$ ansible webservers -m service -a "name=httpd state=started"

Alternatively, restart a service on all webservers:

$ ansible webservers -m service -a "name=httpd state=restarted"

Ensure a service is stopped:

$ ansible webservers -m service -a "name=httpd state=stopped"

Time Limited Background Operations

Long running operations can be backgrounded, and their status can be
checked on later. The same job ID is given to the same task on all
hosts, so you won’t lose track. If you kick hosts and don’t want
to poll, it looks like this:

$ ansible all -B 3600 -a "/usr/bin/long_running_operation --do-stuff"

If you do decide you want to check on the job status later, you can:

$ ansible all -m async_status -a "jid=123456789"

Polling is built-in and looks like this:

$ ansible all -B 1800 -P 60 -a "/usr/bin/long_running_operation --do-stuff"

The above example says “run for 30 minutes max (-B: 30*60=1800),
poll for status (-P) every 60 seconds”.

Poll mode is smart so all jobs will be started before polling will begin on any machine.
Be sure to use a high enough --forks value if you want to get all of your jobs started
very quickly. After the time limit (in seconds) runs out (-B), the process on
the remote nodes will be terminated.

Typically you’ll be only be backgrounding long-running
shell commands or software upgrades only. Backgrounding the copy module does not do a background file transfer. Playbooks also support polling, and have a simplified syntax for this.

Gathering Facts

Facts are described in the playbooks section and represent discovered variables about a
system. These can be used to implement conditional execution of tasks but also just to get ad-hoc information about your system. You can see all facts via:

$ ansible all -m setup

Its also possible to filter this output to just export certain facts, see the “setup” module documentation for details.

Read more about facts at Variables once you’re ready to read up on Playbooks.

See also

	The Ansible Configuration File

	All about the Ansible config file

	About Modules

	A list of available modules

	Playbooks

	Using Ansible for configuration management & deployment

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Introduction

The Ansible Configuration File

Topics

	The Ansible Configuration File
	Getting the latest configuration

	Environmental configuration

	Explanation of values by section
	General defaults
	action_plugins

	ansible_managed

	ask_pass

	ask_sudo_pass

	callback_plugins

	connection_plugins

	deprecation_warnings

	display_skipped_hosts

	error_on_undefined_vars

	executable

	filter_plugins

	forks

	hash_behaviour

	hostfile

	host_key_checking

	jinja2_extensions

	legacy_playbook_variables

	library

	log_path

	lookup_plugins

	module_name

	nocolor

	nocows

	pattern

	poll_interval

	private_key_file

	remote_port

	remote_tmp

	remote_user

	roles_path

	sudo_exe

	sudo_flags

	sudo_user

	timeout

	transport

	vars_plugins

	Paramiko Specific Settings
	record_host_keys

	OpenSSH Specific Settings
	ssh_args

	control_path

	scp_if_ssh

	pipelining

	Accelerate Mode Settings
	accelerate_port

	accelerate_timeout

	accelerate_connect_timeout

Certain settings in Ansible are adjustable via a configuration file. The stock configuration should be sufficient
for most users, but there may be reasons you would want to change them.

Changes can be made and used in a configuration file which will be processed in the following order:

* ANSIBLE_CONFIG (an environment variable)
* ansible.cfg (in the current directory)
* .ansible.cfg (in the home directory)
* /etc/ansible/ansible.cfg

Prior to 1.5 the order was:

* ansible.cfg (in the current directory)
* ANSIBLE_CONFIG (an environment variable)
* .ansible.cfg (in the home directory)
* /etc/ansible/ansible.cfg

Ansible will process the above list and use the first file found. Settings in files are not merged together.

Getting the latest configuration

If installing ansible from a package manager, the latest ansible.cfg should be present in /etc/ansible, possibly
as a ”.rpmnew” file (or other) as appropriate in the case of updates.

If you have installed from pip or from source, however, you may want to create this file in order to override
default settings in Ansible.

You may wish to consult the ansible.cfg in source control [https://raw.github.com/ansible/ansible/devel/examples/ansible.cfg] for all of the possible latest values.

Environmental configuration

Ansible also allows configuration of settings via environment variables. If these environment variables are set, they will
override any setting loaded from the configuration file. These variables are for brevity not defined here, but look in ‘constants.py’ in the source tree if you want to use these. They are mostly considered to be a legacy system as compared to the config file, but are equally valid.

Explanation of values by section

The configuration file is broken up into sections. Most options are in the “general” section but some sections of the file
are specific to certain connection types.

General defaults

In the [defaults] section of ansible.cfg, the following settings are tunable:

action_plugins

Actions are pieces of code in ansible that enable things like module execution, templating, and so forth.

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from
different locations:

action_plugins = /usr/share/ansible_plugins/action_plugins

Most users will not need to use this feature. See Developing Plugins for more details.

ansible_managed

Ansible-managed is a string that can be inserted into files written by Ansible’s config templating system, if you use
a string like:

{{ ansible_managed }}

The default configuration shows who modified a file and when:

ansible_managed = Ansible managed: {file} modified on %Y-%m-%d %H:%M:%S by {uid} on {host}

This is useful to tell users that a file has been placed by Ansible and manual changes are likely to be overwritten.

Note that if using this feature, and there is a date in the string, the template will be reported changed each time as the date is updated.

ask_pass

This controls whether an Ansible playbook should prompt for a password by default. The default behavior is no:

#ask_pass=True

If using SSH keys for authentication, it’s probably not needed to change this setting.

ask_sudo_pass

Similar to ask_pass, this controls whether an Ansible playbook should prompt for a sudo password by default when
sudoing. The default behavior is also no:

#ask_sudo_pass=True

Users on platforms where sudo passwords are enabled should consider changing this setting.

callback_plugins

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from
different locations:

callback_plugins = /usr/share/ansible_plugins/callback_plugins

Most users will not need to use this feature. See Developing Plugins for more details

connection_plugins

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from
different locations:

connection_plugins = /usr/share/ansible_plugins/connection_plugins

Most users will not need to use this feature. See Developing Plugins for more details

deprecation_warnings

New in version 1.3.

Allows disabling of deprecating warnings in ansible-playbook output:

deprecation_warnings = True

Deprecation warnings indicate usage of legacy features that are slated for removal in a future release of Ansible.

display_skipped_hosts

If set to False, ansible will not display any status for a task that is skipped. The default behavior is to display skipped tasks:

#display_skipped_hosts=True

Note that Ansible will always show the task header for any task, regardless of whether or not the task is skipped.

error_on_undefined_vars

On by default since Ansible 1.3, this causes ansible to fail steps that reference variable names that are likely
typoed:

#error_on_undefined_vars=True

If set to False, any ‘{{ template_expression }}’ that contains undefined variables will be rendered in a template
or ansible action line exactly as written.

executable

This indicates the command to use to spawn a shell under a sudo environment. Users may need to change this in
rare instances to /bin/bash in rare instances when sudo is constrained, but in most cases it may be left as is:

#executable = /bin/bash

filter_plugins

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from
different locations:

filter_plugins = /usr/share/ansible_plugins/filter_plugins

Most users will not need to use this feature. See Developing Plugins for more details

forks

This is the default number of parallel processes to spawn when communicating with remote hosts. Since Ansible 1.3,
the fork number is automatically limited to the number of possible hosts, so this is really a limit of how much
network and CPU load you think you can handle. Many users may set this to 50, some set it to 500 or more. If you
have a large number of hosts, higher values will make actions across all of those hosts complete faster. The default
is very very conservative:

forks=5

hash_behaviour

Ansible by default will override variables in specific precedence orders, as described in Variables. When a variable
of higher precedence wins, it will replace the other value.

Some users prefer that variables that are hashes (aka ‘dictionaries’ in Python terms) are merged together. This setting is called ‘merge’. This is not the default behavior and it does not affect variables whose values are scalars (integers, strings) or
arrays. We generally recommend not using this setting unless you think you have an absolute need for it, and playbooks in the
official examples repos do not use this setting:

#hash_behaviour=replace

The valid values are either ‘replace’ (the default) or ‘merge’.

hostfile

This is the default location of the inventory file, script, or directory that Ansible will use to determine what hosts it has available
to talk to:

hostfile = /etc/ansible/hosts

host_key_checking

As described in Getting Started, host key checking is on by default in Ansible 1.3 and later. If you understand the
implications and wish to disable it, you may do so here by setting the value to False:

host_key_checking=True

jinja2_extensions

This is a developer-specific feature that allows enabling additional Jinja2 extensions:

jinja2_extensions = jinja2.ext.do,jinja2.ext.i18n

If you do not know what these do, you probably don’t need to change this setting :)

legacy_playbook_variables

Ansible prefers to use Jinja2 syntax ‘{{ like_this }}’ to indicate a variable should be substituted in a particular string. However,
older versions of playbooks used a more Perl-style syntax. This syntax was undesirable as it frequently conflicted with bash and
was hard to explain to new users when referencing complicated variable hierarchies, so we have standardized on the ‘{{ jinja2 }}’ way.

To ensure a string like ‘$foo’ is not inadvertently replaced in a Perl or Bash script template, the old form of templating (which is
still enabled as of Ansible 1.4) can be disabled like so

legacy_playbook_variables = no

library

This is the default location Ansible looks to find modules:

library = /usr/share/ansible

Ansible knows how to look in multiple locations if you feed it a colon separated path, and it also will look for modules in the
”./library” directory alongside a playbook.

log_path

If present and configured in ansible.cfg, Ansible will log information about executions at the designated location. Be sure
the user running Ansible has permissions on the logfile:

log_path=/var/log/ansible.log

This behavior is not on by default. Note that ansible will, without this setting, record module arguments called to the
syslog of managed machines. Password arguments are excluded.

For Enterprise users seeking more detailed logging history, you may be interested in Ansible Tower.

lookup_plugins

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from
different locations:

lookup_plugins = /usr/share/ansible_plugins/lookup_plugins

Most users will not need to use this feature. See Developing Plugins for more details

module_name

This is the default module name (-m) value for /usr/bin/ansible. The default is the ‘command’ module.
Remember the command module doesn’t support shell variables, pipes, or quotes, so you might wish to change
it to ‘shell’:

module_name = command

nocolor

By default ansible will try to colorize output to give a better indication of failure and status information.
If you dislike this behavior you can turn it off by setting ‘nocolor’ to 1:

nocolor=0

nocows

By default ansible will take advantage of cowsay if installed to make /usr/bin/ansible-playbook runs more exciting.
Why? We believe systems management should be a happy experience. If you do not like the cows, you can disable them
by setting ‘nocows’ to 1:

nocows=0

pattern

This is the default group of hosts to talk to in a playbook if no “hosts:” stanza is supplied. The default is to talk
to all hosts. You may wish to change this to protect yourself from surprises:

hosts=*

Note that /usr/bin/ansible always requires a host pattern and does not use this setting, only /usr/bin/ansible-playbook.

poll_interval

For asynchronous tasks in Ansible (covered in Asynchronous Actions and Polling), this is how often to check back on the status of those
tasks when an explicit poll interval is not supplied. The default is a reasonably moderate 15 seconds which is a tradeoff
between checking in frequently and providing a quick turnaround when something may have completed:

poll_interval=15

private_key_file

If you are using a pem file to authenticate with machines rather than SSH agent or passwords, you can set the default
value here to avoid re-specifying --ansible-private-keyfile with every invocation:

private_key_file=/path/to/file.pem

remote_port

This sets the default SSH port on all of your systems, for systems that didn’t specify an alternative value in inventory.
The default is the standard 22:

remote_port = 22

remote_tmp

Ansible works by transferring modules to your remote machines, running them, and then cleaning up after itself. In some
cases, you may not wish to use the default location and would like to change the path. You can do so by altering this
setting:

remote_tmp = $HOME/.ansible/tmp

The default is to use a subdirectory of the user’s home directory. Ansible will then choose a random directory name
inside this location.

remote_user

This is the default username ansible will connect as for /usr/bin/ansible-playbook. Note that /usr/bin/ansible will
always default to the current user:

remote_user = root

roles_path

The roles path indicate additional directories beyond the ‘roles/’ subdirectory of a playbook project to search to find Ansible
roles. For instance, if there was a source control repository of common roles and a different repository of playbooks, you might
choose to establish a convention to checkout roles in /opt/mysite/roles like so:

roles_path = /opt/mysite/roles

Roles will be first searched for in the playbook directory. Should a role not be found, it will indicate all the possible paths
that were searched.

sudo_exe

If using an alternative sudo implementation on remote machines, the path to sudo can be replaced here provided
the sudo implementation is matching CLI flags with the standard sudo:

sudo_exe=sudo

sudo_flags

Additional flags to pass to sudo when engaging sudo support. The default is ‘-H’ which preserves the environment
of the original user. In some situations you may wish to add or remote flags, but in general most users
will not need to change this setting:

sudo_flags=-H

sudo_user

This is the default user to sudo to if --sudo-user is not specified or ‘sudo_user’ is not specified in an Ansible
playbook. The default is the most logical: ‘root’:

sudo_user=root

timeout

This is the default SSH timeout to use on connection attempts:

timeout = 10

transport

This is the default transport to use if “-c <transport_name>” is not specified to /usr/bin/ansible or /usr/bin/ansible-playbook.
The default is ‘smart’, which will use ‘ssh’ (OpenSSH based) if the local operating system is new enough to support ControlPersist
technology, and then will otherwise use ‘paramiko’. Other transport options include ‘local’, ‘chroot’, ‘jail’, and so on.

Users should usually leave this setting as ‘smart’ and let their playbooks choose an alternate setting when needed with the
‘connection:’ play parameter.

vars_plugins

This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from
different locations:

vars_plugins = /usr/share/ansible_plugins/vars_plugins

Most users will not need to use this feature. See Developing Plugins for more details

Paramiko Specific Settings

Paramiko is the default SSH connection implementation on Enterprise Linux 6 or earlier, and is not used by default on other
platforms. Settings live under the [paramiko] header.

record_host_keys

The default setting of yes will record newly discovered and approved (if host key checking is enabled) hosts in the user’s hostfile.
This setting may be inefficient for large numbers of hosts, and in those situations, using the ssh transport is definitely recommended
instead. Setting it to False will improve performance and is recommended when host key checking is disabled:

record_host_keys=True

OpenSSH Specific Settings

Under the [ssh_connection] header, the following settings are tunable for SSH connections. OpenSSH is the default connection type for Ansible
on OSes that are new enough to support ControlPersist. (This means basically all operating systems except Enterprise Linux 6 or earlier).

ssh_args

If set, this will pass a specific set of options to Ansible rather than Ansible’s usual defaults:

ssh_args = -o ControlMaster=auto -o ControlPersist=60s

In particular, users may wish to raise the ControlPersist time to encourage performance. A value of 30 minutes may
be appropriate.

control_path

This is the location to save ControlPath sockets. This defaults to:

control_path=%(directory)s/ansible-ssh-%%h-%%p-%%r

On some systems with very long hostnames or very long path names (caused by long user names or
deeply nested home directories) this can exceed the character limit on
file socket names (108 characters for most platforms). In that case, you
may wish to shorten the string to something like the below:

control_path = %(directory)s/%%h-%%r

Ansible 1.4 and later will instruct users to run with “-vvvv” in situations where it hits this problem
and if so it is easy to tell there is too long of a Control Path filename. This may be frequently
encountered on EC2.

scp_if_ssh

Occasionally users may be managing a remote system that doesn’t have SFTP enabled. If set to True, we can
cause scp to be used to transfer remote files instead:

scp_if_ssh=False

There’s really no reason to change this unless problems are encountered, and then there’s also no real drawback
to managing the switch. Most environments support SFTP by default and this doesn’t usually need to be changed.

pipelining

Enabling pipelining reduces the number of SSH operations required to
execute a module on the remote server, by executing many ansible modules without actual file transfer.
This can result in a very significant performance improvement when enabled, however when using “sudo:” operations you must
first disable ‘requiretty’ in /etc/sudoers on all managed hosts.

By default, this option is disabled to preserve compatibility with
sudoers configurations that have requiretty (the default on many distros), but is highly
recommended if you can enable it, eliminating the need for Accelerated Mode:

pipelining=False

Accelerate Mode Settings

Under the [accelerate] header, the following settings are tunable for Accelerated Mode. Acceleration is
a useful performance feature to use if you cannot enable pipelining in your environment, but is probably
not needed if you can.

accelerate_port

New in version 1.3.

This is the port to use for accelerate mode:

accelerate_port = 5099

accelerate_timeout

New in version 1.4.

This setting controls the timeout for receiving data from a client. If no data is received during this time, the socket connection will be closed. A keepalive packet is sent back to the controller every 15 seconds, so this timeout should not be set lower than 15 (by default, the timeout is 30 seconds):

accelerate_timeout = 30

accelerate_connect_timeout

New in version 1.4.

This setting controls the timeout for the socket connect call, and should be kept relatively low. The connection to the accelerate_port will be attempted 3 times before Ansible will fall back to ssh or paramiko (depending on your default connection setting) to try and start the accelerate daemon remotely. The default setting is 1.0 seconds:

accelerate_connect_timeout = 1.0

Note, this value can be set to less than one second, however it is probably not a good idea to do so unless you’re on a very fast and reliable LAN. If you’re connecting to systems over the internet, it may be necessary to increase this timeout.

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

Quickstart Video

We’ve recorded a short video that shows how to get started with Ansible that you may like to use alongside the documentation.

The quickstart video [http://ansible.com/ansible-resources] is about 20 minutes long and will show you some of the basics about your
first steps with Ansible.

Enjoy, and be sure to visit the rest of the documentation to learn more.

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

Playbooks

Playbooks are Ansible’s configuration, deployment, and orchestration language. They can describe a policy you want your remote systems to enforce, or a set of steps in a general IT process.

If Ansible modules are the tools in your workshop, playbooks are your design plans.

At a basic level, playbooks can be used to manage configurations of and deployments to remote machines. At a more advanced level, they can sequence multi-tier rollouts involving rolling updates, and can delegate actions to other hosts, interacting with monitoring servers and load balancers along the way.

While there’s a lot of information here, there’s no need to learn everything at once. You can start small and pick up more features
over time as you need them.

Playbooks are designed to be human-readable and are developed in a basic text language. There are multiple
ways to organize playbooks and the files they include, and we’ll offer up some suggestions on that and making the most out of Ansible.

It is recommended to look at Example Playbooks [https://github.com/ansible/ansible-examples] while reading along with the playbook documentation. These illustrate best practices as well as how to put many of the various concepts together.

	Intro to Playbooks

	Playbook Roles and Include Statements

	Variables

	Conditionals

	Loops

	Best Practices

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks

Intro to Playbooks

About Playbooks

Playbooks are a completely different way to use ansible than in adhoc task execution mode, and are
particularly powerful.

Simply put, playbooks are the basis for a really simple configuration management and multi-machine deployment system,
unlike any that already exist, and one that is very well suited to deploying complex applications.

Playbooks can declare configurations, but they can also orchestrate steps of
any manual ordered process, even as different steps must bounce back and forth
between sets of machines in particular orders. They can launch tasks
synchronously or asynchronously.

While you might run the main /usr/bin/ansible program for ad-hoc
tasks, playbooks are more likely to be kept in source control and used
to push out your configuration or assure the configurations of your
remote systems are in spec.

There are also some full sets of playbooks illustrating a lot of these techniques in the
ansible-examples repository [https://github.com/ansible/ansible-examples]. We’d recommend
looking at these in another tab as you go along.

There are also many jumping off points after you learn playbooks, so hop back to the documentation
index after you’re done with this section.

Playbook Language Example

Playbooks are expressed in YAML format (see YAML Syntax) and have a minimum of syntax, which intentionally
tries to not be a programming language or script, but rather a model of a configuration or a process.

Each playbook is composed of one or more ‘plays’ in a list.

The goal of a play is to map a group of hosts to some well defined roles, represented by
things ansible calls tasks. At a basic level, a task is nothing more than a call
to an ansible module, which you should have learned about in earlier chapters.

By composing a playbook of multiple ‘plays’, it is possible to
orchestrate multi-machine deployments, running certain steps on all
machines in the webservers group, then certain steps on the database
server group, then more commands back on the webservers group, etc.

“plays” are more or less a sports analogy. You can have quite a lot of plays that affect your systems
to do different things. It’s not as if you were just defining one particular state or model, and you
can run different plays at different times.

For starters, here’s a playbook that contains just one play:

- hosts: webservers
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: ensure apache is at the latest version
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 notify:
 - restart apache
 - name: ensure apache is running
 service: name=httpd state=started
 handlers:
 - name: restart apache
 service: name=httpd state=restarted

Below, we’ll break down what the various features of the playbook language are.

Basics

Hosts and Users

For each play in a playbook, you get to choose which machines in your infrastructure
to target and what remote user to complete the steps (called tasks) as.

The hosts line is a list of one or more groups or host patterns,
separated by colons, as described in the Patterns
documentation. The remote_user is just the name of the user account:

- hosts: webservers
 remote_user: root

Note

The remote_user parameter was formerly called just user. It was renamed in Ansible 1.4 to make it more distinguishable from the user module (used to create users on remote systems).

Remote users can also be defined per task:

- hosts: webservers
 remote_user: root
 tasks:
 - name: test connection
 ping:
 remote_user: yourname

Note

The remote_user parameter for tasks was added in 1.4.

Support for running things from sudo is also available:

- hosts: webservers
 remote_user: yourname
 sudo: yes

You can also use sudo on a particular task instead of the whole play:

- hosts: webservers
 remote_user: yourname
 tasks:
 - service: name=nginx state=started
 sudo: yes

You can also login as you, and then sudo to different users than root:

- hosts: webservers
 remote_user: yourname
 sudo: yes
 sudo_user: postgres

If you need to specify a password to sudo, run ansible-playbook with --ask-sudo-pass (-K).
If you run a sudo playbook and the playbook seems to hang, it’s probably stuck at the sudo prompt.
Just Control-C to kill it and run it again with -K.

Important

When using sudo_user to a user other than root, the module
arguments are briefly written into a random tempfile in /tmp.
These are deleted immediately after the command is executed. This
only occurs when sudoing from a user like ‘bob’ to ‘timmy’, not
when going from ‘bob’ to ‘root’, or logging in directly as ‘bob’ or
‘root’. If this concerns you that this data is briefly readable
(not writable), avoid transferring uncrypted passwords with
sudo_user set. In other cases, ‘/tmp’ is not used and this does
not come into play. Ansible also takes care to not log password
parameters.

Tasks list

Each play contains a list of tasks. Tasks are executed in order, one
at a time, against all machines matched by the host pattern,
before moving on to the next task. It is important to understand that, within a play,
all hosts are going to get the same task directives. It is the purpose of a play to map
a selection of hosts to tasks.

When running the playbook, which runs top to bottom, hosts with failed tasks are
taken out of the rotation for the entire playbook. If things fail, simply correct the playbook file and rerun.

The goal of each task is to execute a module, with very specific arguments.
Variables, as mentioned above, can be used in arguments to modules.

Modules are ‘idempotent’, meaning if you run them
again, they will make only the changes they must in order to bring the
system to the desired state. This makes it very safe to rerun
the same playbook multiple times. They won’t change things
unless they have to change things.

The command and shell modules will typically rerun the same command again,
which is totally ok if the command is something like
‘chmod’ or ‘setsebool’, etc. Though there is a ‘creates’ flag available which can
be used to make these modules also idempotent.

Every task should have a name, which is included in the output from
running the playbook. This is output for humans, so it is
nice to have reasonably good descriptions of each task step. If the name
is not provided though, the string fed to ‘action’ will be used for
output.

Tasks can be declared using the legacy “action: module options” format, but
it is recommended that you use the more conventional “module: options” format.
This recommended format is used throughout the documentation, but you may
encounter the older format in some playbooks.

Here is what a basic task looks like, as with most modules,
the service module takes key=value arguments:

tasks:
 - name: make sure apache is running
 service: name=httpd state=running

The command and shell modules are the only modules that just take a list
of arguments and don’t use the key=value form. This makes
them work as simply as you would expect:

tasks:
 - name: disable selinux
 command: /sbin/setenforce 0

The command and shell module care about return codes, so if you have a command
whose successful exit code is not zero, you may wish to do this:

tasks:
 - name: run this command and ignore the result
 shell: /usr/bin/somecommand || /bin/true

Or this:

tasks:
 - name: run this command and ignore the result
 shell: /usr/bin/somecommand
 ignore_errors: True

If the action line is getting too long for comfort you can break it on
a space and indent any continuation lines:

tasks:
 - name: Copy ansible inventory file to client
 copy: src=/etc/ansible/hosts dest=/etc/ansible/hosts
 owner=root group=root mode=0644

Variables can be used in action lines. Suppose you defined
a variable called ‘vhost’ in the ‘vars’ section, you could do this:

tasks:
 - name: create a virtual host file for {{ vhost }}
 template: src=somefile.j2 dest=/etc/httpd/conf.d/{{ vhost }}

Those same variables are usable in templates, which we’ll get to later.

Now in a very basic playbook all the tasks will be listed directly in that play, though it will usually
make more sense to break up tasks using the ‘include:’ directive. We’ll show that a bit later.

Action Shorthand

New in version 0.8.

Ansible prefers listing modules like this in 0.8 and later:

template: src=templates/foo.j2 dest=/etc/foo.conf

You will notice in earlier versions, this was only available as:

action: template src=templates/foo.j2 dest=/etc/foo.conf

The old form continues to work in newer versions without any plan of deprecation.

Handlers: Running Operations On Change

As we’ve mentioned, modules are written to be ‘idempotent’ and can relay when
they have made a change on the remote system. Playbooks recognize this and
have a basic event system that can be used to respond to change.

These ‘notify’ actions are triggered at the end of each block of tasks in a playbook, and will only be
triggered once even if notified by multiple different tasks.

For instance, multiple resources may indicate
that apache needs to be restarted because they have changed a config file,
but apache will only be bounced once to avoid unnecessary restarts.

Here’s an example of restarting two services when the contents of a file
change, but only if the file changes:

- name: template configuration file
 template: src=template.j2 dest=/etc/foo.conf
 notify:
 - restart memcached
 - restart apache

The things listed in the ‘notify’ section of a task are called
handlers.

Handlers are lists of tasks, not really any different from regular
tasks, that are referenced by name. Handlers are what notifiers
notify. If nothing notifies a handler, it will not run. Regardless
of how many things notify a handler, it will run only once, after all
of the tasks complete in a particular play.

Here’s an example handlers section:

handlers:
 - name: restart memcached
 service: name=memcached state=restarted
 - name: restart apache
 service: name=apache state=restarted

Handlers are best used to restart services and trigger reboots. You probably
won’t need them for much else.

Note

Notify handlers are always run in the order written.

Roles are described later on. It’s worthwhile to point out that handlers are
automatically processed between ‘pre_tasks’, ‘roles’, ‘tasks’, and ‘post_tasks’
sections. If you ever want to flush all the handler commands immediately though,
in 1.2 and later, you can:

tasks:
 - shell: some tasks go here
 - meta: flush_handlers
 - shell: some other tasks

In the above example any queued up handlers would be processed early when the ‘meta’
statement was reached. This is a bit of a niche case but can come in handy from
time to time.

Executing A Playbook

Now that you’ve learned playbook syntax, how do you run a playbook? It’s simple.
Let’s run a playbook using a parallelism level of 10:

ansible-playbook playbook.yml -f 10

Ansible-Pull

Should you want to invert the architecture of Ansible, so that nodes check in to a central location, instead
of pushing configuration out to them, you can.

Ansible-pull is a small script that will checkout a repo of configuration instructions from git, and then
run ansible-playbook against that content.

Assuming you load balance your checkout location, ansible-pull scales essentially infinitely.

Run ansible-pull --help for details.

There’s also a clever playbook [https://github.com/ansible/ansible-examples/blob/master/language_features/ansible_pull.yml] available to using ansible in push mode to configure ansible-pull via a crontab!

Tips and Tricks

Look at the bottom of the playbook execution for a summary of the nodes that were targeted
and how they performed. General failures and fatal “unreachable” communication attempts are
kept separate in the counts.

If you ever want to see detailed output from successful modules as well as unsuccessful ones,
use the --verbose flag. This is available in Ansible 0.5 and later.

Ansible playbook output is vastly upgraded if the cowsay
package is installed. Try it!

To see what hosts would be affected by a playbook before you run it, you
can do this:

ansible-playbook playbook.yml --list-hosts.

See also

	YAML Syntax

	Learn about YAML syntax

	Best Practices

	Various tips about managing playbooks in the real world

	Ansible Documentation

	Hop back to the documentation index for a lot of special topics about playbooks

	About Modules

	Learn about available modules

	Developing Modules

	Learn how to extend Ansible by writing your own modules

	Patterns

	Learn about how to select hosts

	Github examples directory [https://github.com/ansible/ansible-examples]

	Complete end-to-end playbook examples

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks

Playbook Roles and Include Statements

Topics

	Playbook Roles and Include Statements
	Introduction

	Task Include Files And Encouraging Reuse

	Roles

	Role Default Variables

	Role Dependencies

	Ansible Galaxy

Introduction

While it is possible to write a playbook in one very large file (and you might start out learning playbooks this way),
eventually you’ll want to reuse files and start to organize things.

At a basic level, including task files allows you to break up bits of configuration policy into smaller files. Task includes
pull in tasks from other files. Since handlers are tasks too, you can also include handler files from the ‘handlers:’ section.

See Playbooks if you need a review of these concepts.

Playbooks can also include plays from other playbook files. When that is done, the plays will be inserted into the playbook to form
a longer list of plays.

When you start to think about it – tasks, handlers, variables, and so on – begin to form larger concepts. You start to think about modeling
what something is, rather than how to make something look like something. It’s no longer “apply this handful of THINGS to these hosts”, you say “these hosts are dbservers” or “these hosts are webservers”. In programming, we might call that “encapsulating” how things work. For instance,
you can drive a car without knowing how the engine works.

Roles in Ansible build on the idea of include files and combine them to form clean, reusable abstractions – they allow you to focus
more on the big picture and only dive down into the details when needed.

We’ll start with understanding includes so roles make more sense, but our ultimate goal should be understanding roles – roles
are great and you should use them every time you write playbooks.

See the ansible-examples [https://github.com/ansible/ansible-examples] repository on GitHub for lots of examples of all of this
put together. You may wish to have this open in a separate tab as you dive in.

Task Include Files And Encouraging Reuse

Suppose you want to reuse lists of tasks between plays or playbooks. You can use
include files to do this. Use of included task lists is a great way to define a role
that system is going to fulfill. Remember, the goal of a play in a playbook is to map
a group of systems into multiple roles. Let’s see what this looks like...

A task include file simply contains a flat list of tasks, like so:

possibly saved as tasks/foo.yml

- name: placeholder foo
 command: /bin/foo

- name: placeholder bar
 command: /bin/bar

Include directives look like this, and can be mixed in with regular tasks in a playbook:

tasks:

 - include: tasks/foo.yml

You can also pass variables into includes. We call this a ‘parameterized include’.

For instance, if deploying multiple wordpress instances, I could
contain all of my wordpress tasks in a single wordpress.yml file, and use it like so:

tasks:
 - include: wordpress.yml user=timmy
 - include: wordpress.yml user=alice
 - include: wordpress.yml user=bob

If you are running Ansible 1.4 and later, include syntax is streamlined to match roles, and also allows passing list and dictionary parameters:

tasks:
 - { include: wordpress.yml, user: timmy, ssh_keys: ['keys/one.txt', 'keys/two.txt'] }

Using either syntax, variables passed in can then be used in the included files. We’ve already covered them a bit in Variables.
You can reference them like this:

{{ user }}

(In addition to the explicitly passed-in parameters, all variables from
the vars section are also available for use here as well.)

Starting in 1.0, variables can also be passed to include files using an alternative syntax,
which also supports structured variables:

tasks:

 - include: wordpress.yml
 vars:
 remote_user: timmy
 some_list_variable:
 - alpha
 - beta
 - gamma

Playbooks can include other playbooks too, but that’s mentioned in a later section.

Note

As of 1.0, task include statements can be used at arbitrary depth.
They were previously limited to a single level, so task includes
could not include other files containing task includes.

Includes can also be used in the ‘handlers’ section, for instance, if you
want to define how to restart apache, you only have to do that once for all
of your playbooks. You might make a handlers.yml that looks like:

this might be in a file like handlers/handlers.yml
- name: restart apache
 service: name=apache state=restarted

And in your main playbook file, just include it like so, at the bottom
of a play:

handlers:
 - include: handlers/handlers.yml

You can mix in includes along with your regular non-included tasks and handlers.

Includes can also be used to import one playbook file into another. This allows
you to define a top-level playbook that is composed of other playbooks.

For example:

- name: this is a play at the top level of a file
 hosts: all
 remote_user: root

 tasks:

 - name: say hi
 tags: foo
 shell: echo "hi..."

- include: load_balancers.yml
- include: webservers.yml
- include: dbservers.yml

Note that you cannot do variable substitution when including one playbook
inside another.

Note

You can not conditionally path the location to an include file,
like you can with ‘vars_files’. If you find yourself needing to do
this, consider how you can restructure your playbook to be more
class/role oriented. This is to say you cannot use a ‘fact’ to
decide what include file to use. All hosts contained within the
play are going to get the same tasks. (‘when‘ provides some
ability for hosts to conditionally skip tasks).

Roles

New in version 1.2.

Now that you have learned about vars_files, tasks, and handlers, what is the best way to organize your playbooks?
The short answer is to use roles! Roles are ways of automatically loading certain vars_files, tasks, and
handlers based on a known file structure. Grouping content by roles also allows easy sharing of roles with other users.

Roles are just automation around ‘include’ directives as described above, and really don’t contain much
additional magic beyond some improvements to search path handling for referenced files. However, that can be a big thing!

Example project structure:

site.yml
webservers.yml
fooservers.yml
roles/
 common/
 files/
 templates/
 tasks/
 handlers/
 vars/
 meta/
 webservers/
 files/
 templates/
 tasks/
 handlers/
 vars/
 meta/

In a playbook, it would look like this:

- hosts: webservers
 roles:
 - common
 - webservers

This designates the following behaviors, for each role ‘x’:

	If roles/x/tasks/main.yml exists, tasks listed therein will be added to the play

	If roles/x/handlers/main.yml exists, handlers listed therein will be added to the play

	If roles/x/vars/main.yml exists, variables listed therein will be added to the play

	If roles/x/meta/main.yml exists, any role dependencies listed therein will be added to the list of roles (1.3 and later)

	Any copy tasks can reference files in roles/x/files/ without having to path them relatively or absolutely

	Any script tasks can reference scripts in roles/x/files/ without having to path them relatively or absolutely

	Any template tasks can reference files in roles/x/templates/ without having to path them relatively or absolutely

	Any include tasks can reference files in roles/x/tasks/ without having to path them relatively or absolutely

In Ansible 1.4 and later you can configure a roles_path to search for roles. Use this to check all of your common roles out to one location, and share
them easily between multiple playbook projects. See The Ansible Configuration File for details about how to set this up in ansible.cfg.

Note

Role dependencies are discussed below.

If any files are not present, they are just ignored. So it’s ok to not have a ‘vars/’ subdirectory for the role,
for instance.

Note, you are still allowed to list tasks, vars_files, and handlers “loose” in playbooks without using roles,
but roles are a good organizational feature and are highly recommended. if there are loose things in the playbook,
the roles are evaluated first.

Also, should you wish to parameterize roles, by adding variables, you can do so, like this:

- hosts: webservers
 roles:
 - common
 - { role: foo_app_instance, dir: '/opt/a', port: 5000 }
 - { role: foo_app_instance, dir: '/opt/b', port: 5001 }

While it’s probably not something you should do often, you can also conditionally apply roles like so:

- hosts: webservers
 roles:
 - { role: some_role, when: "ansible_os_family == 'RedHat'" }

This works by applying the conditional to every task in the role. Conditionals are covered later on in
the documentation.

Finally, you may wish to assign tags to the roles you specify. You can do so inline::

- hosts: webservers
 roles:
 - { role: foo, tags: ["bar", "baz"] }

If the play still has a ‘tasks’ section, those tasks are executed after roles are applied.

If you want to define certain tasks to happen before AND after roles are applied, you can do this:

- hosts: webservers

 pre_tasks:
 - shell: echo 'hello'

 roles:
 - { role: some_role }

 tasks:
 - shell: echo 'still busy'

 post_tasks:
 - shell: echo 'goodbye'

Note

If using tags with tasks (described later as a means of only running part of a playbook),
be sure to also tag your pre_tasks and post_tasks and pass those along as well, especially if the pre
and post tasks are used for monitoring outage window control or load balancing.

Role Default Variables

New in version 1.3.

Role default variables allow you to set default variables for included or dependent roles (see below). To create
defaults, simply add a defaults/main.yml file in your role directory. These variables will have the lowest priority
of any variables available, and can be easily overridden by any other variable, including inventory variables.

Role Dependencies

New in version 1.3.

Role dependencies allow you to automatically pull in other roles when using a role. Role dependencies are stored in the
meta/main.yml file contained within the role directory. This file should contain
a list of roles and parameters to insert before the specified role, such as the following in an example
roles/myapp/meta/main.yml:

dependencies:
 - { role: common, some_parameter: 3 }
 - { role: apache, port: 80 }
 - { role: postgres, dbname: blarg, other_parameter: 12 }

Role dependencies can also be specified as a full path, just like top level roles:

dependencies:
 - { role: '/path/to/common/roles/foo', x: 1 }

Roles dependencies are always executed before the role that includes them, and are recursive. By default,
roles can also only be added as a dependency once - if another role also lists it as a dependency it will
not be run again. This behavior can be overridden by adding allow_duplicates: yes to the meta/main.yml file.
For example, a role named ‘car’ could add a role named ‘wheel’ to its dependencies as follows:

dependencies:
- { role: wheel, n: 1 }
- { role: wheel, n: 2 }
- { role: wheel, n: 3 }
- { role: wheel, n: 4 }

And the meta/main.yml for wheel contained the following:

allow_duplicates: yes
dependencies:
- { role: tire }
- { role: brake }

The resulting order of execution would be as follows:

tire(n=1)
brake(n=1)
wheel(n=1)
tire(n=2)
brake(n=2)
wheel(n=2)
...
car

Note

Variable inheritance and scope are detailed in the Variables.

Ansible Galaxy

Ansible Galaxy [http://galaxy.ansible.com], is a free site for finding, downloading, rating, and reviewing all kinds of community developed Ansible roles and can be a great way to get a jumpstart on your automation projects.

You can sign up with social auth, and the download client ‘ansible-galaxy’ is included in Ansible 1.4.2 and later.

Read the “About” page on the Galaxy site for more information.

See also

	YAML Syntax

	Learn about YAML syntax

	Playbooks

	Review the basic Playbook language features

	Best Practices

	Various tips about managing playbooks in the real world

	Variables

	All about variables in playbooks

	Conditionals

	Conditionals in playbooks

	Loops

	Loops in playbooks

	About Modules

	Learn about available modules

	Developing Modules

	Learn how to extend Ansible by writing your own modules

	GitHub Ansible examples [https://github.com/ansible/ansible-examples]

	Complete playbook files from the GitHub project source

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks

Variables

Topics

	Variables
	What Makes A Valid Variable Name

	Variables Defined in Inventory

	Variables Defined in a Playbook

	Variables defined from included files and roles

	Using Variables: About Jinja2

	Jinja2 Filters
	Filters For Formatting Data

	Filters Often Used With Conditionals

	Forcing Variables To Be Defined

	Defaulting Undefined Variables

	Set Theory Filters

	Other Useful Filters

	Hey Wait, A YAML Gotcha

	Information discovered from systems: Facts

	Turning Off Facts

	Local Facts (Facts.d)

	Registered Variables

	Accessing Complex Variable Data

	Magic Variables, and How To Access Information About Other Hosts

	Variable File Separation

	Passing Variables On The Command Line

	Conditional Imports

	Variable Precedence: Where Should I Put A Variable?

While automation exists to make it easier to make things repeatable, all of your systems are likely not exactly alike.

All of your systems are likely not the same. On some systems you may want to set some behavior
or configuration that is slightly different from others.

Also, some of the observed behavior or state
of remote systems might need to influence how you configure those systems. (Such as you might need to find out the IP
address of a system and even use it as a configuration value on another system).

You might have some templates for configuration files that are mostly the same, but slightly different
based on those variables.

Variables in Ansible are how we deal with differences between systems.

Once understanding variables you’ll also want to dig into Conditionals and Loops.
Useful things like the “group_by” module
and the “when” conditional can also be used with variables, and to help manage differences between systems.

It’s highly recommended that you consult the ansible-examples github repository to see a lot of examples of variables put to use.

What Makes A Valid Variable Name

Before we start using variables it’s important to know what are valid variable names.

Variable names should be letters, numbers, and underscores. Variables should always start with a letter.

“foo_port” is a great variable. “foo5” is fine too.

“foo-port”, “foo port”, “foo.port” and “12” are not valid variable names.

Easy enough, let’s move on.

Variables Defined in Inventory

We’ve actually already covered a lot about variables in another section, so so far this shouldn’t be terribly new, but
a bit of a refresher.

Often you’ll want to set variables based on what groups a machine is in. For instance, maybe machines in Boston
want to use ‘boston.ntp.example.com’ as an NTP server.

See the Inventory document for multiple ways on how to define variables in inventory.

Variables Defined in a Playbook

In a playbook, it’s possible to define variables directly inline like so:

- hosts: webservers
 vars:
 http_port: 80

This can be nice as it’s right there when you are reading the playbook.

Variables defined from included files and roles

It turns out we’ve already talked about variables in another place too.

As described in Playbook Roles and Include Statements, variables can also be included in the playbook via include files, which may or may
not be part of an “Ansible Role”. Usage of roles is preferred as it provides a nice organizational system.

Using Variables: About Jinja2

It’s nice enough to know about how to define variables, but how do you use them?

Ansible allows you to
reference variables in your playbooks using the Jinja2 templating system. While you can do a lot of complex
things in Jinja, only the basics are things you really need to learn at first.

For instance, in a simple template, you can do something like:

My amp goes to {{ max_amp_value }}

And that will provide the most basic form of variable substitution.

This is also valid directly in playbooks, and you’ll occasionally want to do things like:

template: src=foo.cfg.j2 dest={{ remote_install_path}}/foo.cfg

In the above example, we used a variable to help decide where to place a file.

Inside a template you automatically have access to all of the variables that are in scope for a host. Actually
it’s more than that – you can also read variables about other hosts. We’ll show how to do that in a bit.

Note

ansible allows Jinja2 loops and conditionals in templates, but in playbooks, we do not use them. Ansible
templates are pure machine-parseable YAML. This is an rather important feature as it means it is possible to code-generate
pieces of files, or to have other ecosystem tools read Ansible files. Not everyone will need this but it can unlock
possibilities.

Jinja2 Filters

Note

These are infrequently utilized features. Use them if they fit a use case you have, but this is optional knowledge.

Filters in Jinja2 are a way of transforming template expressions from one kind of data into another. Jinja2
ships with many of these. See builtin filters [http://jinja.pocoo.org/docs/templates/#builtin-filters] in the official Jinja2 template documentation.

In addition to those, Ansible supplies many more.

Filters For Formatting Data

The following filters will take a data structure in a template and render it in a slightly different format. These
are occasionally useful for debugging:

{{ some_variable | to_nice_json }}
{{ some_variable | to_nice_yaml }}

Filters Often Used With Conditionals

The following tasks are illustrative of how filters can be used with conditionals:

tasks:

 - shell: /usr/bin/foo
 register: result
 ignore_errors: True

 - debug: msg="it failed"
 when: result|failed

 # in most cases you'll want a handler, but if you want to do something right now, this is nice
 - debug: msg="it changed"
 when: result|changed

 - debug: msg="it succeeded"
 when: result|success

 - debug: msg="it was skipped"
 when: result|skipped

Forcing Variables To Be Defined

The default behavior from ansible and ansible.cfg is to fail if variables are undefined, but you can turn this off.

This allows an explicit check with this feature off:

{{ variable | mandatory }}

The variable value will be used as is, but the template evaluation will raise an error if it is undefined.

Defaulting Undefined Variables

Jinja2 provides a useful ‘default’ filter, that is often a better approach to failing if a variable is not defined.

{{ some_variable | default(5) }}

In the above example, if the variable ‘some_variable’ is not defined, the value used will be 5, rather than an error
being raised.

Set Theory Filters

All these functions return a unique set from sets or lists.

New in version 1.4.

To get a unique set from a list:

{{ list1 | unique }}

To get a union of two lists:

{{ list1 | union(list2) }}

To get the intersection of 2 lists (unique list of all items in both):

{{ list1 | intersect(list2) }}

To get the difference of 2 lists (items in 1 that don’t exist in 2):

{{ list1 | difference(list2) }}

To get the symmetric difference of 2 lists (items exclusive to each list):

{{ list1 | symmetric_difference(list2) }}

Other Useful Filters

To get the last name of a file path, like ‘foo.txt’ out of ‘/etc/asdf/foo.txt’:

{{ path | basename }}

To get the directory from a path:

{{ path | dirname }}

To expand a path containing a tilde (~) character (new in version 1.5):

{{ path | expanduser }}

To work with Base64 encoded strings:

{{ encoded | b64decode }}
{{ decoded | b64encode }}

To take an md5sum of a filename:

{{ filename | md5 }}

To cast values as certain types, such as when you input a string as “True” from a vars_prompt and the system
doesn’t know it is a boolean value:

- debug: msg=test
 when: some_string_value | bool

A few useful filters are typically added with each new Ansible release. The development documentation shows
how to extend Ansible filters by writing your own as plugins, though in general, we encourage new ones
to be added to core so everyone can make use of them.

Hey Wait, A YAML Gotcha

YAML syntax requires that if you start a value with {{ foo }} you quote the whole line, since it wants to be
sure you aren’t trying to start a YAML dictionary. This is covered on the YAML Syntax page.

This won’t work:

- hosts: app_servers
 vars:
 app_path: {{ base_path }}/22

Do it like this and you’ll be fine:

- hosts: app_servers
 vars:
 app_path: "{{ base_path }}/22"

Information discovered from systems: Facts

There are other places where variables can come from, but these are a type of variable that are discovered, not set by the user.

Facts are information derived from speaking with your remote systems.

An example of this might be the ip address of the remote host, or what the operating system is.

To see what information is available, try the following:

ansible hostname -m setup

This will return a ginormous amount of variable data, which may look like this, as taken from Ansible 1.4 on a Ubuntu 12.04 system:

"ansible_all_ipv4_addresses": [
 "REDACTED IP ADDRESS"
],
"ansible_all_ipv6_addresses": [
 "REDACTED IPV6 ADDRESS"
],
"ansible_architecture": "x86_64",
"ansible_bios_date": "09/20/2012",
"ansible_bios_version": "6.00",
"ansible_cmdline": {
 "BOOT_IMAGE": "/boot/vmlinuz-3.5.0-23-generic",
 "quiet": true,
 "ro": true,
 "root": "UUID=4195bff4-e157-4e41-8701-e93f0aec9e22",
 "splash": true
},
"ansible_date_time": {
 "date": "2013-10-02",
 "day": "02",
 "epoch": "1380756810",
 "hour": "19",
 "iso8601": "2013-10-02T23:33:30Z",
 "iso8601_micro": "2013-10-02T23:33:30.036070Z",
 "minute": "33",
 "month": "10",
 "second": "30",
 "time": "19:33:30",
 "tz": "EDT",
 "year": "2013"
},
"ansible_default_ipv4": {
 "address": "REDACTED",
 "alias": "eth0",
 "gateway": "REDACTED",
 "interface": "eth0",
 "macaddress": "REDACTED",
 "mtu": 1500,
 "netmask": "255.255.255.0",
 "network": "REDACTED",
 "type": "ether"
},
"ansible_default_ipv6": {},
"ansible_devices": {
 "fd0": {
 "holders": [],
 "host": "",
 "model": null,
 "partitions": {},
 "removable": "1",
 "rotational": "1",
 "scheduler_mode": "deadline",
 "sectors": "0",
 "sectorsize": "512",
 "size": "0.00 Bytes",
 "support_discard": "0",
 "vendor": null
 },
 "sda": {
 "holders": [],
 "host": "SCSI storage controller: LSI Logic / Symbios Logic 53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI (rev 01)",
 "model": "VMware Virtual S",
 "partitions": {
 "sda1": {
 "sectors": "39843840",
 "sectorsize": 512,
 "size": "19.00 GB",
 "start": "2048"
 },
 "sda2": {
 "sectors": "2",
 "sectorsize": 512,
 "size": "1.00 KB",
 "start": "39847934"
 },
 "sda5": {
 "sectors": "2093056",
 "sectorsize": 512,
 "size": "1022.00 MB",
 "start": "39847936"
 }
 },
 "removable": "0",
 "rotational": "1",
 "scheduler_mode": "deadline",
 "sectors": "41943040",
 "sectorsize": "512",
 "size": "20.00 GB",
 "support_discard": "0",
 "vendor": "VMware,"
 },
 "sr0": {
 "holders": [],
 "host": "IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)",
 "model": "VMware IDE CDR10",
 "partitions": {},
 "removable": "1",
 "rotational": "1",
 "scheduler_mode": "deadline",
 "sectors": "2097151",
 "sectorsize": "512",
 "size": "1024.00 MB",
 "support_discard": "0",
 "vendor": "NECVMWar"
 }
},
"ansible_distribution": "Ubuntu",
"ansible_distribution_release": "precise",
"ansible_distribution_version": "12.04",
"ansible_domain": "",
"ansible_env": {
 "COLORTERM": "gnome-terminal",
 "DISPLAY": ":0",
 "HOME": "/home/mdehaan",
 "LANG": "C",
 "LESSCLOSE": "/usr/bin/lesspipe %s %s",
 "LESSOPEN": "| /usr/bin/lesspipe %s",
 "LOGNAME": "root",
 "LS_COLORS": "rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lz=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.wav=00;36:*.axa=00;36:*.oga=00;36:*.spx=00;36:*.xspf=00;36:",
 "MAIL": "/var/mail/root",
 "OLDPWD": "/root/ansible/docsite",
 "PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "PWD": "/root/ansible",
 "SHELL": "/bin/bash",
 "SHLVL": "1",
 "SUDO_COMMAND": "/bin/bash",
 "SUDO_GID": "1000",
 "SUDO_UID": "1000",
 "SUDO_USER": "mdehaan",
 "TERM": "xterm",
 "USER": "root",
 "USERNAME": "root",
 "XAUTHORITY": "/home/mdehaan/.Xauthority",
 "_": "/usr/local/bin/ansible"
},
"ansible_eth0": {
 "active": true,
 "device": "eth0",
 "ipv4": {
 "address": "REDACTED",
 "netmask": "255.255.255.0",
 "network": "REDACTED"
 },
 "ipv6": [
 {
 "address": "REDACTED",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "REDACTED",
 "module": "e1000",
 "mtu": 1500,
 "type": "ether"
},
"ansible_form_factor": "Other",
"ansible_fqdn": "ubuntu2",
"ansible_hostname": "ubuntu2",
"ansible_interfaces": [
 "lo",
 "eth0"
],
"ansible_kernel": "3.5.0-23-generic",
"ansible_lo": {
 "active": true,
 "device": "lo",
 "ipv4": {
 "address": "127.0.0.1",
 "netmask": "255.0.0.0",
 "network": "127.0.0.0"
 },
 "ipv6": [
 {
 "address": "::1",
 "prefix": "128",
 "scope": "host"
 }
],
 "mtu": 16436,
 "type": "loopback"
},
"ansible_lsb": {
 "codename": "precise",
 "description": "Ubuntu 12.04.2 LTS",
 "id": "Ubuntu",
 "major_release": "12",
 "release": "12.04"
},
"ansible_machine": "x86_64",
"ansible_memfree_mb": 74,
"ansible_memtotal_mb": 991,
"ansible_mounts": [
 {
 "device": "/dev/sda1",
 "fstype": "ext4",
 "mount": "/",
 "options": "rw,errors=remount-ro",
 "size_available": 15032406016,
 "size_total": 20079898624
 }
],
"ansible_os_family": "Debian",
"ansible_pkg_mgr": "apt",
"ansible_processor": [
 "Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz"
],
"ansible_processor_cores": 1,
"ansible_processor_count": 1,
"ansible_processor_threads_per_core": 1,
"ansible_processor_vcpus": 1,
"ansible_product_name": "VMware Virtual Platform",
"ansible_product_serial": "REDACTED",
"ansible_product_uuid": "REDACTED",
"ansible_product_version": "None",
"ansible_python_version": "2.7.3",
"ansible_selinux": false,
"ansible_ssh_host_key_dsa_public": "REDACTED KEY VALUE"
"ansible_ssh_host_key_ecdsa_public": "REDACTED KEY VALUE"
"ansible_ssh_host_key_rsa_public": "REDACTED KEY VALUE"
"ansible_swapfree_mb": 665,
"ansible_swaptotal_mb": 1021,
"ansible_system": "Linux",
"ansible_system_vendor": "VMware, Inc.",
"ansible_user_id": "root",
"ansible_userspace_architecture": "x86_64",
"ansible_userspace_bits": "64",
"ansible_virtualization_role": "guest",
"ansible_virtualization_type": "VMware"

In the above the model of the first harddrive may be referenced in a template or playbook as:

{{ ansible_devices.sda.model }}

Similarly, the hostname as the system reports it is:

{{ ansible_hostname }}

Facts are frequently used in conditionals (see Conditionals) and also in templates.

Facts can be also used to create dynamic groups of hosts that match particular criteria, see the About Modules documentation on ‘group_by’ for details, as well as in generalized conditional statements as discussed in the Conditionals chapter.

Turning Off Facts

If you know you don’t need any fact data about your hosts, and know everything about your systems centrally, you
can turn off fact gathering. This has advantages in scaling Ansible in push mode with very large numbers of
systems, mainly, or if you are using Ansible on experimental platforms. In any play, just do this:

- hosts: whatever
 gather_facts: no

Local Facts (Facts.d)

New in version 1.3.

As discussed in the playbooks chapter, Ansible facts are a way of getting data about remote systems for use in playbook variables.
Usually these are discovered automatically by the ‘setup’ module in Ansible. Users can also write custom facts modules, as described
in the API guide. However, what if you want to have a simple way to provide system or user
provided data for use in Ansible variables, without writing a fact module?

For instance, what if you want users to be able to control some aspect about how their systems are managed? “Facts.d” is one such mechanism.

Note

Perhaps “local facts” is a bit of a misnomer, it means “locally supplied user values” as opposed to “centrally supplied user values”, or what facts are – “locally dynamically determined values”.

If a remotely managed system has an “/etc/ansible/facts.d” directory, any files in this directory
ending in ”.fact”, can be JSON, INI, or executable files returning JSON, and these can supply local facts in Ansible.

For instance assume a /etc/ansible/facts.d/preferences.fact:

[general]
asdf=1
bar=2

This will produce a hash variable fact named “general” with ‘asdf’ and ‘bar’ as members.
To validate this, run the following:

ansible <hostname> -m setup -a "filter=ansible_local"

And you will see the following fact added:

"ansible_local": {
 "preferences": {
 "general": {
 "asdf" : "1",
 "bar" : "2"
 }
 }
 }

And this data can be accessed in a template/playbook as:

{{ ansible_local.preferences.general.asdf }}

The local namespace prevents any user supplied fact from overriding system facts
or variables defined elsewhere in the playbook.

Registered Variables

Another major use of variables is running a command and using the result of that command to save the result into a variable. Results will vary from module to module. Use of -v when executing playbooks will show possible values for the results.

The value of a task being executed in ansible can be saved in a variable and used later. See some examples of this in the
Conditionals chapter.

While it’s mentioned elsewhere in that document too, here’s a quick syntax example:

- hosts: web_servers

 tasks:

 - shell: /usr/bin/foo
 register: foo_result
 ignore_errors: True

 - shell: /usr/bin/bar
 when: foo_result.rc == 5

Registered variables are valid on the host the remainder of the playbook run, which is the same as the lifetime of “facts”
in Ansible. Effectively registered variables are just like facts.

Accessing Complex Variable Data

We already talked about facts a little higher up in the documentation.

Some provided facts, like networking information, are made available as nested data structures. To access
them a simple {{ foo }} is not sufficient, but it is still easy to do. Here’s how we get an IP address:

{{ ansible_eth0["ipv4"]["address"] }}

OR alternatively:

{{ ansible_eth0.ipv4.address }}

Similarly, this is how we access the first element of an array:

{{ foo[0] }}

Magic Variables, and How To Access Information About Other Hosts

Even if you didn’t define them yourself, Ansible provides a few variables for you automatically.
The most important of these are ‘hostvars’, ‘group_names’, and ‘groups’. Users should not use
these names themselves as they are reserved. ‘environment’ is also reserved.

Hostvars lets you ask about the variables of another host, including facts that have been gathered
about that host. If, at this point, you haven’t talked to that host yet in any play in the playbook
or set of playbooks, you can get at the variables, but you will not be able to see the facts.

If your database server wants to use the value of a ‘fact’ from another node, or an inventory variable
assigned to another node, it’s easy to do so within a template or even an action line:

{{ hostvars['test.example.com']['ansible_distribution'] }}

Additionally, group_names is a list (array) of all the groups the current host is in. This can be used in templates using Jinja2 syntax to make template source files that vary based on the group membership (or role) of the host:

{% if 'webserver' in group_names %}
 # some part of a configuration file that only applies to webservers
{% endif %}

groups is a list of all the groups (and hosts) in the inventory. This can be used to enumerate all hosts within a group.
For example:

{% for host in groups['app_servers'] %}
 # something that applies to all app servers.
{% endfor %}

A frequently used idiom is walking a group to find all IP addresses in that group:

{% for host in groups['app_servers'] %}
 {{ hostvars[host]['ansible_eth0']['ipv4']['address'] }}
{% endfor %}

An example of this could include pointing a frontend proxy server to all of the app servers, setting up the correct firewall rules between servers, etc.

Additionally, inventory_hostname is the name of the hostname as configured in Ansible’s inventory host file. This can
be useful for when you don’t want to rely on the discovered hostname ansible_hostname or for other mysterious
reasons. If you have a long FQDN, inventory_hostname_short also contains the part up to the first
period, without the rest of the domain.

play_hosts is available as a list of hostnames that are in scope for the current play. This may be useful for filling out templates with multiple hostnames or for injecting the list into the rules for a load balancer.

Don’t worry about any of this unless you think you need it. You’ll know when you do.

Also available, inventory_dir is the pathname of the directory holding Ansible’s inventory host file, inventory_file is the pathname and the filename pointing to the Ansible’s inventory host file.

Variable File Separation

It’s a great idea to keep your playbooks under source control, but
you may wish to make the playbook source public while keeping certain
important variables private. Similarly, sometimes you may just
want to keep certain information in different files, away from
the main playbook.

You can do this by using an external variables file, or files, just like this:

- hosts: all
 remote_user: root
 vars:
 favcolor: blue
 vars_files:
 - /vars/external_vars.yml

 tasks:

 - name: this is just a placeholder
 command: /bin/echo foo

This removes the risk of sharing sensitive data with others when
sharing your playbook source with them.

The contents of each variables file is a simple YAML dictionary, like this:

in the above example, this would be vars/external_vars.yml
somevar: somevalue
password: magic

Note

It’s also possible to keep per-host and per-group variables in very
similar files, this is covered in Patterns.

Passing Variables On The Command Line

In addition to vars_prompt and vars_files, it is possible to send variables over
the Ansible command line. This is particularly useful when writing a generic release playbook
where you may want to pass in the version of the application to deploy:

ansible-playbook release.yml --extra-vars "version=1.23.45 other_variable=foo"

This is useful, for, among other things, setting the hosts group or the user for the playbook.

Example:

- hosts: '{{ hosts }}'
 remote_user: '{{ user }}'

 tasks:
 - ...

ansible-playbook release.yml --extra-vars "hosts=vipers user=starbuck"

As of Ansible 1.2, you can also pass in extra vars as quoted JSON, like so:

--extra-vars '{"pacman":"mrs","ghosts":["inky","pinky","clyde","sue"]}'

The key=value form is obviously simpler, but it’s there if you need it!

As of Ansible 1.3, extra vars can be loaded from a JSON file with the “@” syntax:

--extra-vars "@some_file.json"

Also as of Ansible 1.3, extra vars can be formatted as YAML, either on the command line
or in a file as above.

Conditional Imports

Note

This behavior is infrequently used in Ansible. You may wish to skip this section. The ‘group_by’ module as described in the module documentation is a better way to achieve this behavior in most cases.

Sometimes you will want to do certain things differently in a playbook based on certain criteria.
Having one playbook that works on multiple platforms and OS versions is a good example.

As an example, the name of the Apache package may be different between CentOS and Debian,
but it is easily handled with a minimum of syntax in an Ansible Playbook:

- hosts: all
 remote_user: root
 vars_files:
 - "vars/common.yml"
 - ["vars/{{ ansible_os_family }}.yml", "vars/os_defaults.yml"]

 tasks:

 - name: make sure apache is running
 service: name={{ apache }} state=running

Note

The variable ‘ansible_os_family’ is being interpolated into
the list of filenames being defined for vars_files.

As a reminder, the various YAML files contain just keys and values:

for vars/CentOS.yml
apache: httpd
somethingelse: 42

How does this work? If the operating system was ‘CentOS’, the first file Ansible would try to import
would be ‘vars/CentOS.yml’, followed by ‘/vars/os_defaults.yml’ if that file
did not exist. If no files in the list were found, an error would be raised.
On Debian, it would instead first look towards ‘vars/Debian.yml’ instead of ‘vars/CentOS.yml’, before
falling back on ‘vars/os_defaults.yml’. Pretty simple.

To use this conditional import feature, you’ll need facter or ohai installed prior to running the playbook, but
you can of course push this out with Ansible if you like:

for facter
ansible -m yum -a "pkg=facter ensure=installed"
ansible -m yum -a "pkg=ruby-json ensure=installed"

for ohai
ansible -m yum -a "pkg=ohai ensure=installed"

Ansible’s approach to configuration – separating variables from tasks, keeps your playbooks
from turning into arbitrary code with ugly nested ifs, conditionals, and so on - and results
in more streamlined & auditable configuration rules – especially because there are a
minimum of decision points to track.

Variable Precedence: Where Should I Put A Variable?

A lot of folks may ask about how variables override another. Ultimately it’s Ansible’s philosophy that it’s better
you know where to put a variable, and then you have to think about it a lot less.

Avoid defining the variable “x” in 47 places and then ask the question “which x gets used”.
Why? Because that’s not Ansible’s Zen philosophy of doing things.

There is only one Empire State Building. One Mona Lisa, etc. Figure out where to define a variable, and don’t make
it complicated.

However, let’s go ahead and get precedence out of the way! It exists. It’s a real thing, and you might have
a use for it.

If multiple variables of the same name are defined in different places, they win in a certain order, which is:

* -e variables always win
* then comes "most everything else"
* then comes variables defined in inventory
* then "role defaults", which are the most "defaulty" and lose in priority to everything.

That seems a little theoretical. Let’s show some examples and where you would choose to put what based on the kind of
control you might want over values.

First off, group variables are super powerful.

Site wide defaults should be defined as a ‘group_vars/all’ setting. Group variables are generally placed alongside
your inventory file. They can also be returned by a dynamic inventory script (see Dynamic Inventory) or defined
in things like Ansible Tower from the UI or API:

file: /etc/ansible/group_vars/all
this is the site wide default
ntp_server: default-time.example.com

Regional information might be defined in a ‘group_vars/region’ variable. If this group is a child of the ‘all’ group (which it is, because all groups are), it will override the group that is higher up and more general:

file: /etc/ansible/group_vars/boston
ntp_server: boston-time.example.com

If for some crazy reason we wanted to tell just a specific host to use a specific NTP server, it would then override the group variable!:

file: /etc/ansible/host_vars/xyz.boston.example.com
ntp_server: override.example.com

So that covers inventory and what you would normally set there. It’s a great place for things that deal with geography or behavior. Since groups are frequently the entity that maps roles onto hosts, it is sometimes a shortcut to set variables on the group instead of defining them on a role. You could go either way.

Remember: Child groups override parent groups, and hosts always override their groups.

Next up: learning about role variable precedence.

We’ll pretty much assume you are using roles at this point. You should be using roles for sure. Roles are great. You are using
roles aren’t you? Hint hint.

Ok, so if you are writing a redistributable role with reasonable defaults, put those in the ‘roles/x/defaults/main.yml’ file. This means
the role will bring along a default value but ANYTHING in Ansible will override it. It’s just a default. That’s why it says “defaults” :)
See Playbook Roles and Include Statements for more info about this:

file: roles/x/defaults/main.yml
if not overriden in inventory or as a parameter, this is the value that will be used
http_port: 80

if you are writing a role and want to ensure the value in the role is absolutely used in that role, and is not going to be overridden
by inventory, you should but it in roles/x/vars/main.yml like so, and inventory values cannot override it. -e however, still will:

file: roles/x/vars/main.yml
this will absolutely be used in this role
http_port: 80

So the above is a great way to plug in constants about the role that are always true. If you are not sharing your role with others,
app specific behaviors like ports is fine to put in here. But if you are sharing roles with others, putting variables in here might
be bad. Nobody will be able to override them with inventory, but they still can by passing a parameter to the role.

Parameterized roles are useful.

If you are using a role and want to override a default, pass it as a parameter to the role like so:

roles:
 - { name: apache, http_port: 8080 }

This makes it clear to the playbook reader that you’ve made a conscious choice to override some default in the role, or pass in some
configuration that the role can’t assume by itself. It also allows you to pass something site-specific that isn’t really part of the
role you are sharing with others.

This can often be used for things that might apply to some hosts multiple times,
like so:

roles:
 - { role: app_user, name: Ian }
 - { role: app_user, name: Terry }
 - { role: app_user, name: Graham }
 - { role: app_user, name: John }

That’s a bit arbitrary, but you can see how the same role was invoked multiple Times. In that example it’s quite likely there was
no default for ‘name’ supplied at all. Ansible can yell at you when variables aren’t defined – it’s the default behavior in fact.

So that’s a bit about roles.

There are a few bonus things that go on with roles.

Generally speaking, variables set in one role are available to others. This means if you have a “roles/common/vars/main.yml” you
can set variables in there and make use of them in other roles and elsewhere in your playbook:

roles:
 - { role: common_settings }
 - { role: something, foo: 12 }
 - { role: something_else }

Note

There are some protections in place to avoid the need to namespace variables.
In the above, variables defined in common_settings are most definitely available to ‘app_user’ and ‘something_else’ tasks, but if
“something’s” guaranteed to have foo set at 12, even if somewhere deep in common settings it set foo to 20.

So, that’s precedence, explained in a more direct way. Don’t worry about precedence, just think about if your role is defining a
variable that is a default, or a “live” variable you definitely want to use. Inventory lies in precedence right in the middle, and
if you want to forcibly override something, use -e.

If you found that a little hard to understand, take a look at the ansible-examples [https://github.com/ansible/ansible-examples] repo on our github for a bit more about
how all of these things can work together.

See also

	Playbooks

	An introduction to playbooks

	Conditionals

	Conditional statements in playbooks

	Loops

	Looping in playbooks

	Playbook Roles and Include Statements

	Playbook organization by roles

	Best Practices

	Best practices in playbooks

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks

Conditionals

Topics

	Conditionals
	The When Statement

	Loading in Custom Facts

	Applying ‘when’ to roles and includes

	Conditional Imports

	Selecting Files And Templates Based On Variables

	Register Variables

Often the result of a play may depend on the value of a variable, fact (something learned about the remote system),
or previous task result. In some cases, the values of variables may depend on other variables.
Further, additional groups can be created to manage hosts based on
whether the hosts match other criteria. There are many options to control execution flow in Ansible.

Let’s dig into what they are.

Contents

	Conditionals
	The When Statement

	Loading in Custom Facts

	Applying ‘when’ to roles and includes

	Conditional Imports

	Selecting Files And Templates Based On Variables

	Register Variables

The When Statement

Sometimes you will want to skip a particular step on a particular host. This could be something
as simple as not installing a certain package if the operating system is a particular version,
or it could be something like performing some cleanup steps if a filesystem is getting full.

This is easy to do in Ansible, with the when clause, which contains a Jinja2 expression (see Variables).
It’s actually pretty simple:

tasks:
 - name: "shutdown Debian flavored systems"
 command: /sbin/shutdown -t now
 when: ansible_os_family == "Debian"

A number of Jinja2 “filters” can also be used in when statements, some of which are unique
and provided by Ansible. Suppose we want to ignore the error of one statement and then
decide to do something conditionally based on success or failure:

tasks:
 - command: /bin/false
 register: result
 ignore_errors: True
 - command: /bin/something
 when: result|failed
 - command: /bin/something_else
 when: result|success
 - command: /bin/still/something_else
 when: result|skipped

Note that was a little bit of foreshadowing on the ‘register’ statement. We’ll get to it a bit later in this chapter.

As a reminder, to see what facts are available on a particular system, you can do:

ansible hostname.example.com -m setup

Tip: Sometimes you’ll get back a variable that’s a string and you’ll want to do a math operation comparison on it. You can do this like so:

tasks:
 - shell: echo "only on Red Hat 6, derivatives, and later"
 when: ansible_os_family == "RedHat" and ansible_lsb.major_release|int >= 6

Note

the above example requires the lsb_release package on the target host in order to return the ansible_lsb.major_release fact.

Variables defined in the playbooks or inventory can also be used. An example may be the execution of a task based on a variable’s boolean value:

vars:
 epic: true

Then a conditional execution might look like:

tasks:
 - shell: echo "This certainly is epic!"
 when: epic

or:

tasks:
 - shell: echo "This certainly isn't epic!"
 when: not epic

If a required variable has not been set, you can skip or fail using Jinja2’s
defined test. For example:

tasks:
 - shell: echo "I've got '{{ foo }}' and am not afraid to use it!"
 when: foo is defined

 - fail: msg="Bailing out. this play requires 'bar'"
 when: bar is not defined

This is especially useful in combination with the conditional import of vars
files (see below).

Note that when combining when with with_items (see Loops), be aware that the when statement is processed separately for each item. This is by design:

tasks:
 - command: echo {{ item }}
 with_items: [0, 2, 4, 6, 8, 10]
 when: item > 5

Loading in Custom Facts

It’s also easy to provide your own facts if you want, which is covered in Developing Modules. To run them, just
make a call to your own custom fact gathering module at the top of your list of tasks, and variables returned
there will be accessible to future tasks:

tasks:
 - name: gather site specific fact data
 action: site_facts
 - command: /usr/bin/thingy
 when: my_custom_fact_just_retrieved_from_the_remote_system == '1234'

Applying ‘when’ to roles and includes

Note that if you have several tasks that all share the same conditional statement, you can affix the conditional
to a task include statement as below. Note this does not work with playbook includes, just task includes. All the tasks
get evaluated, but the conditional is applied to each and every task:

- include: tasks/sometasks.yml
 when: "'reticulating splines' in output"

Or with a role:

- hosts: webservers
 roles:
 - { role: debian_stock_config, when: ansible_os_family == 'Debian' }

You will note a lot of ‘skipped’ output by default in Ansible when using this approach on systems that don’t match the criteria.
Read up on the ‘group_by’ module in the About Modules docs for a more streamlined way to accomplish the same thing.

Conditional Imports

Note

This is an advanced topic that is infrequently used. You can probably skip this section.

Sometimes you will want to do certain things differently in a playbook based on certain criteria.
Having one playbook that works on multiple platforms and OS versions is a good example.

As an example, the name of the Apache package may be different between CentOS and Debian,
but it is easily handled with a minimum of syntax in an Ansible Playbook:

- hosts: all
 remote_user: root
 vars_files:
 - "vars/common.yml"
 - ["vars/{{ ansible_os_family }}.yml", "vars/os_defaults.yml"]
 tasks:
 - name: make sure apache is running
 service: name={{ apache }} state=running

Note

The variable ‘ansible_os_family’ is being interpolated into
the list of filenames being defined for vars_files.

As a reminder, the various YAML files contain just keys and values:

for vars/CentOS.yml
apache: httpd
somethingelse: 42

How does this work? If the operating system was ‘CentOS’, the first file Ansible would try to import
would be ‘vars/CentOS.yml’, followed by ‘/vars/os_defaults.yml’ if that file
did not exist. If no files in the list were found, an error would be raised.
On Debian, it would instead first look towards ‘vars/Debian.yml’ instead of ‘vars/CentOS.yml’, before
falling back on ‘vars/os_defaults.yml’. Pretty simple.

To use this conditional import feature, you’ll need facter or ohai installed prior to running the playbook, but
you can of course push this out with Ansible if you like:

for facter
ansible -m yum -a "pkg=facter ensure=installed"
ansible -m yum -a "pkg=ruby-json ensure=installed"

for ohai
ansible -m yum -a "pkg=ohai ensure=installed"

Ansible’s approach to configuration – separating variables from tasks, keeps your playbooks
from turning into arbitrary code with ugly nested ifs, conditionals, and so on - and results
in more streamlined & auditable configuration rules – especially because there are a
minimum of decision points to track.

Selecting Files And Templates Based On Variables

Note

This is an advanced topic that is infrequently used. You can probably skip this section.

Sometimes a configuration file you want to copy, or a template you will use may depend on a variable.
The following construct selects the first available file appropriate for the variables of a given host, which is often much cleaner than putting a lot of if conditionals in a template.

The following example shows how to template out a configuration file that was very different between, say, CentOS and Debian:

- name: template a file
 template: src={{ item }} dest=/etc/myapp/foo.conf
 with_first_found:
 - files:
 - {{ ansible_distribution }}.conf
 - default.conf
 paths:
 - search_location_one/somedir/
 - /opt/other_location/somedir/

Register Variables

Often in a playbook it may be useful to store the result of a given command in a variable and access
it later. Use of the command module in this way can in many ways eliminate the need to write site specific facts, for
instance, you could test for the existence of a particular program.

The ‘register’ keyword decides what variable to save a result in. The resulting variables can be used in templates, action lines, or when statements. It looks like this (in an obviously trivial example):

- name: test play
 hosts: all

 tasks:

 - shell: cat /etc/motd
 register: motd_contents

 - shell: echo "motd contains the word hi"
 when: motd_contents.stdout.find('hi') != -1

As shown previously, the registered variable’s string contents are accessible with the ‘stdout’ value.
The registered result can be used in the “with_items” of a task if it is converted into
a list (or already is a list) as shown below. “stdout_lines” is already available on the object as
well though you could also call “home_dirs.stdout.split()” if you wanted, and could split by other
fields:

- name: registered variable usage as a with_items list
 hosts: all

 tasks:

 - name: retrieve the list of home directories
 command: ls /home
 register: home_dirs

 - name: add home dirs to the backup spooler
 file: path=/mnt/bkspool/{{ item }} src=/home/{{ item }} state=link
 with_items: home_dirs.stdout_lines
 # same as with_items: home_dirs.stdout.split()

See also

	Playbooks

	An introduction to playbooks

	Playbook Roles and Include Statements

	Playbook organization by roles

	Best Practices

	Best practices in playbooks

	Conditionals

	Conditional statements in playbooks

	Variables

	All about variables

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks

Loops

Often you’ll want to do many things in one task, such as create a lot of users, install a lot of packages, or
repeat a polling step until a certain result is reached.

This chapter is all about how to use loops in playbooks.

Topics

	Loops
	Standard Loops

	Nested Loops

	Looping over Hashes

	Looping over Fileglobs

	Looping over Parallel Sets of Data

	Looping over Subelements

	Looping over Integer Sequences

	Random Choices

	Do-Until Loops

	Finding First Matched Files

	Iterating Over The Results of a Program Execution

	Looping Over A List With An Index

	Flattening A List

	Using register with a loop

	Writing Your Own Iterators

Standard Loops

To save some typing, repeated tasks can be written in short-hand like so:

- name: add several users
 user: name={{ item }} state=present groups=wheel
 with_items:
 - testuser1
 - testuser2

If you have defined a YAML list in a variables file, or the ‘vars’ section, you can also do:

with_items: somelist

The above would be the equivalent of:

- name: add user testuser1
 user: name=testuser1 state=present groups=wheel
- name: add user testuser2
 user: name=testuser2 state=present groups=wheel

The yum and apt modules use with_items to execute fewer package manager transactions.

Note that the types of items you iterate over with ‘with_items’ do not have to be simple lists of strings.
If you have a list of hashes, you can reference subkeys using things like:

- name: add several users
 user: name={{ item.name }} state=present groups={{ item.groups }}
 with_items:
 - { name: 'testuser1', groups: 'wheel' }
 - { name: 'testuser2', groups: 'root' }

Nested Loops

Loops can be nested as well:

- name: give users access to multiple databases
 mysql_user: name={{ item[0] }} priv={{ item[1] }}.*:ALL append_privs=yes password=foo
 with_nested:
 - ['alice', 'bob', 'eve']
 - ['clientdb', 'employeedb', 'providerdb']

As with the case of ‘with_items’ above, you can use previously defined variables. Just specify the variable’s name without templating it with ‘{{ }}’:

- name: here, 'users' contains the above list of employees
 mysql_user: name={{ item[0] }} priv={{ item[1] }}.*:ALL append_privs=yes password=foo
 with_nested:
 - users
 - ['clientdb', 'employeedb', 'providerdb']

Looping over Hashes

New in version 1.5.

Suppose you have the following variable:

users:
 alice:
 name: Alice Appleworth
 telephone: 123-456-7890
 bob:
 name: Bob Bananarama
 telephone: 987-654-3210

And you want to print every user’s name and phone number. You can loop through the elements of a hash using with_dict like this:

tasks:
 - name: Print phone records
 debug: msg="User {{ item.key }} is {{ item.value.name }} ({{ item.value.telephone }})"
 with_dict: users

Looping over Fileglobs

with_fileglob matches all files in a single directory, non-recursively, that match a pattern. It can
be used like this:

- hosts: all

 tasks:

 # first ensure our target directory exists
 - file: dest=/etc/fooapp state=directory

 # copy each file over that matches the given pattern
 - copy: src={{ item }} dest=/etc/fooapp/ owner=root mode=600
 with_fileglob:
 - /playbooks/files/fooapp/*

Looping over Parallel Sets of Data

Note

This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.

Suppose you have the following variable data was loaded in via somewhere:

alpha: ['a', 'b', 'c', 'd']
numbers: [1, 2, 3, 4]

And you want the set of ‘(a, 1)’ and ‘(b, 2)’ and so on. Use ‘with_together’ to get this:

tasks:
 - debug: msg="{{ item.0 }} and {{ item.1 }}"
 with_together:
 - alpha
 - numbers

Looping over Subelements

Suppose you want to do something like loop over a list of users, creating them, and allowing them to login by a certain set of
SSH keys.

How might that be accomplished? Let’s assume you had the following defined and loaded in via “vars_files” or maybe a “group_vars/all” file:

users:
 - name: alice
 authorized:
 - /tmp/alice/onekey.pub
 - /tmp/alice/twokey.pub
 - name: bob
 authorized:
 - /tmp/bob/id_rsa.pub

It might happen like so:

- user: name={{ item.name }} state=present generate_ssh_key=yes
 with_items: users

- authorized_key: "user={{ item.0.name }} key='{{ lookup('file', item.1) }}'"
 with_subelements:
 - users
 - authorized

Subelements walks a list of hashes (aka dictionaries) and then traverses a list with a given key inside of those
records.

The authorized_key pattern is exactly where it comes up most.

Looping over Integer Sequences

with_sequence generates a sequence of items in ascending numerical order. You
can specify a start, end, and an optional step value.

Arguments should be specified in key=value pairs. If supplied, the ‘format’ is a printf style string.

Numerical values can be specified in decimal, hexadecimal (0x3f8) or octal (0600).
Negative numbers are not supported. This works as follows:

- hosts: all

 tasks:

 # create groups
 - group: name=evens state=present
 - group: name=odds state=present

 # create some test users
 - user: name={{ item }} state=present groups=evens
 with_sequence: start=0 end=32 format=testuser%02x

 # create a series of directories with even numbers for some reason
 - file: dest=/var/stuff/{{ item }} state=directory
 with_sequence: start=4 end=16 stride=2

 # a simpler way to use the sequence plugin
 # create 4 groups
 - group: name=group{{ item }} state=present
 with_sequence: count=4

Random Choices

The ‘random_choice’ feature can be used to pick something at random. While it’s not a load balancer (there are modules
for those), it can somewhat be used as a poor man’s loadbalancer in a MacGyver like situation:

- debug: msg={{ item }}
 with_random_choice:
 - "go through the door"
 - "drink from the goblet"
 - "press the red button"
 - "do nothing"

One of the provided strings will be selected at random.

At a more basic level, they can be used to add chaos and excitement to otherwise predictable automation environments.

Do-Until Loops

Sometimes you would want to retry a task until a certain condition is met. Here’s an example:

- action: shell /usr/bin/foo
 register: result
 until: result.stdout.find("all systems go") != -1
 retries: 5
 delay: 10

The above example run the shell module recursively till the module’s result has “all systems go” in it’s stdout or the task has
been retried for 5 times with a delay of 10 seconds. The default value for “retries” is 3 and “delay” is 5.

The task returns the results returned by the last task run. The results of individual retries can be viewed by -vv option.
The registered variable will also have a new key “attempts” which will have the number of the retries for the task.

Finding First Matched Files

Note

This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.

This isn’t exactly a loop, but it’s close. What if you want to use a reference to a file based on the first file found
that matches a given criteria, and some of the filenames are determined by variable names? Yes, you can do that as follows:

- name: INTERFACES | Create Ansible header for /etc/network/interfaces
 template: src={{ item }} dest=/etc/foo.conf
 with_first_found:
 - "{{ansible_virtualization_type}_foo.conf"
 - "default_foo.conf"

This tool also has a long form version that allows for configurable search paths. Here’s an example:

- name: some configuration template
 template: src={{ item }} dest=/etc/file.cfg mode=0444 owner=root group=root
 with_first_found:
 - files:
 - "{{inventory_hostname}}/etc/file.cfg"
 paths:
 - ../../../templates.overwrites
 - ../../../templates
 - files:
 - etc/file.cfg
 paths:
 - templates

Iterating Over The Results of a Program Execution

Note

This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.

Sometimes you might want to execute a program, and based on the output of that program, loop over the results of that line by line.
Ansible provides a neat way to do that, though you should remember, this is always executed on the control machine, not the local
machine:

- name: Example of looping over a command result
 shell: /usr/bin/frobnicate {{ item }}
 with_lines: /usr/bin/frobnications_per_host --param {{ inventory_hostname }}

Ok, that was a bit arbitrary. In fact, if you’re doing something that is inventory related you might just want to write a dynamic
inventory source instead (see Dynamic Inventory), but this can be occasionally useful in quick-and-dirty implementations.

Should you ever need to execute a command remotely, you would not use the above method. Instead do this:

- name: Example of looping over a REMOTE command result
 shell: /usr/bin/something
 register: command_result

- name: Do something with each result
 shell: /usr/bin/something_else --param {{ item }}
 with_items: command_result.stdout_lines

Looping Over A List With An Index

Note

This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.

If you want to loop over an array and also get the numeric index of where you are in the array as you go, you can also do that.
It’s uncommonly used:

- name: indexed loop demo
 debug: msg="at array position {{ item.0 }} there is a value {{ item.1 }}"
 with_indexed_items: some_list

Flattening A List

Note

This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.

In rare instances you might have several lists of lists, and you just want to iterate over every item in all of those lists. Assume
a really crazy hypothetical datastructure:

file: roles/foo/vars/main.yml
packages_base:
 - ['foo-package', 'bar-package']
packages_apps:
 - [['one-package', 'two-package']]
 - [['red-package'], ['blue-package']]

As you can see the formatting of packages in these lists is all over the place. How can we install all of the packages in both lists?:

- name: flattened loop demo
 yum: name={{ item }} state=installed
 with_flattened:
 - packages_base
 - packages_apps

That’s how!

Using register with a loop

When using register with a loop the data structure placed in the variable during a loop, will contain a results attribute, that is a list of all responses from the module.

Here is an example of using register with with_items:

- shell: echo "{{ item }}"
 with_items:
 - one
 - two
 register: echo

This differs from the data structure returned when using register without a loop:

{
 "changed": true,
 "msg": "All items completed",
 "results": [
 {
 "changed": true,
 "cmd": "echo \"one\" ",
 "delta": "0:00:00.003110",
 "end": "2013-12-19 12:00:05.187153",
 "invocation": {
 "module_args": "echo \"one\"",
 "module_name": "shell"
 },
 "item": "one",
 "rc": 0,
 "start": "2013-12-19 12:00:05.184043",
 "stderr": "",
 "stdout": "one"
 },
 {
 "changed": true,
 "cmd": "echo \"two\" ",
 "delta": "0:00:00.002920",
 "end": "2013-12-19 12:00:05.245502",
 "invocation": {
 "module_args": "echo \"two\"",
 "module_name": "shell"
 },
 "item": "two",
 "rc": 0,
 "start": "2013-12-19 12:00:05.242582",
 "stderr": "",
 "stdout": "two"
 }
]
}

Subsequent loops over the registered variable to inspect the results may look like:

- name: Fail if return code is not 0
 fail:
 msg: "The command ({{ item.cmd }}) did not have a 0 return code"
 when: item.rc != 0
 with_items: echo.results

Writing Your Own Iterators

While you ordinarily shouldn’t have to, should you wish to write your own ways to loop over arbitrary datastructures, you can read Developing Plugins for some starter
information. Each of the above features are implemented as plugins in ansible, so there are many implementations to reference.

See also

	Playbooks

	An introduction to playbooks

	Playbook Roles and Include Statements

	Playbook organization by roles

	Best Practices

	Best practices in playbooks

	Conditionals

	Conditional statements in playbooks

	Variables

	All about variables

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks

Best Practices

Here are some tips for making the most of Ansible playbooks.

You can find some example playbooks illustrating these best practices in our ansible-examples repository [https://github.com/ansible/ansible-examples]. (NOTE: These may not use all of the features in the latest release, but are still an excellent reference!).

Topics

	Best Practices
	Content Organization
	Directory Layout

	How to Arrange Inventory, Stage vs Production

	Group And Host Variables

	Top Level Playbooks Are Separated By Role

	Task And Handler Organization For A Role

	What This Organization Enables (Examples)

	Deployment vs Configuration Organization

	Stage vs Production

	Rolling Updates

	Always Mention The State

	Group By Roles

	Operating System and Distribution Variance

	Bundling Ansible Modules With Playbooks

	Whitespace and Comments

	Always Name Tasks

	Keep It Simple

	Version Control

Content Organization

The following section shows one of many possible ways to organize playbook content. Your usage of Ansible should fit your needs, however, not ours, so feel free to modify this approach and organize as you see fit.

(One thing you will definitely want to do though, is use the “roles” organization feature, which is documented as part
of the main playbooks page. See Playbook Roles and Include Statements).

Directory Layout

The top level of the directory would contain files and directories like so:

production # inventory file for production servers
stage # inventory file for stage environment

group_vars/
 group1 # here we assign variables to particular groups
 group2 # ""
host_vars/
 hostname1 # if systems need specific variables, put them here
 hostname2 # ""

site.yml # master playbook
webservers.yml # playbook for webserver tier
dbservers.yml # playbook for dbserver tier

roles/
 common/ # this hierarchy represents a "role"
 tasks/ #
 main.yml # <-- tasks file can include smaller files if warranted
 handlers/ #
 main.yml # <-- handlers file
 templates/ # <-- files for use with the template resource
 ntp.conf.j2 # <------- templates end in .j2
 files/ #
 bar.txt # <-- files for use with the copy resource
 foo.sh # <-- script files for use with the script resource
 vars/ #
 main.yml # <-- variables associated with this role

 webtier/ # same kind of structure as "common" was above, done for the webtier role
 monitoring/ # ""
 fooapp/ # ""

How to Arrange Inventory, Stage vs Production

In the example below, the production file contains the inventory of all of your production hosts. Of course you can pull inventory from an external data source as well, but this is just a basic example.

It is suggested that you define groups based on purpose of the host (roles) and also geography or datacenter location (if applicable):

file: production

[atlanta-webservers]
www-atl-1.example.com
www-atl-2.example.com

[boston-webservers]
www-bos-1.example.com
www-bos-2.example.com

[atlanta-dbservers]
db-atl-1.example.com
db-atl-2.example.com

[boston-dbservers]
db-bos-1.example.com

webservers in all geos
[webservers:children]
atlanta-webservers
boston-webservers

dbservers in all geos
[dbservers:children]
atlanta-dbservers
boston-dbservers

everything in the atlanta geo
[atlanta:children]
atlanta-webservers
atlanta-dbservers

everything in the boston geo
[boston:children]
boston-webservers
boston-dbservers

Group And Host Variables

Now, groups are nice for organization, but that’s not all groups are good for. You can also assign variables to them! For instance, atlanta has its own NTP servers, so when setting up ntp.conf, we should use them. Let’s set those now:

file: group_vars/atlanta
ntp: ntp-atlanta.example.com
backup: backup-atlanta.example.com

Variables aren’t just for geographic information either! Maybe the webservers have some configuration that doesn’t make sense for the database servers:

file: group_vars/webservers
apacheMaxRequestsPerChild: 3000
apacheMaxClients: 900

If we had any default values, or values that were universally true, we would put them in a file called group_vars/all:

file: group_vars/all
ntp: ntp-boston.example.com
backup: backup-boston.example.com

We can define specific hardware variance in systems in a host_vars file, but avoid doing this unless you need to:

file: host_vars/db-bos-1.example.com
foo_agent_port: 86
bar_agent_port: 99

Top Level Playbooks Are Separated By Role

In site.yml, we include a playbook that defines our entire infrastructure. Note this is SUPER short, because it’s just including
some other playbooks. Remember, playbooks are nothing more than lists of plays:

file: site.yml
- include: webservers.yml
- include: dbservers.yml

In a file like webservers.yml (also at the top level), we simply map the configuration of the webservers group to the roles performed by the webservers group. Also notice this is incredibly short. For example:

file: webservers.yml
- hosts: webservers
 roles:
 - common
 - webtier

Task And Handler Organization For A Role

Below is an example tasks file that explains how a role works. Our common role here just sets up NTP, but it could do more if we wanted:

file: roles/common/tasks/main.yml

- name: be sure ntp is installed
 yum: pkg=ntp state=installed
 tags: ntp

- name: be sure ntp is configured
 template: src=ntp.conf.j2 dest=/etc/ntp.conf
 notify:
 - restart ntpd
 tags: ntp

- name: be sure ntpd is running and enabled
 service: name=ntpd state=running enabled=yes
 tags: ntp

Here is an example handlers file. As a review, handlers are only fired when certain tasks report changes, and are run at the end
of each play:

file: roles/common/handlers/main.yml
- name: restart ntpd
 service: name=ntpd state=restarted

See Playbook Roles and Include Statements for more information.

What This Organization Enables (Examples)

Above we’ve shared our basic organizational structure.

Now what sort of use cases does this layout enable? Lots! If I want to reconfigure my whole infrastructure, it’s just:

ansible-playbook -i production site.yml

What about just reconfiguring NTP on everything? Easy.:

ansible-playbook -i production site.yml --tags ntp

What about just reconfiguring my webservers?:

ansible-playbook -i production webservers.yml

What about just my webservers in Boston?:

ansible-playbook -i production webservers.yml --limit boston

What about just the first 10, and then the next 10?:

ansible-playbook -i production webservers.yml --limit boston[0-10]
ansible-playbook -i production webservers.yml --limit boston[10-20]

And of course just basic ad-hoc stuff is also possible.:

ansible -i production -m ping
ansible -i production -m command -a '/sbin/reboot' --limit boston

And there are some useful commands to know (at least in 1.1 and higher):

confirm what task names would be run if I ran this command and said "just ntp tasks"
ansible-playbook -i production webservers.yml --tags ntp --list-tasks

confirm what hostnames might be communicated with if I said "limit to boston"
ansible-playbook -i production webservers.yml --limit boston --list-hosts

Deployment vs Configuration Organization

The above setup models a typical configuration topology. When doing multi-tier deployments, there are going
to be some additional playbooks that hop between tiers to roll out an application. In this case, ‘site.yml’
may be augmented by playbooks like ‘deploy_exampledotcom.yml’ but the general concepts can still apply.

Consider “playbooks” as a sports metaphor – you don’t have to just have one set of plays to use against your infrastructure
all the time – you can have situational plays that you use at different times and for different purposes.

Ansible allows you to deploy and configure using the same tool, so you would likely reuse groups and just
keep the OS configuration in separate playbooks from the app deployment.

Stage vs Production

As also mentioned above, a good way to keep your stage (or testing) and production environments separate is to use a separate inventory file for stage and production. This way you pick with -i what you are targeting. Keeping them all in one file can lead to surprises!

Testing things in a stage environment before trying in production is always a great idea. Your environments need not be the same
size and you can use group variables to control the differences between those environments.

Rolling Updates

Understand the ‘serial’ keyword. If updating a webserver farm you really want to use it to control how many machines you are
updating at once in the batch.

See Delegation, Rolling Updates, and Local Actions.

Always Mention The State

The ‘state’ parameter is optional to a lot of modules. Whether ‘state=present’ or ‘state=absent’, it’s always best to leave that
parameter in your playbooks to make it clear, especially as some modules support additional states.

Group By Roles

A system can be in multiple groups. See Inventory and Patterns. Having groups named after things like
webservers and dbservers is repeated in the examples because it’s a very powerful concept.

This allows playbooks to target machines based on role, as well as to assign role specific variables
using the group variable system.

See Playbook Roles and Include Statements.

Operating System and Distribution Variance

When dealing with a parameter that is different between two different operating systems, the best way to handle this is
by using the group_by module.

This makes a dynamic group of hosts matching certain criteria, even if that group is not defined in the inventory file:

talk to all hosts just so we can learn about them

- hosts: all

 tasks:
 - group_by: key={{ ansible_distribution }}

now just on the CentOS hosts...

- hosts: CentOS
 gather_facts: False

 tasks:
 - # tasks that only happen on CentOS go here

If group-specific settings are needed, this can also be done. For example:

file: group_vars/all
asdf: 10

file: group_vars/CentOS
asdf: 42

In the above example, CentOS machines get the value of ‘42’ for asdf, but other machines get ‘10’.

Bundling Ansible Modules With Playbooks

New in version 0.5.

If a playbook has a ”./library” directory relative to its YAML file, this directory can be used to add ansible modules that will
automatically be in the ansible module path. This is a great way to keep modules that go with a playbook together.

Whitespace and Comments

Generous use of whitespace to break things up, and use of comments (which start with ‘#’), is encouraged.

Always Name Tasks

It is possible to leave off the ‘name’ for a given task, though it is recommended to provide a description
about why something is being done instead. This name is shown when the playbook is run.

Keep It Simple

When you can do something simply, do something simply. Do not reach
to use every feature of Ansible together, all at once. Use what works
for you. For example, you will probably not need vars,
vars_files, vars_prompt and --extra-vars all at once,
while also using an external inventory file.

Version Control

Use version control. Keep your playbooks and inventory file in git
(or another version control system), and commit when you make changes
to them. This way you have an audit trail describing when and why you
changed the rules that are automating your infrastructure.

See also

	YAML Syntax

	Learn about YAML syntax

	Playbooks

	Review the basic playbook features

	About Modules

	Learn about available modules

	Developing Modules

	Learn how to extend Ansible by writing your own modules

	Patterns

	Learn about how to select hosts

	Github examples directory [https://github.com/ansible/ansible/tree/devel/examples/playbooks]

	Complete playbook files from the github project source

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

Playbooks: Special Topics

Here are some playbook features that not everyone may need to learn, but can be quite useful for particular applications.
Browsing these topics is recommended as you may find some useful tips here, but feel free to learn the basics of Ansible first
and adopt these only if they seem relevant or useful to your environment.

	Accelerated Mode

	Asynchronous Actions and Polling

	Check Mode (“Dry Run”)

	Delegation, Rolling Updates, and Local Actions

	Setting the Environment (and Working With Proxies)

	Error Handling In Playbooks

	Using Lookups

	Prompts

	Tags

	Vault

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Accelerated Mode

New in version 1.3.

You Might Not Need This!

Are you running Ansible 1.5 or later? If so, you may not need accelerate mode due to a new feature called “SSH pipelining” and should read the pipelining section of the documentation.

	For users on 1.5 and later, accelerate mode only makes sense if you are (A) are managing from an Enterprise Linux 6 or earlier host

	and still are on paramiko, or (B) can’t enable TTYs with sudo as described in the pipelining docs.

If you can use pipelining, Ansible will reduce the amount of files transferred over the wire,
making everything much more efficient, and performance will be on par with accelerate mode in nearly all cases, possibly excluding very large file transfer. Because less moving parts are involved, pipelining is better than accelerate mode for nearly all use cases.

Accelerate mode remains around in support of EL6
control machines and other constrained environments.

Accelerate Mode Details

While OpenSSH using the ControlPersist feature is quite fast and scalable, there is a certain small amount of overhead involved in
using SSH connections. While many people will not encounter a need, if you are running on a platform that doesn’t have ControlPersist support (such as an EL6 control machine), you’ll probably be even more interested in tuning options.

Accelerate mode is there to help connections work faster, but still uses SSH for initial secure key exchange. There is no
additional public key infrastructure to manage, and this does not require things like NTP or even DNS.

Accelerated mode can be anywhere from 2-6x faster than SSH with ControlPersist enabled, and 10x faster than paramiko.

Accelerated mode works by launching a temporary daemon over SSH. Once the daemon is running, Ansible will connect directly
to it via a socket connection. Ansible secures this communication by using a temporary AES key that is exchanged during
the SSH connection (this key is different for every host, and is also regenerated periodically).

By default, Ansible will use port 5099 for the accelerated connection, though this is configurable. Once running, the daemon will accept connections for 30 minutes, after which time it will terminate itself and need to be restarted over SSH.

Accelerated mode offers several improvements over the (deprecated) original fireball mode from which it was based:

	No bootstrapping is required, only a single line needs to be added to each play you wish to run in accelerated mode.

	Support for sudo commands (see below for more details and caveats) is available.

	There are fewer requirements. ZeroMQ is no longer required, nor are there any special packages beyond python-keyczar

	python 2.5 or higher is required.

In order to use accelerated mode, simply add accelerate: true to your play:

- hosts: all
 accelerate: true

 tasks:

 - name: some task
 command: echo {{ item }}
 with_items:
 - foo
 - bar
 - baz

If you wish to change the port Ansible will use for the accelerated connection, just add the accelerated_port option:

- hosts: all
 accelerate: true
 # default port is 5099
 accelerate_port: 10000

The accelerate_port option can also be specified in the environment variable ACCELERATE_PORT, or in your ansible.cfg configuration:

[accelerate]
accelerate_port = 5099

As noted above, accelerated mode also supports running tasks via sudo, however there are two important caveats:

	You must remove requiretty from your sudoers options.

	Prompting for the sudo password is not yet supported, so the NOPASSWD option is required for sudo’ed commands.

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Asynchronous Actions and Polling

By default tasks in playbooks block, meaning the connections stay open
until the task is done on each node. This may not always be desirable, or you may
be running operations that take longer than the SSH timeout.

The easiest way to do this is
to kick them off all at once and then poll until they are done.

You will also want to use asynchronous mode on very long running
operations that might be subject to timeout.

To launch a task asynchronously, specify its maximum runtime
and how frequently you would like to poll for status. The default
poll value is 10 seconds if you do not specify a value for poll:

- hosts: all
 remote_user: root

 tasks:

 - name: simulate long running op (15 sec), wait for up to 45, poll every 5
 command: /bin/sleep 15
 async: 45
 poll: 5

Note

There is no default for the async time limit. If you leave off the
‘async’ keyword, the task runs synchronously, which is Ansible’s
default.

Alternatively, if you do not need to wait on the task to complete, you may
“fire and forget” by specifying a poll value of 0:

- hosts: all
 remote_user: root

 tasks:

 - name: simulate long running op, allow to run for 45, fire and forget
 command: /bin/sleep 15
 async: 45
 poll: 0

Note

You shouldn’t “fire and forget” with operations that require
exclusive locks, such as yum transactions, if you expect to run other
commands later in the playbook against those same resources.

Note

Using a higher value for --forks will result in kicking off asynchronous
tasks even faster. This also increases the efficiency of polling.

See also

	Playbooks

	An introduction to playbooks

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Check Mode (“Dry Run”)

New in version 1.1.

Topics

	Check Mode (“Dry Run”)
	Running a task in check mode

	Showing Differences with --diff

When ansible-playbook is executed with --check it will not make any changes on remote systems. Instead, any module
instrumented to support ‘check mode’ (which contains most of the primary core modules, but it is not required that all modules do
this) will report what changes they would have made rather than making them. Other modules that do not support check mode will also take no action, but just will not report what changes they might have made.

Check mode is just a simulation, and if you have steps that use conditionals that depend on the results of prior commands,
it may be less useful for you. However it is great for one-node-at-time basic configuration management use cases.

Example:

ansible-playbook foo.yml --check

Running a task in check mode

New in version 1.3.

Sometimes you may want to have a task to be executed even in check
mode. To achieve this, use the always_run clause on the task. Its
value is a Jinja2 expression, just like the when clause. In simple
cases a boolean YAML value would be sufficient as a value.

Example:

tasks:

 - name: this task is run even in check mode
 command: /something/to/run --even-in-check-mode
 always_run: yes

As a reminder, a task with a when clause evaluated to false, will
still be skipped even if it has a always_run clause evaluated to
true.

Showing Differences with --diff

New in version 1.1.

The --diff option to ansible-playbook works great with --check (detailed above) but can also be used by itself. When this flag is supplied, if any templated files on the remote system are changed, and the ansible-playbook CLI will report back
the textual changes made to the file (or, if used with --check, the changes that would have been made). Since the diff
feature produces a large amount of output, it is best used when checking a single host at a time, like so:

ansible-playbook foo.yml --check --diff --limit foo.example.com

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Delegation, Rolling Updates, and Local Actions

Topics

	Delegation, Rolling Updates, and Local Actions
	Rolling Update Batch Size

	Maximum Failure Percentage

	Delegation

	Local Playbooks

Being designed for multi-tier deployments since the beginning, Ansible is great at doing things on one host on behalf of another, or doing local steps with reference to some remote hosts.

This in particular this is very applicable when setting up continuous deployment infrastructure or zero downtime rolling updates, where you might be talking with load balancers or monitoring systems.

Additional features allow for tuning the orders in which things complete, and assigning a batch window size for how many machines to process at once during a rolling update.

This section covers all of these features. For examples of these items in use, please see the ansible-examples repository [http://github.com/ansible/ansible-examples/]. There are quite a few examples of zero-downtime update procedures for different kinds of applications.

You should also consult the About Modules section, various modules like ‘ec2_elb’, ‘nagios’, and ‘bigip_pool’, and ‘netscaler’ dovetail neatly with the concepts mentioned here.

You’ll also want to read up on Playbook Roles and Include Statements, as the ‘pre_task’ and ‘post_task’ concepts are the places where you would typically call these modules.

Rolling Update Batch Size

New in version 0.7.

By default, Ansible will try to manage all of the machines referenced in a play in parallel. For a rolling updates
use case, you can define how many hosts Ansible should manage at a single time by using the ‘’serial’’ keyword:

- name: test play
 hosts: webservers
 serial: 3

In the above example, if we had 100 hosts, 3 hosts in the group ‘webservers’
would complete the play completely before moving on to the next 3 hosts.

Maximum Failure Percentage

New in version 1.3.

By default, Ansible will continue executing actions as long as there are hosts in the group that have not yet failed.
In some situations, such as with the rolling updates described above, it may be desirable to abort the play when a
certain threshold of failures have been reached. To achieve this, as of version 1.3 you can set a maximum failure
percentage on a play as follows:

- hosts: webservers
 max_fail_percentage: 30
 serial: 10

In the above example, if more than 3 of the 10 servers in the group were to fail, the rest of the play would be aborted.

Note

The percentage set must be exceeded, not equaled. For example, if serial were set to 4 and you wanted the task to abort
when 2 of the systems failed, the percentage should be set at 49 rather than 50.

Delegation

New in version 0.7.

This isn’t actually rolling update specific but comes up frequently in those cases.

If you want to perform a task on one host with reference to other hosts, use the ‘delegate_to’ keyword on a task.
This is ideal for placing nodes in a load balanced pool, or removing them. It is also very useful for controlling
outage windows. Using this with the ‘serial’ keyword to control the number of hosts executing at one time is also
a good idea:

- hosts: webservers
 serial: 5

 tasks:

 - name: take out of load balancer pool
 command: /usr/bin/take_out_of_pool {{ inventory_hostname }}
 delegate_to: 127.0.0.1

 - name: actual steps would go here
 yum: name=acme-web-stack state=latest

 - name: add back to load balancer pool
 command: /usr/bin/add_back_to_pool {{ inventory_hostname }}
 delegate_to: 127.0.0.1

These commands will run on 127.0.0.1, which is the machine running Ansible. There is also a shorthand syntax that you can use on a per-task basis: ‘local_action’. Here is the same playbook as above, but using the shorthand syntax for delegating to 127.0.0.1:

...

 tasks:

 - name: take out of load balancer pool
 local_action: command /usr/bin/take_out_of_pool {{ inventory_hostname }}

...

 - name: add back to load balancer pool
 local_action: command /usr/bin/add_back_to_pool {{ inventory_hostname }}

A common pattern is to use a local action to call ‘rsync’ to recursively copy files to the managed servers.
Here is an example:

...
 tasks:

 - name: recursively copy files from management server to target
 local_action: command rsync -a /path/to/files {{ inventory_hostname }}:/path/to/target/

Note that you must have passphrase-less SSH keys or an ssh-agent configured for this to work, otherwise rsync
will need to ask for a passphrase.

Local Playbooks

It may be useful to use a playbook locally, rather than by connecting over SSH. This can be useful
for assuring the configuration of a system by putting a playbook on a crontab. This may also be used
to run a playbook inside a OS installer, such as an Anaconda kickstart.

To run an entire playbook locally, just set the “hosts:” line to “hosts:127.0.0.1” and then run the playbook like so:

ansible-playbook playbook.yml --connection=local

Alternatively, a local connection can be used in a single playbook play, even if other plays in the playbook
use the default remote connection type:

- hosts: 127.0.0.1
 connection: local

See also

	Playbooks

	An introduction to playbooks

	Ansible Examples on GitHub [http://github.com/ansible/ansible-examples]

	Many examples of full-stack deployments

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Setting the Environment (and Working With Proxies)

New in version 1.1.

It is quite possible that you may need to get package updates through a proxy, or even get some package
updates through a proxy and access other packages not through a proxy. Or maybe a script you might wish to
call may also need certain environment variables set to run properly.

Ansible makes it easy for you to configure your environment by using the ‘environment’ keyword. Here is an example:

- hosts: all
 remote_user: root

 tasks:

 - apt: name=cobbler state=installed
 environment:
 http_proxy: http://proxy.example.com:8080

The environment can also be stored in a variable, and accessed like so:

- hosts: all
 remote_user: root

 # here we make a variable named "env" that is a dictionary
 vars:
 proxy_env:
 http_proxy: http://proxy.example.com:8080

 tasks:

 - apt: name=cobbler state=installed
 environment: proxy_env

While just proxy settings were shown above, any number of settings can be supplied. The most logical place
to define an environment hash might be a group_vars file, like so:

file: group_vars/boston

ntp_server: ntp.bos.example.com
backup: bak.bos.example.com
proxy_env:
 http_proxy: http://proxy.bos.example.com:8080
 https_proxy: http://proxy.bos.example.com:8080

See also

	Playbooks

	An introduction to playbooks

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Error Handling In Playbooks

Topics

	Error Handling In Playbooks
	Ignoring Failed Commands

	Controlling What Defines Failure

	Overriding The Changed Result

Ansible normally has defaults that make sure to check the return codes of commands and modules and
it fails fast – forcing an error to be dealt with unless you decide otherwise.

Sometimes a command that returns 0 isn’t an error. Sometimes a command might not always
need to report that it ‘changed’ the remote system. This section describes how to change
the default behavior of Ansible for certain tasks so output and error handling behavior is
as desired.

Ignoring Failed Commands

New in version 0.6.

Generally playbooks will stop executing any more steps on a host that
has a failure. Sometimes, though, you want to continue on. To do so,
write a task that looks like this:

- name: this will not be counted as a failure
 command: /bin/false
 ignore_errors: yes

Note that the above system only governs the failure of the particular task, so if you have an undefined
variable used, it will still raise an error that users will need to address.

Controlling What Defines Failure

New in version 1.4.

Suppose the error code of a command is meaningless and to tell if there
is a failure what really matters is the output of the command, for instance
if the string “FAILED” is in the output.

Ansible in 1.4 and later provides a way to specify this behavior as follows:

- name: this command prints FAILED when it fails
 command: /usr/bin/example-command -x -y -z
 register: command_result
 failed_when: "'FAILED' in command_result.stderr"

In previous version of Ansible, this can be still be accomplished as follows:

- name: this command prints FAILED when it fails
 command: /usr/bin/example-command -x -y -z
 register: command_result
 ignore_errors: True

- name: fail the play if the previous command did not succeed
 fail: msg="the command failed"
 when: "'FAILED' in command_result.stderr"

Overriding The Changed Result

New in version 1.3.

When a shell/command or other module runs it will typically report
“changed” status based on whether it thinks it affected machine state.

Sometimes you will know, based on the return code
or output that it did not make any changes, and wish to override
the “changed” result such that it does not appear in report output or
does not cause handlers to fire:

tasks:

 - shell: /usr/bin/billybass --mode="take me to the river"
 register: bass_result
 changed_when: "bass_result.rc != 2"

 # this will never report 'changed' status
 - shell: wall 'beep'
 changed_when: False

See also

	Playbooks

	An introduction to playbooks

	Best Practices

	Best practices in playbooks

	Conditionals

	Conditional statements in playbooks

	Variables

	All about variables

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Using Lookups

Lookup plugins allow access of data in Ansible from outside sources. This can include the filesystem
but also external datastores. These values are then made available using the standard templating system
in Ansible, and are typically used to load variables or templates with information from those systems.

Note

This is considered an advanced feature, and many users will probably not rely on these features.

Topics

	Using Lookups
	Intro to Lookups: Getting File Contents

	The Password Lookup

	More Lookups

Intro to Lookups: Getting File Contents

The file lookup is the most basic lookup type.

Contents can be read off the filesystem as follows:

- hosts: all
 vars:
 contents: "{{ lookup('file', '/etc/foo.txt') }}"

 tasks:

 - debug: msg="the value of foo.txt is {{ contents }}"

The Password Lookup

Note

A great alternative to the password lookup plugin, if you don’t need to generate random passwords on a per-host basis, would be to use Vault. Read the documentation there and consider using it first, it will be more desirable for most applications.

password generates a random plaintext password and stores it in
a file at a given filepath.

(Docs about crypted save modes are pending)

If the file exists previously, it will retrieve its contents, behaving just like with_file. Usage of variables like “{{ inventory_hostname }}” in the filepath can be used to set
up random passwords per host (what simplifies password management in ‘host_vars’ variables).

Generated passwords contain a random mix of upper and lowercase ASCII letters, the
numbers 0-9 and punctuation (”. , : - _”). The default length of a generated password is 20 characters.
This length can be changed by passing an extra parameter:

- hosts: all

 tasks:

 # create a mysql user with a random password:
 - mysql_user: name={{ client }}
 password="{{ lookup('password', 'credentials/' + client + '/' + tier + '/' + role + '/mysqlpassword length=15') }}"
 priv={{ client }}_{{ tier }}_{{ role }}.*:ALL

 (...)

Note

If the file already exists, no data will be written to it. If the file has contents, those contents will be read in as the password. Empty files cause the password to return as an empty string

Starting in version 1.4, password accepts a “chars” parameter to allow defining a custom character set in the generated passwords. It accepts comma separated list of names that are either string module attributes (ascii_letters,digits, etc) or are used literally:

- hosts: all

 tasks:

 # create a mysql user with a random password using only ascii letters:
 - mysql_user: name={{ client }}
 password="{{ lookup('password', '/tmp/passwordfile chars=ascii') }}"
 priv={{ client }}_{{ tier }}_{{ role }}.*:ALL

 # create a mysql user with a random password using only digits:
 - mysql_user: name={{ client }}
 password="{{ lookup('password', '/tmp/passwordfile chars=digits') }}"
 priv={{ client }}_{{ tier }}_{{ role }}.*:ALL

 # create a mysql user with a random password using many different char sets:
 - mysql_user: name={{ client }}
 password="{{ lookup('password', '/tmp/passwordfile chars=ascii,numbers,digits,hexdigits,punctuation') }}"
 priv={{ client }}_{{ tier }}_{{ role }}.*:ALL

 (...)

To enter comma use two commas ‘,,’ somewhere - preferably at the end. Quotes and double quotes are not supported.

More Lookups

Note

This feature is very infrequently used in Ansible. You may wish to skip this section.

New in version 0.8.

Various lookup plugins allow additional ways to iterate over data. In Loops you will learn
how to use them to walk over collections of numerous types. However, they can also be used to pull in data
from remote sources, such as shell commands or even key value stores. This section will cover lookup
plugins in this capacity.

Here are some examples:

- hosts: all

 tasks:

 - debug: msg="{{ lookup('env','HOME') }} is an environment variable"

 - debug: msg="{{ item }} is a line from the result of this command"
 with_lines:
 - cat /etc/motd

 - debug: msg="{{ lookup('pipe','date') }} is the raw result of running this command"

 - debug: msg="{{ lookup('redis_kv', 'redis://localhost:6379,somekey') }} is value in Redis for somekey"

 - debug: msg="{{ lookup('dnstxt', 'example.com') }} is a DNS TXT record for example.com"

 - debug: msg="{{ lookup('template', './some_template.j2') }} is a value from evaluation of this template"

As an alternative you can also assign lookup plugins to variables or use them
elsewhere. This macros are evaluated each time they are used in a task (or
template):

vars:
 motd_value: "{{ lookup('file', '/etc/motd') }}"

tasks:

 - debug: msg="motd value is {{ motd_value }}"

See also

	Playbooks

	An introduction to playbooks

	Conditionals

	Conditional statements in playbooks

	Variables

	All about variables

	Loops

	Looping in playbooks

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Prompts

When running a playbook, you may wish to prompt the user for certain input, and can
do so with the ‘vars_prompt’ section.

A common use for this might be for asking for sensitive data that you do not want to record.

This has uses beyond security, for instance, you may use the same playbook for all
software releases and would prompt for a particular release version
in a push-script.

Here is a most basic example:

- hosts: all
 remote_user: root

 vars:
 from: "camelot"

 vars_prompt:
 name: "what is your name?"
 quest: "what is your quest?"
 favcolor: "what is your favorite color?"

If you have a variable that changes infrequently, it might make sense to
provide a default value that can be overridden. This can be accomplished using
the default argument:

vars_prompt:

 - name: "release_version"
 prompt: "Product release version"
 default: "1.0"

An alternative form of vars_prompt allows for hiding input from the user, and may later support
some other options, but otherwise works equivalently:

vars_prompt:

 - name: "some_password"
 prompt: "Enter password"
 private: yes

 - name: "release_version"
 prompt: "Product release version"
 private: no

If Passlib [http://pythonhosted.org/passlib/] is installed, vars_prompt can also crypt the
entered value so you can use it, for instance, with the user module to define a password:

vars_prompt:

 - name: "my_password2"
 prompt: "Enter password2"
 private: yes
 encrypt: "md5_crypt"
 confirm: yes
 salt_size: 7

You can use any crypt scheme supported by ‘Passlib’:

	des_crypt - DES Crypt

	bsdi_crypt - BSDi Crypt

	bigcrypt - BigCrypt

	crypt16 - Crypt16

	md5_crypt - MD5 Crypt

	bcrypt - BCrypt

	sha1_crypt - SHA-1 Crypt

	sun_md5_crypt - Sun MD5 Crypt

	sha256_crypt - SHA-256 Crypt

	sha512_crypt - SHA-512 Crypt

	apr_md5_crypt - Apache’s MD5-Crypt variant

	phpass - PHPass’ Portable Hash

	pbkdf2_digest - Generic PBKDF2 Hashes

	cta_pbkdf2_sha1 - Cryptacular’s PBKDF2 hash

	dlitz_pbkdf2_sha1 - Dwayne Litzenberger’s PBKDF2 hash

	scram - SCRAM Hash

	bsd_nthash - FreeBSD’s MCF-compatible nthash encoding

However, the only parameters accepted are ‘salt’ or ‘salt_size’. You can use your own salt using
‘salt’, or have one generated automatically using ‘salt_size’. If nothing is specified, a salt
of size 8 will be generated.

See also

	Playbooks

	An introduction to playbooks

	Conditionals

	Conditional statements in playbooks

	Variables

	All about variables

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Tags

If you have a large playbook it may become useful to be able to run a
specific part of the configuration without running the whole playbook.

Both plays and tasks support a “tags:” attribute for this reason.

Example:

tasks:

 - yum: name={{ item }} state=installed
 with_items:
 - httpd
 - memcached
 tags:
 - packages

 - template: src=templates/src.j2 dest=/etc/foo.conf
 tags:
 - configuration

If you wanted to just run the “configuration” and “packages” part of a very long playbook, you could do this:

ansible-playbook example.yml --tags "configuration,packages"

On the other hand, if you want to run a playbook without certain tasks, you could do this:

ansible-playbook example.yml --skip-tags "notification"

You may also apply tags to roles:

roles:
 - { role: webserver, port: 5000, tags: ['web', 'foo'] }

And you may also tag basic include statements:

- include: foo.yml tags=web,foo

Both of these have the function of tagging every single task inside the include statement.

See also

	Playbooks

	An introduction to playbooks

	Playbook Roles and Include Statements

	Playbook organization by roles

	User Mailing List [http://groups.google.com/group/ansible-devel]

	Have a question? Stop by the google group!

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Playbooks: Special Topics

Vault

Topics

	Vault
	What Can Be Encrypted With Vault

	Creating Encrypted Files

	Editing Encrypted Files

	Rekeying Encrypted Files

	Encrypting Unencrypted Files

	Decrypting Encrypted Files

	Running a Playbook With Vault

New in Ansible 1.5, “Vault” is a feature of ansible that allows keeping encrypted data in source control.

To enable this feature, a command line tool, ansible-vault is used to edit files, and a command line flag –ask-vault-pass or –vault-password-file is used.

What Can Be Encrypted With Vault

The vault feature can encrypt any structured data file used by Ansible. This can include “group_vars/” or “host_vars/” inventory variables, variables loaded by “include_vars” or “vars_files”, or variable files passed on the ansible-playbook command line with “-e @file.yml” or “-e @file.json”. Role variables and defaults are also included!

Because Ansible tasks, handlers, and so on are also data, these two can also be encrypted with vault. If you’d like to not betray what variables you are even using, you can go as far to keep an individual task file entirely encrypted. However, that might be a little much and could annoy your coworkers :)

Creating Encrypted Files

To create a new encrypted data file, run the following command:

ansible-vault create foo.yml

First you will be prompted for a password. The password used with vault currently must be the same for all files you wish to use together at the same time.

After providing a password, the tool will launch whatever editor you have defined with $EDITOR, and defaults to vim. Once you are done with the editor session, the file will be saved as encrypted data.

The default cipher is AES (which is shared-secret based).

Editing Encrypted Files

To edit an encrypted file in place, use the ansible-vault edit command.
This command will decrypt the file to a temporary file and allow you to edit
the file, saving it back when done and removing the temporary file:

ansible-vault edit foo.yml

Rekeying Encrypted Files

Should you wish to change your password on a vault-encrypted file or files, you can do so with the rekey command:

ansible-vault rekey foo.yml bar.yml baz.yml

This command can rekey multiple data files at once and will ask for the original
password and also the new password.

Encrypting Unencrypted Files

If you have existing files that you wish to encrypt, use the ansible-vault encrypt command. This command can operate on multiple files at once:

ansible-vault encrypt foo.yml bar.yml baz.yml

Decrypting Encrypted Files

If you have existing files that you no longer want to keep encrypted, you can permanently decrypt them by running the ansible-vault decrypt command. This command will save them unencrypted to the disk, so be sure you do not want ansible-vault edit instead:

ansible-vault decrypt foo.yml bar.yml baz.yml

Running a Playbook With Vault

To run a playbook that contains vault-encrypted data files, you must pass one of two flags. To specify the vault-password interactively:

ansible-playbook site.yml --ask-vault-pass

This prompt will then be used to decrypt (in memory only) any vault encrypted files that are accessed. Currently this requires that all passwords be encrypted with the same password.

Alternatively, passwords can be specified with a file. If this is done, be careful to ensure permissions on the file are such that no one else can access your key, and do not add your key to source control:

ansible-playbook site.yml --vault-password-file ~/.vault_pass.txt

The password should be a string stored as a single line in the file.

This is likely something you may wish to do if using Ansible from a continuous integration system like Jenkins.

(The –vault-password-file option can also be used with the Ansible-Pull command if you wish, though this would require distributing the keys to your nodes, so understand the implications – vault is more intended for push mode).

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

About Modules

Introduction

Ansible ships with a number of modules (called the ‘module library’)
that can be executed directly on remote hosts or through Playbooks.

Users can also write their own modules. These modules can control system resources, like services, packages, or files (anything really), or
handle executing system commands.

Let’s review how we execute three different modules from the command line:

ansible webservers -m service -a "name=httpd state=running"
ansible webservers -m ping
ansible webservers -m command -a "/sbin/reboot -t now"

Each module supports taking arguments. Nearly all modules take key=value
arguments, space delimited. Some modules take no arguments, and the command/shell modules simply
take the string of the command you want to run.

From playbooks, Ansible modules are executed in a very similar way:

- name: reboot the servers
 action: command /sbin/reboot -t now

Which can be abbreviated to:

- name: reboot the servers
 command: /sbin/reboot -t now

All modules technically return JSON format data, though if you are using the command line or playbooks, you don’t really need to know much about
that. If you’re writing your own module, you care, and this means you do not have to write modules in any particular language – you get to choose.

Modules are idempotent, meaning they will seek to avoid changes to the system unless a change needs to be made. When using Ansible
playbooks, these modules can trigger ‘change events’ in the form of notifying ‘handlers’ to run additional tasks.

Documentation for each module can be accessed from the command line with the ansible-doc tool:

ansible-doc yum

See also

	Introduction To Ad-Hoc Commands

	Examples of using modules in /usr/bin/ansible

	Playbooks

	Examples of using modules with /usr/bin/ansible-playbook

	Developing Modules

	How to write your own modules

	Python API

	Examples of using modules with the Python API

	Mailing List [http://groups.google.com/group/ansible-project]

	Questions? Help? Ideas? Stop by the list on Google Groups

	irc.freenode.net [http://irc.freenode.net]

	#ansible IRC chat channel

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

Module Index

	All Modules

	Cloud Modules

	Commands Modules

	Database Modules

	Files Modules

	Internal Modules

	Inventory Modules

	Messaging Modules

	Monitoring Modules

	Net Infrastructure Modules

	Network Modules

	Notification Modules

	Packaging Modules

	Source Control Modules

	System Modules

	Utilities Modules

	Web Infrastructure Modules

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

All Modules

	accelerate - Enable accelerated mode on remote node

	acl - Sets and retrieves file ACL information.

	add_host - add a host (and alternatively a group) to the ansible-playbook in-memory inventory

	airbrake_deployment - Notify airbrake about app deployments

	apt - Manages apt-packages

	apt_key - Add or remove an apt key

	apt_repository - Add and remove APT repositores

	arista_interface - Manage physical Ethernet interfaces

	arista_l2interface - Manage layer 2 interfaces

	arista_lag - Manage port channel (lag) interfaces

	arista_vlan - Manage VLAN resources

	assemble - Assembles a configuration file from fragments

	assert - Fail with custom message

	async_status - Obtain status of asynchronous task

	at - Schedule the execution of a command or scripts via the at command.

	authorized_key - Adds or removes an SSH authorized key

	bigip_monitor_http - Manages F5 BIG-IP LTM http monitors

	bigip_monitor_tcp - Manages F5 BIG-IP LTM tcp monitors

	bigip_node - Manages F5 BIG-IP LTM nodes

	bigip_pool - Manages F5 BIG-IP LTM pools

	bigip_pool_member - Manages F5 BIG-IP LTM pool members

	boundary_meter - Manage boundary meters

	bzr - Deploy software (or files) from bzr branches

	campfire - Send a message to Campfire

	cloudformation - create a AWS CloudFormation stack

	command - Executes a command on a remote node

	copy - Copies files to remote locations.

	cron - Manage cron.d and crontab entries.

	datadog_event - Posts events to DataDog service

	debug - Print statements during execution

	digital_ocean - Create/delete a droplet/SSH_key in DigitalOcean

	django_manage - Manages a Django application.

	dnsmadeeasy - Interface with dnsmadeeasy.com (a DNS hosting service).

	docker - manage docker containers

	docker_image - manage docker images

	easy_install - Installs Python libraries

	ec2 - create, terminate, start or stop an instance in ec2, return instanceid

	ec2_ami - create or destroy an image in ec2, return imageid

	ec2_eip - associate an EC2 elastic IP with an instance.

	ec2_elb - De-registers or registers instances from EC2 ELBs

	ec2_elb_lb - Creates or destroys Amazon ELB. - Returns information about the load balancer. - Will be marked changed when called only if state is changed.

	ec2_facts - Gathers facts about remote hosts within ec2 (aws)

	ec2_group - maintain an ec2 VPC security group.

	ec2_key - maintain an ec2 key pair.

	ec2_snapshot - creates a snapshot from an existing volume

	ec2_tag - create and remove tag(s) to ec2 resources.

	ec2_vol - create and attach a volume, return volume id and device map

	ec2_vpc - configure AWS virtual private clouds

	ejabberd_user - Manages users for ejabberd servers

	elasticache - Manage cache clusters in Amazon Elasticache.

	facter - Runs the discovery program facter on the remote system

	fail - Fail with custom message

	fetch - Fetches a file from remote nodes

	file - Sets attributes of files

	filesystem - Makes file system on block device

	fireball - Enable fireball mode on remote node

	firewalld - Manage arbitrary ports/services with firewalld

	flowdock - Send a message to a flowdock

	gc_storage - This module manages objects/buckets in Google Cloud Storage.

	gce - create or terminate GCE instances

	gce_lb - create/destroy GCE load-balancer resources

	gce_net - create/destroy GCE networks and firewall rules

	gce_pd - utilize GCE persistent disk resources

	gem - Manage Ruby gems

	get_url - Downloads files from HTTP, HTTPS, or FTP to node

	git - Deploy software (or files) from git checkouts

	github_hooks - Manages github service hooks.

	glance_image - Add/Delete images from glance

	group - Add or remove groups

	group_by - Create Ansible groups based on facts

	grove - Sends a notification to a grove.io channel

	hg - Manages Mercurial (hg) repositories.

	hipchat - Send a message to hipchat

	homebrew - Package manager for Homebrew

	hostname - Manage hostname

	htpasswd - manage user files for basic authentication

	include_vars - Load variables from files, dynamically within a task.

	ini_file - Tweak settings in INI files

	irc - Send a message to an IRC channel

	jabber - Send a message to jabber user or chat room

	jboss - deploy applications to JBoss

	kernel_blacklist - Blacklist kernel modules

	keystone_user - Manage OpenStack Identity (keystone) users, tenants and roles

	lineinfile - Ensure a particular line is in a file, or replace an existing line using a back-referenced regular expression.

	linode - create / delete / stop / restart an instance in Linode Public Cloud

	lvg - Configure LVM volume groups

	lvol - Configure LVM logical volumes

	macports - Package manager for MacPorts

	mail - Send an email

	modprobe - Add or remove kernel modules

	mongodb_user - Adds or removes a user from a MongoDB database.

	monit - Manage the state of a program monitored via Monit

	mount - Control active and configured mount points

	mqtt - Publish a message on an MQTT topic for the IoT

	mysql_db - Add or remove MySQL databases from a remote host.

	mysql_replication - Manage MySQL replication

	mysql_user - Adds or removes a user from a MySQL database.

	mysql_variables - Manage MySQL global variables

	nagios - Perform common tasks in Nagios related to downtime and notifications.

	netscaler - Manages Citrix NetScaler entities

	newrelic_deployment - Notify newrelic about app deployments

	nova_compute - Create/Delete VMs from OpenStack

	nova_keypair - Add/Delete key pair from nova

	npm - Manage node.js packages with npm

	ohai - Returns inventory data from Ohai

	open_iscsi - Manage iscsi targets with open-iscsi

	openbsd_pkg - Manage packages on OpenBSD.

	openvswitch_bridge - Manage Open vSwitch bridges

	openvswitch_port - Manage Open vSwitch ports

	opkg - Package manager for OpenWrt

	osx_say - Makes an OSX computer to speak.

	ovirt - oVirt/RHEV platform management

	pacman - Package manager for Archlinux

	pagerduty - Create PagerDuty maintenance windows

	pause - Pause playbook execution

	ping - Try to connect to host and return pong on success.

	pingdom - Pause/unpause Pingdom alerts

	pip - Manages Python library dependencies.

	pkgin - Package manager for SmartOS

	pkgng - Package manager for FreeBSD >= 9.0

	pkgutil - Manage CSW-Packages on Solaris

	portinstall - Installing packages from FreeBSD’s ports system

	postgresql_db - Add or remove PostgreSQL databases from a remote host.

	postgresql_privs - Grant or revoke privileges on PostgreSQL database objects.

	postgresql_user - Adds or removes a users (roles) from a PostgreSQL database.

	quantum_floating_ip - Add/Remove floating IP from an instance

	quantum_floating_ip_associate - Associate or disassociate a particular floating IP with an instance

	quantum_network - Creates/Removes networks from OpenStack

	quantum_router - Create or Remove router from openstack

	quantum_router_gateway - set/unset a gateway interface for the router with the specified external network

	quantum_router_interface - Attach/Dettach a subnet’s interface to a router

	quantum_subnet - Add/Remove floating IP from an instance

	rabbitmq_parameter - Adds or removes parameters to RabbitMQ

	rabbitmq_plugin - Adds or removes plugins to RabbitMQ

	rabbitmq_policy - Manage the state of policies in RabbitMQ.

	rabbitmq_user - Adds or removes users to RabbitMQ

	rabbitmq_vhost - Manage the state of a virtual host in RabbitMQ

	raw - Executes a low-down and dirty SSH command

	rax - create / delete an instance in Rackspace Public Cloud

	rax_clb - create / delete a load balancer in Rackspace Public Cloud

	rax_clb_nodes - add, modify and remove nodes from a Rackspace Cloud Load Balancer

	rax_dns - Manage domains on Rackspace Cloud DNS

	rax_dns_record - Manage DNS records on Rackspace Cloud DNS

	rax_facts - Gather facts for Rackspace Cloud Servers

	rax_files - Manipulate Rackspace Cloud Files Containers

	rax_files_objects - Upload, download, and delete objects in Rackspace Cloud Files

	rax_keypair - Create a keypair for use with Rackspace Cloud Servers

	rax_network - create / delete an isolated network in Rackspace Public Cloud

	rax_queue - create / delete a queue in Rackspace Public Cloud

	rds - create, delete, or modify an Amazon rds instance

	redhat_subscription - Manage Red Hat Network registration and subscriptions using the subscription-manager command

	redis - Various redis commands, slave and flush

	rhn_channel - Adds or removes Red Hat software channels

	rhn_register - Manage Red Hat Network registration using the rhnreg_ks command

	riak - This module handles some common Riak operations

	route53 - add or delete entries in Amazons Route53 DNS service

	rpm_key - Adds or removes a gpg key from the rpm db

	s3 - idempotent S3 module putting a file into S3.

	script - Runs a local script on a remote node after transferring it

	seboolean - Toggles SELinux booleans.

	selinux - Change policy and state of SELinux

	service - Manage services.

	set_fact - Set host facts from a task

	setup - Gathers facts about remote hosts

	shell - Execute commands in nodes.

	slurp - Slurps a file from remote nodes

	stat - retrieve file or file system status

	subversion - Deploys a subversion repository.

	supervisorctl - Manage the state of a program or group of programs running via Supervisord

	svr4pkg - Manage Solaris SVR4 packages

	swdepot - Manage packages with swdepot package manager (HP-UX)

	synchronize - Uses rsync to make synchronizing file paths in your playbooks quick and easy.

	sysctl - Manage entries in sysctl.conf.

	template - Templates a file out to a remote server.

	unarchive - Copies an archive to a remote location and unpack it

	uri - Interacts with webservices

	urpmi - Urpmi manager

	user - Manage user accounts

	virt - Manages virtual machines supported by libvirt

	wait_for - Waits for a condition before continuing.

	xattr - set/retrieve extended attributes

	yum - Manages packages with the yum package manager

	zfs - Manage zfs

	zypper - Manage packages on SuSE and openSuSE

	zypper_repository - Add and remove Zypper repositories

 Copyright 2014, Ansible, Inc.
 Created using Sphinx 1.2.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Utilities Modules

accelerate - Enable accelerated mode on remote node

	Author:	James Cammarata

	Synopsis

	Options

	Examples

Synopsis

New in version 1.3.

This modules launches an ephemeral accelerate daemon on the remote node which Ansible can use to communicate with nodes at high speed.
The daemon listens on a configurable port for a configurable amount of time.
Fireball mode is AES encrypted

Options

 acl - Sets and retrieves file ACL information.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Files Modules

acl - Sets and retrieves file ACL information.

	Author:	Brian Coca

	Synopsis

	Options

	Examples

Synopsis

New in version 1.4.

Sets and retrieves file ACL information.

Options

 add_host - add a host (and alternatively a group) to the ansible-playbook in-memory inventory

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Inventory Modules

add_host - add a host (and alternatively a group) to the ansible-playbook in-memory inventory

	Author:	Seth Vidal

	Synopsis

	Options

	Examples

Synopsis

Use variables to create new hosts and groups in inventory for use in later plays of the same playbook. Takes variables so you can define the new hosts more fully.

Options

 airbrake_deployment - Notify airbrake about app deployments

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Monitoring Modules

airbrake_deployment - Notify airbrake about app deployments

	Author:	Bruce Pennypacker

	Synopsis

	Options

	Examples

Synopsis

New in version 1.2.

Notify airbrake about app deployments (see http://help.airbrake.io/kb/api-2/deploy-tracking)

Options

 apt - Manages apt-packages

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Packaging Modules

apt - Manages apt-packages

	Author:	Matthew Williams

	Synopsis

	Options

	Examples

Synopsis

Manages apt packages (such as for Debian/Ubuntu).

Options

 apt_key - Add or remove an apt key

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Packaging Modules

apt_key - Add or remove an apt key

	Author:	Jayson Vantuyl & others

	Synopsis

	Options

	Examples

Synopsis

New in version 1.0.

Add or remove an apt key, optionally downloading it

Options

 apt_repository - Add and remove APT repositores

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Packaging Modules

apt_repository - Add and remove APT repositores

	Author:	Alexander Saltanov

	Synopsis

	Options

	Examples

Synopsis

Add or remove an APT repositories in Ubuntu and Debian.

Options

 arista_interface - Manage physical Ethernet interfaces

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Net Infrastructure Modules

arista_interface - Manage physical Ethernet interfaces

	Author:	Peter Sprygada

	Synopsis

	Options

	Examples

Synopsis

New in version 1.3.

Manage physical Ethernet interface resources on Arista EOS network devices

Options

 arista_l2interface - Manage layer 2 interfaces

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Net Infrastructure Modules

arista_l2interface - Manage layer 2 interfaces

	Author:	Peter Sprygada

	Synopsis

	Options

	Examples

Synopsis

New in version 1.2.

Manage layer 2 interface resources on Arista EOS network devices

Options

 arista_lag - Manage port channel (lag) interfaces

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Net Infrastructure Modules

arista_lag - Manage port channel (lag) interfaces

	Author:	Peter Sprygada

	Synopsis

	Options

	Examples

Synopsis

New in version 1.3.

Manage port channel interface resources on Arista EOS network devices

Options

 arista_vlan - Manage VLAN resources

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Net Infrastructure Modules

arista_vlan - Manage VLAN resources

	Author:	Peter Sprygada

	Synopsis

	Options

	Examples

Synopsis

New in version 1.3.

Manage VLAN resources on Arista EOS network devices. This module requires the Netdev EOS extension to be installed in EOS. For detailed instructions for installing and using the Netdev module please see [link]

Options

 assemble - Assembles a configuration file from fragments

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Ansible Documentation 1.5 documentation

 	Module Index

 	Files Modules

assemble - Assembles a configuration file from fragments

	Author:	Stephen Fromm

	Synopsis

	Options

	Examples

Synopsis

Assembles a configuration file from fragments. Often a particular program will take a single configuration file and does not support a conf.d style structure where it is easy to build up the configuration from multiple sources. assemble will take a directory of files that can be local or have already been transferred to the system, and concatenate them together to produce a destination file. Files are assembled in string sorting