Ansible Documentation
About Ansible
Welcome to the Ansible documentation!
Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates.
Ansible’s goals are foremost those of simplicity and maximum ease of use. It also has a strong focus on security and reliability, featuring a minimum of moving parts, usage of OpenSSH for transport (with an accelerated socket mode and pull modes as alternatives), and a language that is designed around auditability by humans – even those not familiar with the program.
We believe simplicity is relevant to all sizes of environments and design for busy users of all types – whether this means developers, sysadmins, release engineers, IT managers, and everywhere in between. Ansible is appropriate for managing small setups with a handful of instances as well as enterprise environments with many thousands.
Ansible manages machines in an agentless manner. There is never a question of how to upgrade remote daemons or the problem of not being able to manage systems because daemons are uninstalled. As OpenSSH is one of the most peer reviewed open source components, the security exposure of using the tool is greatly reduced. Ansible is decentralized – it relies on your existing OS credentials to control access to remote machines; if needed it can easily connect with Kerberos, LDAP, and other centralized authentication management systems.
This documentation covers the current released version of Ansible (1.5.3) and also some development version features (1.6). For recent features, in each section, the version of Ansible where the feature is added is indicated. Ansible, Inc releases a new major release of Ansible approximately every 2 months. The core application evolves somewhat conservatively, valuing simplicity in language design and setup, while the community around new modules and plugins being developed and contributed moves very very quickly, typically adding 20 or so new modules in each release.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Introduction
Before we dive into the really fun parts – playbooks, configuration management, deployment, and orchestration, we’ll learn how to get Ansible installed and some basic concepts. We’ll go over how to execute ad-hoc commands in parallel across your nodes using /usr/bin/ansible. We’ll also see what sort of modules are available in Ansible’s core (though you can also write your own, which we’ll also show later).
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
You may also wish to follow the Github project [https://github.com/ansible/ansible] if you have a github account. This is also where we keep the issue tracker for sharing bugs and feature ideas.
Basics / What Will Be Installed
Ansible by default manages machines over the SSH protocol.
Once Ansible is installed, it will not add a database, and there will be no daemons to start or keep running. You only need to install it on one machine (which could easily be a laptop) and it can manage an entire fleet of remote machines from that central point. When Ansible manages remote machines, it does not leave software installed or running on them, so there’s no real question about how to upgrade Ansible when moving to a new version.
Because it runs so easily from source and does not require any installation of software on remote machines, many users will actually track the development version.
Ansible’s release cycles are usually about two months long. Due to this short release cycle, minor bugs will generally be fixed in the next release versus maintaining backports on the stable branch. Major bugs will still have maintenance releases when needed, though these are infrequent.
If you are wishing to run the latest released version of Ansible and you are running Red Hat Enterprise Linux (TM), CentOS, Fedora, Debian, or Ubuntu, we recommend using the OS package manager.
For other installation options, we recommend installing via “pip”, which is the Python package manager, though other options are also available.
If you wish to track the development release to use and test the latest features, we will share information about running from source. It’s not necessary to install the program to run from source.
Currently Ansible can be run from any machine with Python 2.6 installed (Windows isn’t supported for the control machine).
This includes Red Hat, Debian, CentOS, OS X, any of the BSDs, and so on.
On the managed nodes, you only need Python 2.4 or later, but if you are running less than Python 2.5 on the remotes, you will also need:
Note
Ansible’s “raw” module (for executing commands in a quick and dirty way) and the script module don’t even need that. So technically, you can use Ansible to install python-simplejson using the raw module, which then allows you to use everything else. (That’s jumping ahead though.)
Note
If you have SELinux enabled on remote nodes, you will also want to install libselinux-python on them before using any copy/file/template related functions in Ansible. You can of course still use the yum module in Ansible to install this package on remote systems that do not have it.
Note
Python 3 is a slightly different language than Python 2 and most Python programs (including Ansible) are not switching over yet. However, some Linux distributions (Gentoo, Arch) may not have a Python 2.X interpreter installed by default. On those systems, you should install one, and set the ‘ansible_python_interpreter’ variable in inventory (see Inventory) to point at your 2.X Python. Distributions like Red Hat Enterprise Linux, CentOS, Fedora, and Ubuntu all have a 2.X interpreter installed by default and this does not apply to those distributions. This is also true of nearly all Unix systems. If you need to bootstrap these remote systems by installing Python 2.X, using the ‘raw’ module will be able to do it remotely.
Installing the Control Machine
Ansible is trivially easy to run from a checkout, root permissions are not required to use it and there is no software to actually install for Ansible itself. No daemons or database setup are required. Because of this, many users in our community use the development version of Ansible all of the time, so they can take advantage of new features when they are implemented, and also easily contribute to the project. Because there is nothing to install, following the development version is significantly easier than most open source projects.
To install from source.
$ git clone git://github.com/ansible/ansible.git
$ cd ./ansible
$ source ./hacking/env-setup
If you don’t have pip installed in your version of Python, install pip:
$ sudo easy_install pip
Ansible also uses the following Python modules that need to be installed:
$ sudo pip install paramiko PyYAML jinja2 httplib2
Once running the env-setup script you’ll be running from checkout and the default inventory file will be /etc/ansible/hosts. You can optionally specify an inventory file (see Inventory) other than /etc/ansible/hosts:
$ echo "127.0.0.1" > ~/ansible_hosts
$ export ANSIBLE_HOSTS=~/ansible_hosts
You can read more about the inventory file in later parts of the manual.
Now let’s test things with a ping command:
$ ansible all -m ping --ask-pass
You can also use “sudo make install” if you wish.
RPMs are available from yum for EPEL [http://fedoraproject.org/wiki/EPEL] 6, 7, and currently supported Fedora distributions.
Ansible itself can manage earlier operating systems that contain Python 2.4 or higher (so also EL5).
Fedora users can install Ansible directly, though if you are using RHEL or CentOS and have not already done so, configure EPEL [http://fedoraproject.org/wiki/EPEL]
install the epel-release RPM if needed on CentOS, RHEL, or Scientific Linux
$ sudo yum install ansible
You can also build an RPM yourself. From the root of a checkout or tarball, use the make rpm command to build an RPM you can distribute and install. Make sure you have rpm-build, make, and python2-devel installed.
$ git clone git://github.com/ansible/ansible.git
$ cd ./ansible
$ make rpm
$ sudo rpm -Uvh ~/rpmbuild/ansible-*.noarch.rpm
Latest Releases Via Apt (Ubuntu)
Ubuntu builds are available in a PPA here [https://launchpad.net/~rquillo/+archive/ansible].
To configure the PPA on your machine and install ansible run these commands:
$ sudo apt-get install apt-add-repository
$ sudo apt-add-repository ppa:rquillo/ansible
$ sudo apt-get update
$ sudo apt-get install ansible
Debian/Ubuntu packages can also be built from the source checkout, run:
$ make deb
You may also wish to run from source to get the latest, which is covered above.
Latest Releases Via pkg (FreeBSD)
$ sudo pkg install ansible
You may also wish to install from ports, run:
$ sudo make -C /usr/ports/sysutils/ansible install
Latest Releases Via Homebrew (Mac OSX)
To install on a Mac, make sure you have Homebrew, then run:
$ brew update
$ brew install ansible
Ansible can be installed via “pip”, the Python package manager. If ‘pip’ isn’t already available in your version of Python, you can get pip by:
$ sudo easy_install pip
Then install Ansible with:
$ sudo pip install ansible
If you are installing on OS X Mavericks, you may encounter some noise from your compiler. A workaround is to do the following:
$ sudo CFLAGS=-Qunused-arguments CPPFLAGS=-Qunused-arguments pip install ansible
Readers that use virtualenv can also install Ansible under virtualenv, though we’d recommend to not worry about it and just install Ansible globally. Do not use easy_install to install ansible directly.
Packaging Ansible or wanting to build a local package yourself, but don’t want to do a git checkout? Tarballs of releases are available on the Ansible downloads [http://releases.ansible.com/ansible] page.
These releases are also tagged in the git repository [https://github.com/ansible/ansible/releases] with the release version.
See also
Introduction To Ad-Hoc Commands
Examples of basic commands
Playbooks
Learning ansible’s configuration management language
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Now that you’ve read Installation and installed Ansible, it’s time to dig in and get started with some commands.
What we are showing first are not the powerful configuration/deployment/orchestration of Ansible, called playbooks. Playbooks are covered in a separate section.
This section is about how to get going initially. Once you have these concepts down, read Introduction To Ad-Hoc Commands for some more detail, and then you’ll be ready to dive into playbooks and explore the most interesting parts!
Before we get started, it’s important to understand how Ansible is communicating with remote machines over SSH.
By default, Ansible 1.3 and later will try to use native OpenSSH for remote communication when possible. This enables both ControlPersist (a performance feature), Kerberos, and options in ~/.ssh/config such as Jump Host setup. When using Enterprise Linux 6 operating systems as the control machine (Red Hat Enterprise Linux and derivatives such as CentOS), however, the version of OpenSSH may be too old to support ControlPersist. On these operating systems, Ansible will fallback into using a high-quality Python implementation of OpenSSH called ‘paramiko’. If you wish to use features like Kerberized SSH and more, consider using Fedora, OS X, or Ubuntu as your control machine until a newer version of OpenSSH is available for your platform – or engage ‘accelerated mode’ in Ansible. See Accelerated Mode.
In Ansible 1.2 and before, the default was strictly paramiko and native SSH had to be explicitly selected with -c ssh or set in the configuration file.
Occasionally you’ll encounter a device that doesn’t do SFTP. This is rare, but if talking with some remote devices that don’t support SFTP, you can switch to SCP mode in The Ansible Configuration File.
When speaking with remote machines, Ansible will by default assume you are using SSH keys – which we encourage – but passwords are fine too. To enable password auth, supply the option --ask-pass where needed. If using sudo features and when sudo requires a password, also supply --ask-sudo-pass as appropriate.
While it may be common sense, it is worth sharing: Any management system benefits from being run near the machines being managed. If running in a cloud, consider running Ansible from a machine inside that cloud. It will work better than on the open internet in most cases.
As an advanced topic, Ansible doesn’t just have to connect remotely over SSH. The transports are pluggable, and there are options for managing things locally, as well as managing chroot, lxc, and jail containers. A mode called ‘ansible-pull’ can also invert the system and have systems ‘phone home’ via scheduled git checkouts to pull configuration directives from a central repository.
Now that you’ve installed Ansible, it’s time to get started with some basics.
Edit (or create) /etc/ansible/hosts and put one or more remote systems in it, for which you have your SSH key in authorized_keys:
192.168.1.50
aserver.example.org
bserver.example.org
This is an inventory file, which is also explained in greater depth here: Inventory.
We’ll assume you are using SSH keys for authentication. To set up SSH agent to avoid retyping passwords, you can do:
$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa
(Depending on your setup, you may wish to use Ansible’s --private-key option to specify a pem file instead)
Now ping all your nodes:
$ ansible all -m ping
Ansible will attempt to remote connect to the machines using your current user name, just like SSH would. To override the remote user name, just use the ‘-u’ parameter.
If you would like to access sudo mode, there are also flags to do that:
as bruce
$ ansible all -m ping -u bruce
as bruce, sudoing to root
$ ansible all -m ping -u bruce --sudo
as bruce, sudoing to batman
$ ansible all -m ping -u bruce --sudo --sudo-user batman
(The sudo implementation is changeable in Ansible’s configuration file if you happen to want to use a sudo replacement. Flags passed to sudo (like -H) can also be set there.)
Now run a live command on all of your nodes:
$ ansible all -a "/bin/echo hello"
Congratulations. You’ve just contacted your nodes with Ansible. It’s soon going to be time to read some of the more real-world Introduction To Ad-Hoc Commands, and explore what you can do with different modules, as well as the Ansible Playbooks language. Ansible is not just about running commands, it also has powerful configuration management and deployment features. There’s more to explore, but you already have a fully working infrastructure!
Ansible 1.2.1 and later have host key checking enabled by default.
If a host is reinstalled and has a different key in ‘known_hosts’, this will result in an error message until corrected. If a host is not initially in ‘known_hosts’ this will result in prompting for confirmation of the key, which results in an interactive experience if using Ansible, from say, cron. You might not want this.
If you wish to disable this behavior and understand the implications, you can do so by editing /etc/ansible/ansible.cfg or ~/.ansible.cfg:
[defaults]
host_key_checking = False
Alternatively this can be set by an environment variable:
$ export ANSIBLE_HOST_KEY_CHECKING=False
Also note that host key checking in paramiko mode is reasonably slow, therefore switching to ‘ssh’ is also recommended when using this feature.
Ansible will log some information about module arguments on the remote system in the remote syslog. To enable basic logging on the control machine see The Ansible Configuration File document and set the ‘log_path’ configuration file setting. Enterprise users may also be interested in Ansible Tower. Tower provides a very robust database logging feature where it is possible to drill down and see history based on hosts, projects, and particular inventories over time – explorable both graphically and through a REST API.
See also
Inventory
More information about inventory
Introduction To Ad-Hoc Commands
Examples of basic commands
Playbooks
Learning Ansible’s configuration management language
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Ansible works against multiple systems in your infrastructure at the same time. It does this by selecting portions of systems listed in Ansible’s inventory file, which defaults to being saved in the location /etc/ansible/hosts.
Not only is this inventory configurable, but you can also use multiple inventory files at the same time (explained below) and also pull inventory from dynamic or cloud sources, as described in Dynamic Inventory.
The format for /etc/ansible/hosts is an INI format and looks like this:
mail.example.com
[webservers]
foo.example.com
bar.example.com
[dbservers]
one.example.com
two.example.com
three.example.com
The things in brackets are group names, which are used in classifying systems and deciding what systems you are controlling at what times and for what purpose.
It is ok to put systems in more than one group, for instance a server could be both a webserver and a dbserver. If you do, note that variables will come from all of the groups they are a member of, and variable precedence is detailed in a later chapter.
If you have hosts that run on non-standard SSH ports you can put the port number after the hostname with a colon. Ports listed in your SSH config file won’t be used with the paramiko connection but will be used with the openssh connection.
To make things explicit, it is suggested that you set them if things are not running on the default port:
badwolf.example.com:5309
Suppose you have just static IPs and want to set up some aliases that don’t live in your host file, or you are connecting through tunnels. You can do things like this:
jumper ansible_ssh_port=5555 ansible_ssh_host=192.168.1.50
In the above example, trying to ansible against the host alias “jumper” (which may not even be a real hostname) will contact 192.168.1.50 on port 5555. Note that this is using a feature of the inventory file to define some special variables. Generally speaking this is not the best way to define variables that describe your system policy, but we’ll share suggestions on doing this later. We’re just getting started.
Adding a lot of hosts? If you have a lot of hosts following similar patterns you can do this rather than listing each hostname:
[webservers]
www[01:50].example.com
For numeric patterns, leading zeros can be included or removed, as desired. Ranges are inclusive. You can also define alphabetic ranges:
[databases]
db-[a:f].example.com
You can also select the connection type and user on a per host basis:
[targets]
localhost ansible_connection=local
other1.example.com ansible_connection=ssh ansible_ssh_user=mpdehaan
other2.example.com ansible_connection=ssh ansible_ssh_user=mdehaan
As mentioned above, setting these in the inventory file is only a shorthand, and we’ll discuss how to store them in individual files in the ‘host_vars’ directory a bit later on.
As alluded to above, it is easy to assign variables to hosts that will be used later in playbooks:
[atlanta]
host1 http_port=80 maxRequestsPerChild=808
host2 http_port=303 maxRequestsPerChild=909
Variables can also be applied to an entire group at once:
[atlanta]
host1
host2
[atlanta:vars]
ntp_server=ntp.atlanta.example.com
proxy=proxy.atlanta.example.com
Groups of Groups, and Group Variables
It is also possible to make groups of groups and assign variables to groups. These variables can be used by /usr/bin/ansible-playbook, but not /usr/bin/ansible:
[atlanta]
host1
host2
[raleigh]
host2
host3
[southeast:children]
atlanta
raleigh
[southeast:vars]
some_server=foo.southeast.example.com
halon_system_timeout=30
self_destruct_countdown=60
escape_pods=2
[usa:children]
southeast
northeast
southwest
northwest
If you need to store lists or hash data, or prefer to keep host and group specific variables separate from the inventory file, see the next section.
Splitting Out Host and Group Specific Data
The preferred practice in Ansible is actually not to store variables in the main inventory file.
In addition to storing variables directly in the INI file, host and group variables can be stored in individual files relative to the inventory file.
These variable files are in YAML format. See YAML Syntax if you are new to YAML.
Assuming the inventory file path is:
/etc/ansible/hosts
If the host is named ‘foosball’, and in groups ‘raleigh’ and ‘webservers’, variables in YAML files at the following locations will be made available to the host:
/etc/ansible/group_vars/raleigh
/etc/ansible/group_vars/webservers
/etc/ansible/host_vars/foosball
For instance, suppose you have hosts grouped by datacenter, and each datacenter uses some different servers. The data in the groupfile ‘/etc/ansible/group_vars/raleigh’ for the ‘raleigh’ group might look like:

ntp_server: acme.example.org
database_server: storage.example.org
It is ok if these files do not exist, as this is an optional feature.
Tip: In Ansible 1.2 or later the group_vars/ and host_vars/ directories can exist in either the playbook directory OR the inventory directory. If both paths exist, variables in the playbook directory will be loaded second.
Tip: Keeping your inventory file and variables in a git repo (or other version control) is an excellent way to track changes to your inventory and host variables.
List of Behavioral Inventory Parameters
As alluded to above, setting the following variables controls how ansible interacts with remote hosts. Some we have already mentioned:
ansible_ssh_host
The name of the host to connect to, if different from the alias you wish to give to it.
ansible_ssh_port
The ssh port number, if not 22
ansible_ssh_user
The default ssh user name to use.
ansible_ssh_pass
The ssh password to use (this is insecure, we strongly recommend using --ask-pass or SSH keys)
ansible_sudo_pass
The sudo password to use (this is insecure, we strongly recommend using --ask-sudo-pass)
ansible_connection
Connection type of the host. Candidates are local, ssh or paramiko. The default is paramiko before Ansible 1.2, and 'smart' afterwards which detects whether usage of 'ssh' would be feasible based on whether ControlPersist is supported.
ansible_ssh_private_key_file
Private key file used by ssh. Useful if using multiple keys and you don't want to use SSH agent.
ansible_shell_type
The shell type of the target system. By default commands are formatted using 'sh'-style syntax by default. Setting this to 'csh' or 'fish' will cause commands executed on target systems to follow those shell's syntax instead.
ansible_python_interpreter
The target host python path. This is useful for systems with more
than one Python or not located at "/usr/bin/python" such as *BSD, or where /usr/bin/python
is not a 2.X series Python. We do not use the "/usr/bin/env" mechanism as that requires the remote user's
path to be set right and also assumes the "python" executable is named python, where the executable might
be named something like "python26".
ansible_*_interpreter
Works for anything such as ruby or perl and works just like ansible_python_interpreter.
This replaces shebang of modules which will run on that host.
Examples from a host file:
some_host ansible_ssh_port=2222 ansible_ssh_user=manager
aws_host ansible_ssh_private_key_file=/home/example/.ssh/aws.pem
freebsd_host ansible_python_interpreter=/usr/local/bin/python
ruby_module_host ansible_ruby_interpreter=/usr/bin/ruby.1.9.3
See also
Dynamic Inventory
Pulling inventory from dynamic sources, such as cloud providers
Introduction To Ad-Hoc Commands
Examples of basic commands
Playbooks
Learning ansible’s configuration management language
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Often a user of a configuration management system will want to keep inventory in a different software system. Ansible provides a basic text-based system as described in Inventory but what if you want to use something else?
Frequent examples include pulling inventory from a cloud provider, LDAP, Cobbler [http://cobbler.github.com], or a piece of expensive enterprisey CMDB software.
Ansible easily supports all of these options via an external inventory system. The plugins directory contains some of these already – including options for EC2/Eucalyptus, Rackspace Cloud, and OpenStack, examples of some of which will be detailed below.
Ansible Tower also provides a database to store inventory results that is both web and REST Accessible. Tower syncs with all Ansible dynamic inventory sources you might be using, and also includes a graphical inventory editor. By having a database record of all of your hosts, it’s easy to correlate past event history and see which ones have had failures on their last playbook runs.
For information about writing your own dynamic inventory source, see Developing Dynamic Inventory Sources.
Example: The Cobbler External Inventory Script
It is expected that many Ansible users with a reasonable amount of physical hardware may also be Cobbler [http://cobbler.github.com] users. (note: Cobbler was originally written by Michael DeHaan and is now lead by James Cammarata, who also works for Ansible, Inc).
While primarily used to kickoff OS installations and manage DHCP and DNS, Cobbler has a generic layer that allows it to represent data for multiple configuration management systems (even at the same time), and has been referred to as a ‘lightweight CMDB’ by some admins.
To tie Ansible’s inventory to Cobbler (optional), copy this script [https://raw.github.com/ansible/ansible/devel/plugins/inventory/cobbler.py] to /etc/ansible and chmod +x the file. cobblerd will now need to be running when you are using Ansible and you’ll need to use Ansible’s -i command line option (e.g. -i /etc/ansible/cobbler.py). This particular script will communicate with Cobbler using Cobbler’s XMLRPC API.
First test the script by running /etc/ansible/cobbler.py directly. You should see some JSON data output, but it may not have anything in it just yet.
Let’s explore what this does. In cobbler, assume a scenario somewhat like the following:
cobbler profile add --name=webserver --distro=CentOS6-x86_64
cobbler profile edit --name=webserver --mgmt-classes="webserver" --ksmeta="a=2 b=3"
cobbler system edit --name=foo --dns-name="foo.example.com" --mgmt-classes="atlanta" --ksmeta="c=4"
cobbler system edit --name=bar --dns-name="bar.example.com" --mgmt-classes="atlanta" --ksmeta="c=5"
In the example above, the system ‘foo.example.com’ will be addressable by ansible directly, but will also be addressable when using the group names ‘webserver’ or ‘atlanta’. Since Ansible uses SSH, we’ll try to contact system foo over ‘foo.example.com’, only, never just ‘foo’. Similarly, if you try “ansible foo” it wouldn’t find the system... but “ansible ‘foo*’” would, because the system DNS name starts with ‘foo’.
The script doesn’t just provide host and group info. In addition, as a bonus, when the ‘setup’ module is run (which happens automatically when using playbooks), the variables ‘a’, ‘b’, and ‘c’ will all be auto-populated in the templates:
file: /srv/motd.j2
Welcome, I am templated with a value of a={{ a }}, b={{ b }}, and c={{ c }}
Which could be executed just like this:
ansible webserver -m setup
ansible webserver -m template -a "src=/tmp/motd.j2 dest=/etc/motd"
Note
The name ‘webserver’ came from cobbler, as did the variables for the config file. You can still pass in your own variables like normal in Ansible, but variables from the external inventory script will override any that have the same name.
So, with the template above (motd.j2), this would result in the following data being written to /etc/motd for system ‘foo’:
Welcome, I am templated with a value of a=2, b=3, and c=4
And on system ‘bar’ (bar.example.com):
Welcome, I am templated with a value of a=2, b=3, and c=5
And technically, though there is no major good reason to do it, this also works too:
ansible webserver -m shell -a "echo {{ a }}"
So in other words, you can use those variables in arguments/actions as well.
Example: AWS EC2 External Inventory Script
If you use Amazon Web Services EC2, maintaining an inventory file might not be the best approach, because hosts may come and go over time, be managed by external applications, or you might even be using AWS autoscaling. For this reason, you can use the EC2 external inventory [https://raw.github.com/ansible/ansible/devel/plugins/inventory/ec2.py] script.
You can use this script in one of two ways. The easiest is to use Ansible’s -i command line option and specify the path to the script after marking it executable:
ansible -i ec2.py -u ubuntu us-east-1d -m ping
The second option is to copy the script to /etc/ansible/hosts and chmod +x it. You will also need to copy the ec2.ini [https://raw.github.com/ansible/ansible/devel/plugins/inventory/ec2.ini] file to /etc/ansible/ec2.ini. Then you can run ansible as you would normally.
To successfully make an API call to AWS, you will need to configure Boto (the Python interface to AWS). There are a variety of methods [http://docs.pythonboto.org/en/latest/boto_config_tut.html] available, but the simplest is just to export two environment variables:
export AWS_ACCESS_KEY_ID='AK123'
export AWS_SECRET_ACCESS_KEY='abc123'
You can test the script by itself to make sure your config is correct:
cd plugins/inventory
./ec2.py --list
After a few moments, you should see your entire EC2 inventory across all regions in JSON.
Since each region requires its own API call, if you are only using a small set of regions, feel free to edit ec2.ini and list only the regions you are interested in. There are other config options in ec2.ini including cache control, and destination variables.
At their heart, inventory files are simply a mapping from some name to a destination address. The default ec2.ini settings are configured for running Ansible from outside EC2 (from your laptop for example) – and this is not the most efficient way to manage EC2.
If you are running Ansible from within EC2, internal DNS names and IP addresses may make more sense than public DNS names. In this case, you can modify the destination_variable in ec2.ini to be the private DNS name of an instance. This is particularly important when running Ansible within a private subnet inside a VPC, where the only way to access an instance is via its private IP address. For VPC instances, vpc_destination_variable in ec2.ini provides a means of using which ever boto.ec2.instance variable [http://docs.pythonboto.org/en/latest/ref/ec2.html#module-boto.ec2.instance] makes the most sense for your use case.
The EC2 external inventory provides mappings to instances from several groups:
Global
All instances are in group ec2.
Instance ID
These are groups of one since instance IDs are unique. e.g. i-00112233 i-a1b1c1d1
Region
A group of all instances in an AWS region. e.g. us-east-1 us-west-2
Availability Zone
A group of all instances in an availability zone. e.g. us-east-1a us-east-1b
Security Group
Instances belong to one or more security groups. A group is created for each security group, with all characters except alphanumerics, dashes (-) converted to underscores (_). Each group is prefixed by security_group_ e.g. security_group_default security_group_webservers security_group_Pete_s_Fancy_Group
Tags
Each instance can have a variety of key/value pairs associated with it called Tags. The most common tag key is ‘Name’, though anything is possible. Each key/value pair is its own group of instances, again with special characters converted to underscores, in the format tag_KEY_VALUE e.g. tag_Name_Web tag_Name_redis-master-001 tag_aws_cloudformation_logical-id_WebServerGroup
When the Ansible is interacting with a specific server, the EC2 inventory script is called again with the --host HOST option. This looks up the HOST in the index cache to get the instance ID, and then makes an API call to AWS to get information about that specific instance. It then makes information about that instance available as variables to your playbooks. Each variable is prefixed by ec2_. Here are some of the variables available:
Both ec2_security_group_ids and ec2_security_group_names are comma-separated lists of all security groups. Each EC2 tag is a variable in the format ec2_tag_KEY.
To see the complete list of variables available for an instance, run the script by itself:
cd plugins/inventory
./ec2.py --host ec2-12-12-12-12.compute-1.amazonaws.com
Note that the AWS inventory script will cache results to avoid repeated API calls, and this cache setting is configurable in ec2.ini. To explicitly clear the cache, you can run the ec2.py script with the --refresh-cache parameter.
In addition to Cobbler and EC2, inventory scripts are also available for:
BSD Jails
Digital Ocean
Google Compute Engine
Linode
OpenShift
OpenStack Nova
Red Hat's SpaceWalk
Vagrant (not to be confused with the provisioner in vagrant, which is preferred)
Zabbix
Sections on how to use these in more detail will be added over time, but by looking at the “plugins/” directory of the Ansible checkout it should be very obvious how to use them. The process for the AWS inventory script is the same.
If you develop an interesting inventory script that might be general purpose, please submit a pull request – we’d likely be glad to include it in the project.
Using Multiple Inventory Sources
If the location given to -i in Ansible is a directory (or as so configured in ansible.cfg), Ansible can use multiple inventory sources at the same time. When doing so, it is possible to mix both dynamic and statically managed inventory sources in the same ansible run. Instant hybrid cloud!
See also
Inventory
All about static inventory files
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Patterns in Ansible are how we decide which hosts to manage. This can mean what hosts to communicate with, but in terms of Playbooks it actually means what hosts to apply a particular configuration or IT process to.
We’ll go over how to use the command line in Introduction To Ad-Hoc Commands section, however, basically it looks like this:
ansible <pattern_goes_here> -m <module_name> -a <arguments>
Such as:
ansible webservers -m service -a "name=httpd state=restarted"
A pattern usually refers to a set of groups (which are sets of hosts) – in the above case, machines in the “webservers” group.
Anyway, to use Ansible, you’ll first need to know how to tell Ansible which hosts in your inventory to talk to. This is done by designating particular host names or groups of hosts.
The following patterns are equivalent and target all hosts in the inventory:
all
*
It is also possible to address a specific host or set of hosts by name:
one.example.com
one.example.com:two.example.com
192.168.1.50
192.168.1.*
The following patterns address one or more groups. Groups separated by a colon indicate an “OR” configuration. This means the host may be in either one group or the other:
webservers
webservers:dbservers
You can exclude groups as well, for instance, all machines must be in the group webservers but not in the group phoenix:
webservers:!phoenix
You can also specify the intersection of two groups. This would mean the hosts must be in the group webservers and the host must also be in the group staging:
webservers:&staging
You can do combinations:
webservers:dbservers:&staging:!phoenix
The above configuration means “all machines in the groups ‘webservers’ and ‘dbservers’ are to be managed if they are in the group ‘staging’ also, but the machines are not to be managed if they are in the group ‘phoenix’ ... whew!
You can also use variables if you want to pass some group specifiers via the “-e” argument to ansible-playbook, but this is uncommonly used:
webservers:!{{excluded}}:&{{required}}
You also don’t have to manage by strictly defined groups. Individual host names, IPs and groups, can also be referenced using wildcards:
*.example.com
*.com
It’s also ok to mix wildcard patterns and groups at the same time:
one*.com:dbservers
Most people don’t specify patterns as regular expressions, but you can. Just start the pattern with a ‘~’:
~(web|db).*\.example\.com
While we’re jumping a bit ahead, additionally, you can add an exclusion criteria just by supplying the --limit flag to /usr/bin/ansible or /usr/bin/ansible-playbook:
ansible-playbook site.yml --limit datacenter2
Easy enough. See Introduction To Ad-Hoc Commands and then Playbooks for how to apply this knowledge.
See also
Introduction To Ad-Hoc Commands
Examples of basic commands
Playbooks
Learning ansible’s configuration management language
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Introduction To Ad-Hoc Commands
Topics
The following examples show how to use /usr/bin/ansible for running ad hoc tasks.
What’s an ad-hoc command?
An ad-hoc command is something that you might type in to do something really quick, but don’t want to save for later.
This is a good place to start to understand the basics of what Ansible can do prior to learning the playbooks language – ad-hoc commands can also be used to do quick things that you might not necessarily want to write a full playbook for.
Generally speaking, the true power of Ansible lies in playbooks. Why would you use ad-hoc tasks versus playbooks?
For instance, if you wanted to power off all of your lab for Christmas vacation, you could execute a quick one-liner in Ansible without writing a playbook.
For configuration management and deployments, though, you’ll want to pick up on using ‘/usr/bin/ansible-playbook’ – the concepts you will learn here will port over directly to the playbook language.
(See Playbooks for more information about those)
If you haven’t read Inventory already, please look that over a bit first and then we’ll get going.
Parallelism and Shell Commands
Arbitrary example.
Let’s use Ansible’s command line tool to reboot all web servers in Atlanta, 10 at a time. First, let’s set up SSH-agent so it can remember our credentials:
$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa
If you don’t want to use ssh-agent and want to instead SSH with a password instead of keys, you can with --ask-pass (-k), but it’s much better to just use ssh-agent.
Now to run the command on all servers in a group, in this case, atlanta, in 10 parallel forks:
$ ansible atlanta -a "/sbin/reboot" -f 10
/usr/bin/ansible will default to running from your user account. If you do not like this behavior, pass in “-u username”. If you want to run commands as a different user, it looks like this:
$ ansible atlanta -a "/usr/bin/foo" -u username
Often you’ll not want to just do things from your user account. If you want to run commands through sudo:
$ ansible atlanta -a "/usr/bin/foo" -u username --sudo [--ask-sudo-pass]
Use --ask-sudo-pass (-K) if you are not using passwordless sudo. This will interactively prompt you for the password to use. Use of passwordless sudo makes things easier to automate, but it’s not required.
It is also possible to sudo to a user other than root using --sudo-user (-U):
$ ansible atlanta -a "/usr/bin/foo" -u username -U otheruser [--ask-sudo-pass]
Note
Rarely, some users have security rules where they constrain their sudo environment to running specific command paths only. This does not work with ansible’s no-bootstrapping philosophy and hundreds of different modules. If doing this, use Ansible from a special account that does not have this constraint. One way of doing this without sharing access to unauthorized users would be gating Ansible with Ansible Tower, which can hold on to an SSH credential and let members of certain organizations use it on their behalf without having direct access.
Ok, so those are basics. If you didn’t read about patterns and groups yet, go back and read Patterns.
The -f 10 in the above specifies the usage of 10 simultaneous processes to use. You can also set this in The Ansible Configuration File to avoid setting it again. The default is actually 5, which is really small and conservative. You are probably going to want to talk to a lot more simultaneous hosts so feel free to crank this up. If you have more hosts than the value set for the fork count, Ansible will talk to them, but it will take a little longer. Feel free to push this value as high as your system can handle it!
You can also select what Ansible “module” you want to run. Normally commands also take a -m for module name, but the default module name is ‘command’, so we didn’t need to specify that all of the time. We’ll use -m in later examples to run some other About Modules.
Note
The command - Executes a command on a remote node module does not support shell variables and things like piping. If we want to execute a module using a shell, use the ‘shell’ module instead. Read more about the differences on the About Modules page.
Using the shell - Execute commands in nodes. module looks like this:
$ ansible raleigh -m shell -a 'echo $TERM'
When running any command with the Ansible ad hoc CLI (as opposed to Playbooks), pay particular attention to shell quoting rules, so the local shell doesn’t eat a variable before it gets passed to Ansible. For example, using double vs single quotes in the above example would evaluate the variable on the box you were on.
So far we’ve been demoing simple command execution, but most Ansible modules usually do not work like simple scripts. They make the remote system look like you state, and run the commands necessary to get it there. This is commonly referred to as ‘idempotence’, and is a core design goal of Ansible. However, we also recognize that running arbitrary commands is equally important, so Ansible easily supports both.
Here’s another use case for the /usr/bin/ansible command line. Ansible can SCP lots of files to multiple machines in parallel.
To transfer a file directly to many servers:
$ ansible atlanta -m copy -a "src=/etc/hosts dest=/tmp/hosts"
If you use playbooks, you can also take advantage of the template module, which takes this another step further. (See module and playbook documentation).
The file module allows changing ownership and permissions on files. These same options can be passed directly to the copy module as well:
$ ansible webservers -m file -a "dest=/srv/foo/a.txt mode=600"
$ ansible webservers -m file -a "dest=/srv/foo/b.txt mode=600 owner=mdehaan group=mdehaan"
The file module can also create directories, similar to mkdir -p:
$ ansible webservers -m file -a "dest=/path/to/c mode=755 owner=mdehaan group=mdehaan state=directory"
As well as delete directories (recursively) and delete files:
$ ansible webservers -m file -a "dest=/path/to/c state=absent"
There are modules available for yum and apt. Here are some examples with yum.
Ensure a package is installed, but don’t update it:
$ ansible webservers -m yum -a "name=acme state=installed"
Ensure a package is installed to a specific version:
$ ansible webservers -m yum -a "name=acme-1.5 state=installed"
Ensure a package is at the latest version:
$ ansible webservers -m yum -a "name=acme state=latest"
Ensure a package is not installed:
$ ansible webservers -m yum -a "name=acme state=removed"
Ansible has modules for managing packages under many platforms. If your package manager does not have a module available for it, you can install for other packages using the command module or (better!) contribute a module for other package managers. Stop by the mailing list for info/details.
The ‘user’ module allows easy creation and manipulation of existing user accounts, as well as removal of user accounts that may exist:
$ ansible all -m user -a "name=foo password=<crypted password here>"
$ ansible all -m user -a "name=foo state=absent"
See the About Modules section for details on all of the available options, including how to manipulate groups and group membership.
Deploy your webapp straight from git:
$ ansible webservers -m git -a "repo=git://foo.example.org/repo.git dest=/srv/myapp version=HEAD"
Since Ansible modules can notify change handlers it is possible to tell Ansible to run specific tasks when the code is updated, such as deploying Perl/Python/PHP/Ruby directly from git and then restarting apache.
Ensure a service is started on all webservers:
$ ansible webservers -m service -a "name=httpd state=started"
Alternatively, restart a service on all webservers:
$ ansible webservers -m service -a "name=httpd state=restarted"
Ensure a service is stopped:
$ ansible webservers -m service -a "name=httpd state=stopped"
Time Limited Background Operations
Long running operations can be backgrounded, and their status can be checked on later. The same job ID is given to the same task on all hosts, so you won’t lose track. If you kick hosts and don’t want to poll, it looks like this:
$ ansible all -B 3600 -a "/usr/bin/long_running_operation --do-stuff"
If you do decide you want to check on the job status later, you can:
$ ansible all -m async_status -a "jid=123456789"
Polling is built-in and looks like this:
$ ansible all -B 1800 -P 60 -a "/usr/bin/long_running_operation --do-stuff"
The above example says “run for 30 minutes max (-B: 30*60=1800), poll for status (-P) every 60 seconds”.
Poll mode is smart so all jobs will be started before polling will begin on any machine. Be sure to use a high enough --forks value if you want to get all of your jobs started very quickly. After the time limit (in seconds) runs out (-B), the process on the remote nodes will be terminated.
Typically you’ll only be backgrounding long-running shell commands or software upgrades only. Backgrounding the copy module does not do a background file transfer. Playbooks also support polling, and have a simplified syntax for this.
Facts are described in the playbooks section and represent discovered variables about a system. These can be used to implement conditional execution of tasks but also just to get ad-hoc information about your system. You can see all facts via:
$ ansible all -m setup
Its also possible to filter this output to just export certain facts, see the “setup” module documentation for details.
Read more about facts at Variables once you’re ready to read up on Playbooks.
See also
The Ansible Configuration File
All about the Ansible config file
About Modules
A list of available modules
Playbooks
Using Ansible for configuration management & deployment
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
The Ansible Configuration File
Topics
Certain settings in Ansible are adjustable via a configuration file. The stock configuration should be sufficient for most users, but there may be reasons you would want to change them.
Changes can be made and used in a configuration file which will be processed in the following order:
* ANSIBLE_CONFIG (an environment variable)
* ansible.cfg (in the current directory)
* .ansible.cfg (in the home directory)
* /etc/ansible/ansible.cfg
Prior to 1.5 the order was:
* ansible.cfg (in the current directory)
* ANSIBLE_CONFIG (an environment variable)
* .ansible.cfg (in the home directory)
* /etc/ansible/ansible.cfg
Ansible will process the above list and use the first file found. Settings in files are not merged.
Getting the latest configuration
If installing ansible from a package manager, the latest ansible.cfg should be present in /etc/ansible, possibly as a ”.rpmnew” file (or other) as appropriate in the case of updates.
If you have installed from pip or from source, however, you may want to create this file in order to override default settings in Ansible.
You may wish to consult the ansible.cfg in source control [https://raw.github.com/ansible/ansible/devel/examples/ansible.cfg] for all of the possible latest values.
Ansible also allows configuration of settings via environment variables. If these environment variables are set, they will override any setting loaded from the configuration file. These variables are for brevity not defined here, but look in ‘constants.py’ in the source tree if you want to use these. They are mostly considered to be a legacy system as compared to the config file, but are equally valid.
Explanation of values by section
The configuration file is broken up into sections. Most options are in the “general” section but some sections of the file are specific to certain connection types.
In the [defaults] section of ansible.cfg, the following settings are tunable:
Actions are pieces of code in ansible that enable things like module execution, templating, and so forth.
This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different locations:
action_plugins = /usr/share/ansible_plugins/action_plugins
Most users will not need to use this feature. See Developing Plugins for more details.
Ansible-managed is a string that can be inserted into files written by Ansible’s config templating system, if you use a string like:
{{ ansible_managed }}
The default configuration shows who modified a file and when:
ansible_managed = Ansible managed: {file} modified on %Y-%m-%d %H:%M:%S by {uid} on {host}
This is useful to tell users that a file has been placed by Ansible and manual changes are likely to be overwritten.
Note that if using this feature, and there is a date in the string, the template will be reported changed each time as the date is updated.
This controls whether an Ansible playbook should prompt for a password by default. The default behavior is no:
#ask_pass=True
If using SSH keys for authentication, it’s probably not needed to change this setting.
Similar to ask_pass, this controls whether an Ansible playbook should prompt for a sudo password by default when sudoing. The default behavior is also no:
#ask_sudo_pass=True
Users on platforms where sudo passwords are enabled should consider changing this setting.
This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different locations:
callback_plugins = /usr/share/ansible_plugins/callback_plugins
Most users will not need to use this feature. See Developing Plugins for more details
This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different locations:
connection_plugins = /usr/share/ansible_plugins/connection_plugins
Most users will not need to use this feature. See Developing Plugins for more details
New in version 1.3.
Allows disabling of deprecating warnings in ansible-playbook output:
deprecation_warnings = True
Deprecation warnings indicate usage of legacy features that are slated for removal in a future release of Ansible.
If set to False, ansible will not display any status for a task that is skipped. The default behavior is to display skipped tasks:
#display_skipped_hosts=True
Note that Ansible will always show the task header for any task, regardless of whether or not the task is skipped.
On by default since Ansible 1.3, this causes ansible to fail steps that reference variable names that are likely typoed:
#error_on_undefined_vars=True
If set to False, any ‘{{ template_expression }}’ that contains undefined variables will be rendered in a template or ansible action line exactly as written.
This indicates the command to use to spawn a shell under a sudo environment. Users may need to change this in rare instances to /bin/bash in rare instances when sudo is constrained, but in most cases it may be left as is:
#executable = /bin/bash
This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different locations:
filter_plugins = /usr/share/ansible_plugins/filter_plugins
Most users will not need to use this feature. See Developing Plugins for more details
This is the default number of parallel processes to spawn when communicating with remote hosts. Since Ansible 1.3, the fork number is automatically limited to the number of possible hosts, so this is really a limit of how much network and CPU load you think you can handle. Many users may set this to 50, some set it to 500 or more. If you have a large number of hosts, higher values will make actions across all of those hosts complete faster. The default is very very conservative:
forks=5
New in 1.6, the ‘gathering’ setting controls the default policy of facts gathering (variables discovered about remote systems).
The value ‘implicit’ is the default, meaning facts will be gathered per play unless ‘gather_facts: False’ is set in the play. The value ‘explicit’ is the inverse, facts will not be gathered unless directly requested in the play.
The value ‘smart’ means each new host that has no facts discovered will be scanned, but if the same host is addressed in multiple plays it will not be contacted again in the playbook run. This option can be useful for those wishing to save fact gathering time.
Ansible by default will override variables in specific precedence orders, as described in Variables. When a variable of higher precedence wins, it will replace the other value.
Some users prefer that variables that are hashes (aka ‘dictionaries’ in Python terms) are merged. This setting is called ‘merge’. This is not the default behavior and it does not affect variables whose values are scalars (integers, strings) or arrays. We generally recommend not using this setting unless you think you have an absolute need for it, and playbooks in the official examples repos do not use this setting:
#hash_behaviour=replace
The valid values are either ‘replace’ (the default) or ‘merge’.
This is the default location of the inventory file, script, or directory that Ansible will use to determine what hosts it has available to talk to:
hostfile = /etc/ansible/hosts
As described in Getting Started, host key checking is on by default in Ansible 1.3 and later. If you understand the implications and wish to disable it, you may do so here by setting the value to False:
host_key_checking=True
This is a developer-specific feature that allows enabling additional Jinja2 extensions:
jinja2_extensions = jinja2.ext.do,jinja2.ext.i18n
If you do not know what these do, you probably don’t need to change this setting :)
Ansible prefers to use Jinja2 syntax ‘{{ like_this }}’ to indicate a variable should be substituted in a particular string. However, older versions of playbooks used a more Perl-style syntax. This syntax was undesirable as it frequently conflicted with bash and was hard to explain to new users when referencing complicated variable hierarchies, so we have standardized on the ‘{{ jinja2 }}’ way.
To ensure a string like ‘$foo’ is not inadvertently replaced in a Perl or Bash script template, the old form of templating (which is still enabled as of Ansible 1.4) can be disabled like so
legacy_playbook_variables = no
This is the default location Ansible looks to find modules:
library = /usr/share/ansible
Ansible knows how to look in multiple locations if you feed it a colon separated path, and it also will look for modules in the ”./library” directory alongside a playbook.
If present and configured in ansible.cfg, Ansible will log information about executions at the designated location. Be sure the user running Ansible has permissions on the logfile:
log_path=/var/log/ansible.log
This behavior is not on by default. Note that ansible will, without this setting, record module arguments called to the syslog of managed machines. Password arguments are excluded.
For Enterprise users seeking more detailed logging history, you may be interested in Ansible Tower.
This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different locations:
lookup_plugins = /usr/share/ansible_plugins/lookup_plugins
Most users will not need to use this feature. See Developing Plugins for more details
This is to set the default language to communicate between the module and the system. By default, the value is ‘C’.
This is the default module name (-m) value for /usr/bin/ansible. The default is the ‘command’ module. Remember the command module doesn’t support shell variables, pipes, or quotes, so you might wish to change it to ‘shell’:
module_name = command
By default ansible will try to colorize output to give a better indication of failure and status information. If you dislike this behavior you can turn it off by setting ‘nocolor’ to 1:
nocolor=0
By default ansible will take advantage of cowsay if installed to make /usr/bin/ansible-playbook runs more exciting. Why? We believe systems management should be a happy experience. If you do not like the cows, you can disable them by setting ‘nocows’ to 1:
nocows=0
This is the default group of hosts to talk to in a playbook if no “hosts:” stanza is supplied. The default is to talk to all hosts. You may wish to change this to protect yourself from surprises:
hosts=*
Note that /usr/bin/ansible always requires a host pattern and does not use this setting, only /usr/bin/ansible-playbook.
For asynchronous tasks in Ansible (covered in Asynchronous Actions and Polling), this is how often to check back on the status of those tasks when an explicit poll interval is not supplied. The default is a reasonably moderate 15 seconds which is a tradeoff between checking in frequently and providing a quick turnaround when something may have completed:
poll_interval=15
If you are using a pem file to authenticate with machines rather than SSH agent or passwords, you can set the default value here to avoid re-specifying --ansible-private-keyfile with every invocation:
private_key_file=/path/to/file.pem
This sets the default SSH port on all of your systems, for systems that didn’t specify an alternative value in inventory. The default is the standard 22:
remote_port = 22
Ansible works by transferring modules to your remote machines, running them, and then cleaning up after itself. In some cases, you may not wish to use the default location and would like to change the path. You can do so by altering this setting:
remote_tmp = $HOME/.ansible/tmp
The default is to use a subdirectory of the user’s home directory. Ansible will then choose a random directory name inside this location.
This is the default username ansible will connect as for /usr/bin/ansible-playbook. Note that /usr/bin/ansible will always default to the current user if this is not defined:
remote_user = root
The roles path indicate additional directories beyond the ‘roles/’ subdirectory of a playbook project to search to find Ansible roles. For instance, if there was a source control repository of common roles and a different repository of playbooks, you might choose to establish a convention to checkout roles in /opt/mysite/roles like so:
roles_path = /opt/mysite/roles
Additional paths can be provided separated by colon characters, in the same way as other pathstrings:
roles_path = /opt/mysite/roles:/opt/othersite/roles
Roles will be first searched for in the playbook directory. Should a role not be found, it will indicate all the possible paths that were searched.
If using an alternative sudo implementation on remote machines, the path to sudo can be replaced here provided the sudo implementation is matching CLI flags with the standard sudo:
sudo_exe=sudo
Additional flags to pass to sudo when engaging sudo support. The default is ‘-H’ which preserves the environment of the original user. In some situations you may wish to add or remote flags, but in general most users will not need to change this setting:
sudo_flags=-H
This is the default user to sudo to if --sudo-user is not specified or ‘sudo_user’ is not specified in an Ansible playbook. The default is the most logical: ‘root’:
sudo_user=root
New in version 1.6.
Allows disabling of warnings related to potential issues on the system running ansible itself (not on the managed hosts):
system_warnings = True
These may include warnings about 3rd party packages or other conditions that should be resolved if possible.
This is the default SSH timeout to use on connection attempts:
timeout = 10
This is the default transport to use if “-c <transport_name>” is not specified to /usr/bin/ansible or /usr/bin/ansible-playbook. The default is ‘smart’, which will use ‘ssh’ (OpenSSH based) if the local operating system is new enough to support ControlPersist technology, and then will otherwise use ‘paramiko’. Other transport options include ‘local’, ‘chroot’, ‘jail’, and so on.
Users should usually leave this setting as ‘smart’ and let their playbooks choose an alternate setting when needed with the ‘connection:’ play parameter.
This is a developer-centric feature that allows low-level extensions around Ansible to be loaded from different locations:
vars_plugins = /usr/share/ansible_plugins/vars_plugins
Most users will not need to use this feature. See Developing Plugins for more details
Paramiko is the default SSH connection implementation on Enterprise Linux 6 or earlier, and is not used by default on other platforms. Settings live under the [paramiko] header.
The default setting of yes will record newly discovered and approved (if host key checking is enabled) hosts in the user’s hostfile. This setting may be inefficient for large numbers of hosts, and in those situations, using the ssh transport is definitely recommended instead. Setting it to False will improve performance and is recommended when host key checking is disabled:
record_host_keys=True
Under the [ssh_connection] header, the following settings are tunable for SSH connections. OpenSSH is the default connection type for Ansible on OSes that are new enough to support ControlPersist. (This means basically all operating systems except Enterprise Linux 6 or earlier).
If set, this will pass a specific set of options to Ansible rather than Ansible’s usual defaults:
ssh_args = -o ControlMaster=auto -o ControlPersist=60s
In particular, users may wish to raise the ControlPersist time to encourage performance. A value of 30 minutes may be appropriate.
This is the location to save ControlPath sockets. This defaults to:
control_path=%(directory)s/ansible-ssh-%%h-%%p-%%r
On some systems with very long hostnames or very long path names (caused by long user names or deeply nested home directories) this can exceed the character limit on file socket names (108 characters for most platforms). In that case, you may wish to shorten the string to something like the below:
control_path = %(directory)s/%%h-%%r
Ansible 1.4 and later will instruct users to run with “-vvvv” in situations where it hits this problem and if so it is easy to tell there is too long of a Control Path filename. This may be frequently encountered on EC2.
Occasionally users may be managing a remote system that doesn’t have SFTP enabled. If set to True, we can cause scp to be used to transfer remote files instead:
scp_if_ssh=False
There’s really no reason to change this unless problems are encountered, and then there’s also no real drawback to managing the switch. Most environments support SFTP by default and this doesn’t usually need to be changed.
Enabling pipelining reduces the number of SSH operations required to execute a module on the remote server, by executing many ansible modules without actual file transfer. This can result in a very significant performance improvement when enabled, however when using “sudo:” operations you must first disable ‘requiretty’ in /etc/sudoers on all managed hosts.
By default, this option is disabled to preserve compatibility with sudoers configurations that have requiretty (the default on many distros), but is highly recommended if you can enable it, eliminating the need for Accelerated Mode:
pipelining=False
Under the [accelerate] header, the following settings are tunable for Accelerated Mode. Acceleration is a useful performance feature to use if you cannot enable pipelining in your environment, but is probably not needed if you can.
New in version 1.3.
This is the port to use for accelerate mode:
accelerate_port = 5099
New in version 1.4.
This setting controls the timeout for receiving data from a client. If no data is received during this time, the socket connection will be closed. A keepalive packet is sent back to the controller every 15 seconds, so this timeout should not be set lower than 15 (by default, the timeout is 30 seconds):
accelerate_timeout = 30
New in version 1.4.
This setting controls the timeout for the socket connect call, and should be kept relatively low. The connection to the accelerate_port will be attempted 3 times before Ansible will fall back to ssh or paramiko (depending on your default connection setting) to try and start the accelerate daemon remotely. The default setting is 1.0 seconds:
accelerate_connect_timeout = 1.0
Note, this value can be set to less than one second, however it is probably not a good idea to do so unless you’re on a very fast and reliable LAN. If you’re connecting to systems over the internet, it may be necessary to increase this timeout.
New in version 1.6.
This setting controls the timeout for the accelerated daemon, as measured in minutes. The default daemon timeout is 30 minutes:
accelerate_daemon_timeout = 30
Note, prior to 1.6, the timeout was hard-coded from the time of the daemon’s launch. For version 1.6+, the timeout is now based on the last activity to the daemon and is configurable via this option.
New in version 1.6.
If enabled, this setting allows multiple private keys to be uploaded to the daemon. Any clients connecting to the daemon must also enable this option:
accelerate_multi_key = yes
New clients first connect to the target node over SSH to upload the key, which is done via a local socket file, so they must have the same access as the user that launched the daemon originally.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
As you may have already read, Ansible manages Linux/Unix machines using SSH by default.
Starting in version 1.7, Ansible also contains support for managing Windows machines. This uses native powershell remoting, rather than SSH.
Ansible will still be run from a Linux control machine, and uses the “winrm” Python module to talk to remote hosts.
No additional software needs to be installed on the remote machines for Ansible to manage them, it still maintains the agentless properties that make it popular on Linux/Unix.
Note that it is expected you have a basic understanding of Ansible prior to jumping into this section, so if you haven’t written a Linux playbook first, it might be worthwhile to dig in there first.
Installing on the Control Machine
On a Linux control machine:
pip install http://github.com/diyan/pywinrm/archive/master.zip#egg=pywinrm
Ansible’s windows support relies on a few standard variables to indicate the username, password, and connection type (windows) of the remote hosts. These variables are most easily set up in inventory. This is used instead of SSH-keys or passwords as normally fed into Ansible:
[windows]
winserver1.example.com
winserver2.example.com
In group_vars/windows.yml, define the following inventory variables:
it is suggested that these be encrypted with ansible-vault:
ansible-vault edit group_vars/windows.yml
ansible_ssh_user: Administrator
ansible_ssh_pass: SekritPasswordGoesHere
ansible_ssh_port: 5986
ansible_connection: winrm
Notice that the ssh_port is not actually for SSH, but this is a holdover variable name from how Ansible is mostly an SSH-oriented system. Again, Windows management will not happen over SSH.
When using your playbook, don’t forget to specify –ask-vault-pass to provide the password to unlock the file.
Test your configuration like so, by trying to contact your Windows nodes. Note this is not an ICMP ping, but tests the Ansible communication channel that leverages Windows remoting:
ansible windows [-i inventory] -m win_ping --ask-vault-pass
If you haven’t done anything to prep your systems yet, this won’t work yet. This is covered in a later section about how to enable powershell remoting - and if neccessary - how to upgrade powershell to a version that is 3 or higher.
You’ll run this command again later though, to make sure everything is working.
In order for Ansible to manage your windows machines, you will have to enable Powershell remoting first, which also enables WinRM.
From the Windows host, launch the Powershell Client. For information on Powershell, visit Microsoft’s Using Powershell article [http://technet.microsoft.com/en-us/library/dn425048.aspx].
In the powershell session, run the following to enable PS Remoting and set the execution policy
$ Enable-PSRemoting -Force
$ Set-ExecutionPolicy RemoteSigned
If your Windows firewall is enabled, you must also run the following command to allow firewall access to the public firewall profile:
Windows 2012 / 2012R2
$ Set-NetFirewallRule -Name "WINRM-HTTP-In-TCP-PUBLIC" -RemoteAddress Any
Windows 2008 / 2008R2
$ NetSH ADVFirewall Set AllProfiles Settings remotemanagement Enable
By default, Powershell remoting enables an HTTP listener. The following commands enable an HTTPS listener, which secures communication between the Control Machine and windows.
An SSL certificate for server authentication is required to create the HTTPS listener. The existence of an existing certificate in the computer account can be verified by using the MMC snap-in.
A best practice for SSL certificates is generating them from an internal or external certificate authority. An existing certificate could be located in the computer account certificate store using the following article [http://technet.microsoft.com/en-us/library/cc754431.aspx#BKMK_computer].
Alternatively, a self-signed SSL certificate can be generated in powershell using the following technet article [http://social.technet.microsoft.com/wiki/contents/articles/4714.how-to-generate-a-self-signed-certificate-using-powershell.aspx]. At a minimum, the subject name should match the hostname, and Server Authentication is required. Once the self signed certificate is obtained, the certificate thumbprint can be identified using How to: Retrieve the Thumbprint of a Certificate [http://msdn.microsoft.com/en-us/library/ms734695%28v=vs.110%29.aspx].
Create the https listener
$ winrm create winrm/config/Listener?Address=*+Transport=HTTPS @{Hostname="host_name";CertificateThumbprint="certificate_thumbprint"}
Delete the http listener
$ WinRM delete winrm/config/listener?Address=*+Transport=HTTP
Again, if your Windows firewall is enabled, the following command to allow firewall access to the HTTPS listener:
Windows 2008 / 2008R2 / 2012 / 2012R2
$ netsh advfirewall firewall add rule Profile=public name="Allow WinRM HTTPS" dir=in localport=5986 protocol=TCP action=allow
It’s time to verify things are working:
ansible windows [-i inventory] -m win_ping --ask-vault-pass
However, if you are still running Powershell 2.0 on remote systems, it’s time to use Ansible to upgrade powershell before proceeding further, as some of the Ansible modules will require Powershell 3.0.
In the future, Ansible may provide a shortcut installer that automates these steps for prepping a Windows machine.
Getting to Powershell 3.0 or higher
Powershell 3.0 or higher is needed for most provided Ansible modules for Windows.
Looking at an ansible checkout, copy the examples/scripts/upgrade_to_ps3.ps1 [https://github.com/cchurch/ansible/blob/devel/examples/scripts/upgrade_to_ps3.ps1] script onto the remote host and run a powershell console as an administrator. You will now be running Powershell 3 and can try connectivity again using the win_ping technique referenced above.
Most of the Ansible modules in core Ansible are written for a combination of Linux/Unix machines and arbitrary web services, though there are various Windows modules as listed in the “windows” subcategory of the Ansible module index [http://docs.ansible.com/list_of_windows_modules.html].
Browse this index to see what is available.
In many cases, it may not be neccessary to even write or use an Ansible module.
In particular, the “script” module can be used to run arbitrary powershell scripts, allowing Windows administrators familiar with powershell a very native way to do things, as in the following playbook:
- hosts: windows
tasks:
- script: foo.ps1 --argument --other-argument
Note there are a few other Ansible modules that don’t start with “win” that also function, including “slurp”, “raw”, and “setup” (which is how fact gathering works).
Developers: Supported modules and how it works
Developing ansible modules are covered in a later section of the documentation [http://developing_modules.html], with a focus on Linux/Unix. What if you want to write Windows modules for ansible though?
For Windows, ansible modules are implemented in Powershell. Skim those Linux/Unix module development chapters before proceeding.
Windows modules live in a “windows/” subfolder in the Ansible “library/” subtree. For example, if a module is named “library/windows/win_ping”, there will be embedded documentation in the “win_ping” file, and the actual powershell code will live in a “win_ping.ps1” file. Take a look at the sources and this will make more sense.
Modules (ps1 files) should start as follows:
#!powershell
<license>
WANT_JSON
POWERSHELL_COMMON
code goes here, reading in stdin as JSON and outputting JSON
The above magic is neccessary to tell Ansible to mix in some common code and also know how to push modules out. The common code contains some nice wrappers around working with hash data structures and emitting JSON results, and possibly a few mpmore useful things. Regular Ansible has this same concept for reusing Python code - this is just the windows equivalent.
What modules you see in windows/ are just a start. Additional modules may be submitted as pull requests to github.
Reminder: You Must Have a Linux Control Machine
Note running Ansible from a Windows control machine is NOT a goal of the project. Refrain from asking for this feature, as it limits what technologies, features, and code we can use in the main project in the future. A Linux control machine will be required to manage Windows hosts.
Cygwin is not supported, so please do not ask questions about Ansible running from Cygwin.
Just as with Linux/Unix, facts can be gathered for windows hosts, which will return things such as the operating system version. To see what variables are available about a windows host, run the following:
ansible winhost.example.com -m setup
Note that this command invocation is exactly the same as the Linux/Unix equivalent.
Look to the list of windows modules for most of what is possible, though also some modules like “raw” and “script” also work on Windows, as do “fetch” and “slurp”.
Here is an example of pushing and running a powershell script:
- name: test script module
hosts: windows
tasks:
- name: run test script
script: files/test_script.ps1
Running individual commands uses the ‘raw’ module, as opposed to the shell or command module as is common on Linux/Unix operating systems:
- name: test raw module
hosts: windows
tasks:
- name: run ipconfig
raw: ipconfig
register: ipconfig
- debug: var=ipconfig
And for a final example, here’s how to use the win_stat module to test for file existance. Note that the data returned byt he win_stat module is slightly different than what is provided by the Linux equivalent:
- name: test stat module
hosts: windows
tasks:
- name: test stat module on file
win_stat: path="C:/Windows/win.ini"
register: stat_file
- debug: var=stat_file
- name: check stat_file result
assert:
that:
- "stat_file.stat.exists"
- "not stat_file.stat.isdir"
- "stat_file.stat.size > 0"
- "stat_file.stat.md5"
Again, recall that the Windows modules are all listed in the Windows category of modules, with the exception that the “raw”, “script”, and “fetch” modules are also available. These modules do not start with a “win” prefix.
Windows support in Ansible is still very new, and contributions are quite welcome, whether this is in the form of new modules, tweaks to existing modules, documentation, or something else. Please stop by the ansible-devel mailing list if you would like to get involved and say hi.
See also
Developing Modules
How to write modules
Playbooks
Learning ansible’s configuration management language
List of Windows Modules [http://docs.ansible.com/list_of_windows_modules.html]
Windows specific module list, all implemented in powershell
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Quickstart Video
We’ve recorded a short video that shows how to get started with Ansible that you may like to use alongside the documentation.
The quickstart video [http://ansible.com/ansible-resources] is about 20 minutes long and will show you some of the basics about your first steps with Ansible.
Enjoy, and be sure to visit the rest of the documentation to learn more.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Playbooks
Playbooks are Ansible’s configuration, deployment, and orchestration language. They can describe a policy you want your remote systems to enforce, or a set of steps in a general IT process.
If Ansible modules are the tools in your workshop, playbooks are your design plans.
At a basic level, playbooks can be used to manage configurations of and deployments to remote machines. At a more advanced level, they can sequence multi-tier rollouts involving rolling updates, and can delegate actions to other hosts, interacting with monitoring servers and load balancers along the way.
While there’s a lot of information here, there’s no need to learn everything at once. You can start small and pick up more features over time as you need them.
Playbooks are designed to be human-readable and are developed in a basic text language. There are multiple ways to organize playbooks and the files they include, and we’ll offer up some suggestions on that and making the most out of Ansible.
It is recommended to look at Example Playbooks [https://github.com/ansible/ansible-examples] while reading along with the playbook documentation. These illustrate best practices as well as how to put many of the various concepts together.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Intro to Playbooks
About Playbooks
Playbooks are a completely different way to use ansible than in adhoc task execution mode, and are particularly powerful.
Simply put, playbooks are the basis for a really simple configuration management and multi-machine deployment system, unlike any that already exist, and one that is very well suited to deploying complex applications.
Playbooks can declare configurations, but they can also orchestrate steps of any manual ordered process, even as different steps must bounce back and forth between sets of machines in particular orders. They can launch tasks synchronously or asynchronously.
While you might run the main /usr/bin/ansible program for ad-hoc tasks, playbooks are more likely to be kept in source control and used to push out your configuration or assure the configurations of your remote systems are in spec.
There are also some full sets of playbooks illustrating a lot of these techniques in the ansible-examples repository [https://github.com/ansible/ansible-examples]. We’d recommend looking at these in another tab as you go along.
There are also many jumping off points after you learn playbooks, so hop back to the documentation index after you’re done with this section.
Playbook Language Example
Playbooks are expressed in YAML format (see YAML Syntax) and have a minimum of syntax, which intentionally tries to not be a programming language or script, but rather a model of a configuration or a process.
Each playbook is composed of one or more ‘plays’ in a list.
The goal of a play is to map a group of hosts to some well defined roles, represented by things ansible calls tasks. At a basic level, a task is nothing more than a call to an ansible module, which you should have learned about in earlier chapters.
By composing a playbook of multiple ‘plays’, it is possible to orchestrate multi-machine deployments, running certain steps on all machines in the webservers group, then certain steps on the database server group, then more commands back on the webservers group, etc.
“plays” are more or less a sports analogy. You can have quite a lot of plays that affect your systems to do different things. It’s not as if you were just defining one particular state or model, and you can run different plays at different times.
For starters, here’s a playbook that contains just one play:

- hosts: webservers
vars:
http_port: 80
max_clients: 200
remote_user: root
tasks:
- name: ensure apache is at the latest version
yum: pkg=httpd state=latest
- name: write the apache config file
template: src=/srv/httpd.j2 dest=/etc/httpd.conf
notify:
- restart apache
- name: ensure apache is running
service: name=httpd state=started
handlers:
- name: restart apache
service: name=httpd state=restarted
Below, we’ll break down what the various features of the playbook language are.
Basics
Hosts and Users
For each play in a playbook, you get to choose which machines in your infrastructure to target and what remote user to complete the steps (called tasks) as.
The hosts line is a list of one or more groups or host patterns, separated by colons, as described in the Patterns documentation. The remote_user is just the name of the user account:

- hosts: webservers
remote_user: root
Note
The remote_user parameter was formerly called just user. It was renamed in Ansible 1.4 to make it more distinguishable from the user module (used to create users on remote systems).
Remote users can also be defined per task:

- hosts: webservers
remote_user: root
tasks:
- name: test connection
ping:
remote_user: yourname
Note
The remote_user parameter for tasks was added in 1.4.
Support for running things from sudo is also available:

- hosts: webservers
remote_user: yourname
sudo: yes
You can also use sudo on a particular task instead of the whole play:

- hosts: webservers
remote_user: yourname
tasks:
- service: name=nginx state=started
sudo: yes
You can also login as you, and then sudo to different users than root:

- hosts: webservers
remote_user: yourname
sudo: yes
sudo_user: postgres
If you need to specify a password to sudo, run ansible-playbook with --ask-sudo-pass (-K). If you run a sudo playbook and the playbook seems to hang, it’s probably stuck at the sudo prompt. Just Control-C to kill it and run it again with -K.
Important
When using sudo_user to a user other than root, the module arguments are briefly written into a random tempfile in /tmp. These are deleted immediately after the command is executed. This only occurs when sudoing from a user like ‘bob’ to ‘timmy’, not when going from ‘bob’ to ‘root’, or logging in directly as ‘bob’ or ‘root’. If this concerns you that this data is briefly readable (not writable), avoid transferring uncrypted passwords with sudo_user set. In other cases, ‘/tmp’ is not used and this does not come into play. Ansible also takes care to not log password parameters.
Tasks list
Each play contains a list of tasks. Tasks are executed in order, one at a time, against all machines matched by the host pattern, before moving on to the next task. It is important to understand that, within a play, all hosts are going to get the same task directives. It is the purpose of a play to map a selection of hosts to tasks.
When running the playbook, which runs top to bottom, hosts with failed tasks are taken out of the rotation for the entire playbook. If things fail, simply correct the playbook file and rerun.
The goal of each task is to execute a module, with very specific arguments. Variables, as mentioned above, can be used in arguments to modules.
Modules are ‘idempotent’, meaning if you run them again, they will make only the changes they must in order to bring the system to the desired state. This makes it very safe to rerun the same playbook multiple times. They won’t change things unless they have to change things.
The command and shell modules will typically rerun the same command again, which is totally ok if the command is something like ‘chmod’ or ‘setsebool’, etc. Though there is a ‘creates’ flag available which can be used to make these modules also idempotent.
Every task should have a name, which is included in the output from running the playbook. This is output for humans, so it is nice to have reasonably good descriptions of each task step. If the name is not provided though, the string fed to ‘action’ will be used for output.
Tasks can be declared using the legacy “action: module options” format, but it is recommended that you use the more conventional “module: options” format. This recommended format is used throughout the documentation, but you may encounter the older format in some playbooks.
Here is what a basic task looks like, as with most modules, the service module takes key=value arguments:
tasks:
- name: make sure apache is running
service: name=httpd state=running
The command and shell modules are the only modules that just take a list of arguments and don’t use the key=value form. This makes them work as simply as you would expect:
tasks:
- name: disable selinux
command: /sbin/setenforce 0
The command and shell module care about return codes, so if you have a command whose successful exit code is not zero, you may wish to do this:
tasks:
- name: run this command and ignore the result
shell: /usr/bin/somecommand || /bin/true
Or this:
tasks:
- name: run this command and ignore the result
shell: /usr/bin/somecommand
ignore_errors: True
If the action line is getting too long for comfort you can break it on a space and indent any continuation lines:
tasks:
- name: Copy ansible inventory file to client
copy: src=/etc/ansible/hosts dest=/etc/ansible/hosts
owner=root group=root mode=0644
Variables can be used in action lines. Suppose you defined a variable called ‘vhost’ in the ‘vars’ section, you could do this:
tasks:
- name: create a virtual host file for {{ vhost }}
template: src=somefile.j2 dest=/etc/httpd/conf.d/{{ vhost }}
Those same variables are usable in templates, which we’ll get to later.
Now in a very basic playbook all the tasks will be listed directly in that play, though it will usually make more sense to break up tasks using the ‘include:’ directive. We’ll show that a bit later.
Action Shorthand
New in version 0.8.
Ansible prefers listing modules like this in 0.8 and later:
template: src=templates/foo.j2 dest=/etc/foo.conf
You will notice in earlier versions, this was only available as:
action: template src=templates/foo.j2 dest=/etc/foo.conf
The old form continues to work in newer versions without any plan of deprecation.
Handlers: Running Operations On Change
As we’ve mentioned, modules are written to be ‘idempotent’ and can relay when they have made a change on the remote system. Playbooks recognize this and have a basic event system that can be used to respond to change.
These ‘notify’ actions are triggered at the end of each block of tasks in a playbook, and will only be triggered once even if notified by multiple different tasks.
For instance, multiple resources may indicate that apache needs to be restarted because they have changed a config file, but apache will only be bounced once to avoid unnecessary restarts.
Here’s an example of restarting two services when the contents of a file change, but only if the file changes:
- name: template configuration file
template: src=template.j2 dest=/etc/foo.conf
notify:
- restart memcached
- restart apache
The things listed in the ‘notify’ section of a task are called handlers.
Handlers are lists of tasks, not really any different from regular tasks, that are referenced by name. Handlers are what notifiers notify. If nothing notifies a handler, it will not run. Regardless of how many things notify a handler, it will run only once, after all of the tasks complete in a particular play.
Here’s an example handlers section:
handlers:
- name: restart memcached
service: name=memcached state=restarted
- name: restart apache
service: name=apache state=restarted
Handlers are best used to restart services and trigger reboots. You probably won’t need them for much else.
Note
Notify handlers are always run in the order written.
Roles are described later on. It’s worthwhile to point out that handlers are automatically processed between ‘pre_tasks’, ‘roles’, ‘tasks’, and ‘post_tasks’ sections. If you ever want to flush all the handler commands immediately though, in 1.2 and later, you can:
tasks:
- shell: some tasks go here
- meta: flush_handlers
- shell: some other tasks
In the above example any queued up handlers would be processed early when the ‘meta’ statement was reached. This is a bit of a niche case but can come in handy from time to time.
Executing A Playbook
Now that you’ve learned playbook syntax, how do you run a playbook? It’s simple. Let’s run a playbook using a parallelism level of 10:
ansible-playbook playbook.yml -f 10
Ansible-Pull
Should you want to invert the architecture of Ansible, so that nodes check in to a central location, instead of pushing configuration out to them, you can.
Ansible-pull is a small script that will checkout a repo of configuration instructions from git, and then run ansible-playbook against that content.
Assuming you load balance your checkout location, ansible-pull scales essentially infinitely.
Run ansible-pull --help for details.
There’s also a clever playbook [https://github.com/ansible/ansible-examples/blob/master/language_features/ansible_pull.yml] available to configure ansible-pull via a crontab from push mode.
Tips and Tricks
Look at the bottom of the playbook execution for a summary of the nodes that were targeted and how they performed. General failures and fatal “unreachable” communication attempts are kept separate in the counts.
If you ever want to see detailed output from successful modules as well as unsuccessful ones, use the --verbose flag. This is available in Ansible 0.5 and later.
Ansible playbook output is vastly upgraded if the cowsay package is installed. Try it!
To see what hosts would be affected by a playbook before you run it, you can do this:
ansible-playbook playbook.yml --list-hosts
See also
YAML Syntax
Learn about YAML syntax
Best Practices
Various tips about managing playbooks in the real world
Ansible Documentation
Hop back to the documentation index for a lot of special topics about playbooks
About Modules
Learn about available modules
Developing Modules
Learn how to extend Ansible by writing your own modules
Patterns
Learn about how to select hosts
Github examples directory [https://github.com/ansible/ansible-examples]
Complete end-to-end playbook examples
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Playbook Roles and Include Statements
Topics
While it is possible to write a playbook in one very large file (and you might start out learning playbooks this way), eventually you’ll want to reuse files and start to organize things.
At a basic level, including task files allows you to break up bits of configuration policy into smaller files. Task includes pull in tasks from other files. Since handlers are tasks too, you can also include handler files from the ‘handlers:’ section.
See Playbooks if you need a review of these concepts.
Playbooks can also include plays from other playbook files. When that is done, the plays will be inserted into the playbook to form a longer list of plays.
When you start to think about it – tasks, handlers, variables, and so on – begin to form larger concepts. You start to think about modeling what something is, rather than how to make something look like something. It’s no longer “apply this handful of THINGS to these hosts”, you say “these hosts are dbservers” or “these hosts are webservers”. In programming, we might call that “encapsulating” how things work. For instance, you can drive a car without knowing how the engine works.
Roles in Ansible build on the idea of include files and combine them to form clean, reusable abstractions – they allow you to focus more on the big picture and only dive down into the details when needed.
We’ll start with understanding includes so roles make more sense, but our ultimate goal should be understanding roles – roles are great and you should use them every time you write playbooks.
See the ansible-examples [https://github.com/ansible/ansible-examples] repository on GitHub for lots of examples of all of this put together. You may wish to have this open in a separate tab as you dive in.
Task Include Files And Encouraging Reuse
Suppose you want to reuse lists of tasks between plays or playbooks. You can use include files to do this. Use of included task lists is a great way to define a role that system is going to fulfill. Remember, the goal of a play in a playbook is to map a group of systems into multiple roles. Let’s see what this looks like...
A task include file simply contains a flat list of tasks, like so:

possibly saved as tasks/foo.yml
- name: placeholder foo
command: /bin/foo
- name: placeholder bar
command: /bin/bar
Include directives look like this, and can be mixed in with regular tasks in a playbook:
tasks:
- include: tasks/foo.yml
You can also pass variables into includes. We call this a ‘parameterized include’.
For instance, if deploying multiple wordpress instances, I could contain all of my wordpress tasks in a single wordpress.yml file, and use it like so:
tasks:
- include: wordpress.yml user=timmy
- include: wordpress.yml user=alice
- include: wordpress.yml user=bob
If you are running Ansible 1.4 and later, include syntax is streamlined to match roles, and also allows passing list and dictionary parameters:
tasks:
- { include: wordpress.yml, user: timmy, ssh_keys: ['keys/one.txt', 'keys/two.txt'] }
Using either syntax, variables passed in can then be used in the included files. We’ve already covered them a bit in Variables. You can reference them like this:
{{ user }}
(In addition to the explicitly passed-in parameters, all variables from the vars section are also available for use here as well.)
Starting in 1.0, variables can also be passed to include files using an alternative syntax, which also supports structured variables:
tasks:
- include: wordpress.yml
vars:
remote_user: timmy
some_list_variable:
- alpha
- beta
- gamma
Playbooks can include other playbooks too, but that’s mentioned in a later section.
Note
As of 1.0, task include statements can be used at arbitrary depth. They were previously limited to a single level, so task includes could not include other files containing task includes.
Includes can also be used in the ‘handlers’ section, for instance, if you want to define how to restart apache, you only have to do that once for all of your playbooks. You might make a handlers.yml that looks like:

this might be in a file like handlers/handlers.yml
- name: restart apache
service: name=apache state=restarted
And in your main playbook file, just include it like so, at the bottom of a play:
handlers:
- include: handlers/handlers.yml
You can mix in includes along with your regular non-included tasks and handlers.
Includes can also be used to import one playbook file into another. This allows you to define a top-level playbook that is composed of other playbooks.
For example:
- name: this is a play at the top level of a file
hosts: all
remote_user: root
tasks:
- name: say hi
tags: foo
shell: echo "hi..."
- include: load_balancers.yml
- include: webservers.yml
- include: dbservers.yml
Note that you cannot do variable substitution when including one playbook inside another.
Note
You can not conditionally path the location to an include file, like you can with ‘vars_files’. If you find yourself needing to do this, consider how you can restructure your playbook to be more class/role oriented. This is to say you cannot use a ‘fact’ to decide what include file to use. All hosts contained within the play are going to get the same tasks. (‘when‘ provides some ability for hosts to conditionally skip tasks).
New in version 1.2.
Now that you have learned about vars_files, tasks, and handlers, what is the best way to organize your playbooks? The short answer is to use roles! Roles are ways of automatically loading certain vars_files, tasks, and handlers based on a known file structure. Grouping content by roles also allows easy sharing of roles with other users.
Roles are just automation around ‘include’ directives as described above, and really don’t contain much additional magic beyond some improvements to search path handling for referenced files. However, that can be a big thing!
Example project structure:
site.yml
webservers.yml
fooservers.yml
roles/
common/
files/
templates/
tasks/
handlers/
vars/
meta/
webservers/
files/
templates/
tasks/
handlers/
vars/
meta/
In a playbook, it would look like this:

- hosts: webservers
roles:
- common
- webservers
This designates the following behaviors, for each role ‘x’:
In Ansible 1.4 and later you can configure a roles_path to search for roles. Use this to check all of your common roles out to one location, and share them easily between multiple playbook projects. See The Ansible Configuration File for details about how to set this up in ansible.cfg.
Note
Role dependencies are discussed below.
If any files are not present, they are just ignored. So it’s ok to not have a ‘vars/’ subdirectory for the role, for instance.
Note, you are still allowed to list tasks, vars_files, and handlers “loose” in playbooks without using roles, but roles are a good organizational feature and are highly recommended. If there are loose things in the playbook, the roles are evaluated first.
Also, should you wish to parameterize roles, by adding variables, you can do so, like this:

- hosts: webservers
roles:
- common
- { role: foo_app_instance, dir: '/opt/a', port: 5000 }
- { role: foo_app_instance, dir: '/opt/b', port: 5001 }
While it’s probably not something you should do often, you can also conditionally apply roles like so:

- hosts: webservers
roles:
- { role: some_role, when: "ansible_os_family == 'RedHat'" }
This works by applying the conditional to every task in the role. Conditionals are covered later on in the documentation.
Finally, you may wish to assign tags to the roles you specify. You can do so inline::

- hosts: webservers
roles:
- { role: foo, tags: ["bar", "baz"] }
If the play still has a ‘tasks’ section, those tasks are executed after roles are applied.
If you want to define certain tasks to happen before AND after roles are applied, you can do this:

- hosts: webservers
pre_tasks:
- shell: echo 'hello'
roles:
- { role: some_role }
tasks:
- shell: echo 'still busy'
post_tasks:
- shell: echo 'goodbye'
Note
If using tags with tasks (described later as a means of only running part of a playbook), be sure to also tag your pre_tasks and post_tasks and pass those along as well, especially if the pre and post tasks are used for monitoring outage window control or load balancing.
New in version 1.3.
Role default variables allow you to set default variables for included or dependent roles (see below). To create defaults, simply add a defaults/main.yml file in your role directory. These variables will have the lowest priority of any variables available, and can be easily overridden by any other variable, including inventory variables.
New in version 1.3.
Role dependencies allow you to automatically pull in other roles when using a role. Role dependencies are stored in the meta/main.yml file contained within the role directory. This file should contain a list of roles and parameters to insert before the specified role, such as the following in an example roles/myapp/meta/main.yml:

dependencies:
- { role: common, some_parameter: 3 }
- { role: apache, port: 80 }
- { role: postgres, dbname: blarg, other_parameter: 12 }
Role dependencies can also be specified as a full path, just like top level roles:

dependencies:
- { role: '/path/to/common/roles/foo', x: 1 }
Roles dependencies are always executed before the role that includes them, and are recursive. By default, roles can also only be added as a dependency once - if another role also lists it as a dependency it will not be run again. This behavior can be overridden by adding allow_duplicates: yes to the meta/main.yml file. For example, a role named ‘car’ could add a role named ‘wheel’ to its dependencies as follows:

dependencies:
- { role: wheel, n: 1 }
- { role: wheel, n: 2 }
- { role: wheel, n: 3 }
- { role: wheel, n: 4 }
And the meta/main.yml for wheel contained the following:

allow_duplicates: yes
dependencies:
- { role: tire }
- { role: brake }
The resulting order of execution would be as follows:
tire(n=1)
brake(n=1)
wheel(n=1)
tire(n=2)
brake(n=2)
wheel(n=2)
...
car
Note
Variable inheritance and scope are detailed in the Variables.
This is an advanced topic that should not be relevant for most users.
If you write a custom module (see Developing Modules) you may wish to distribute it as part of a role. Generally speaking, Ansible as a project is very interested in taking high-quality modules into ansible core for inclusion, so this shouldn’t be the norm, but it’s quite easy to do.
A good example for this is if you worked at a company called AcmeWidgets, and wrote an internal module that helped configure your internal software, and you wanted other people in your organization to easily use this module – but you didn’t want to tell everyone how to configure their Ansible library path.
Alongside the ‘tasks’ and ‘handlers’ structure of a role, add a directory named ‘library’. In this ‘library’ directory, then include the module directly inside of it.
Assuming you had this:
roles/
my_custom_modules/
library/
module1
module2
The module will be usable in the role itself, as well as any roles that are called after this role, as follows:
- hosts: webservers
roles:
- my_custom_modules
- some_other_role_using_my_custom_modules
- yet_another_role_using_my_custom_modules
This can also be used, with some limitations, to modify modules in Ansible’s core distribution, such as to use development versions of modules before they are released in production releases. This is not always advisable as API signatures may change in core components, however, and is not always guaranteed to work. It can be a handy way of carrying a patch against a core module, however, should you have good reason for this. Naturally the project prefers that contributions be directed back to github whenever possible via a pull request.
Ansible Galaxy [http://galaxy.ansible.com] is a free site for finding, downloading, rating, and reviewing all kinds of community developed Ansible roles and can be a great way to get a jumpstart on your automation projects.
You can sign up with social auth, and the download client ‘ansible-galaxy’ is included in Ansible 1.4.2 and later.
Read the “About” page on the Galaxy site for more information.
See also
YAML Syntax
Learn about YAML syntax
Playbooks
Review the basic Playbook language features
Best Practices
Various tips about managing playbooks in the real world
Variables
All about variables in playbooks
Conditionals
Conditionals in playbooks
Loops
Loops in playbooks
About Modules
Learn about available modules
Developing Modules
Learn how to extend Ansible by writing your own modules
GitHub Ansible examples [https://github.com/ansible/ansible-examples]
Complete playbook files from the GitHub project source
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
While automation exists to make it easier to make things repeatable, all of your systems are likely not exactly alike.
All of your systems are likely not the same. On some systems you may want to set some behavior or configuration that is slightly different from others.
Also, some of the observed behavior or state of remote systems might need to influence how you configure those systems. (Such as you might need to find out the IP address of a system and even use it as a configuration value on another system).
You might have some templates for configuration files that are mostly the same, but slightly different based on those variables.
Variables in Ansible are how we deal with differences between systems.
Once understanding variables you’ll also want to dig into Conditionals and Loops. Useful things like the “group_by” module and the “when” conditional can also be used with variables, and to help manage differences between systems.
It’s highly recommended that you consult the ansible-examples github repository to see a lot of examples of variables put to use.
What Makes A Valid Variable Name
Before we start using variables it’s important to know what are valid variable names.
Variable names should be letters, numbers, and underscores. Variables should always start with a letter.
“foo_port” is a great variable. “foo5” is fine too.
“foo-port”, “foo port”, “foo.port” and “12” are not valid variable names.
Easy enough, let’s move on.
Variables Defined in Inventory
We’ve actually already covered a lot about variables in another section, so far this shouldn’t be terribly new, but a bit of a refresher.
Often you’ll want to set variables based on what groups a machine is in. For instance, maybe machines in Boston want to use ‘boston.ntp.example.com’ as an NTP server.
See the Inventory document for multiple ways on how to define variables in inventory.
Variables Defined in a Playbook
In a playbook, it’s possible to define variables directly inline like so:
- hosts: webservers
vars:
http_port: 80
This can be nice as it’s right there when you are reading the playbook.
Variables defined from included files and roles
It turns out we’ve already talked about variables in another place too.
As described in Playbook Roles and Include Statements, variables can also be included in the playbook via include files, which may or may not be part of an “Ansible Role”. Usage of roles is preferred as it provides a nice organizational system.
It’s nice enough to know about how to define variables, but how do you use them?
Ansible allows you to reference variables in your playbooks using the Jinja2 templating system. While you can do a lot of complex things in Jinja, only the basics are things you really need to learn at first.
For instance, in a simple template, you can do something like:
My amp goes to {{ max_amp_value }}
And that will provide the most basic form of variable substitution.
This is also valid directly in playbooks, and you’ll occasionally want to do things like:
template: src=foo.cfg.j2 dest={{ remote_install_path }}/foo.cfg
In the above example, we used a variable to help decide where to place a file.
Inside a template you automatically have access to all of the variables that are in scope for a host. Actually it’s more than that – you can also read variables about other hosts. We’ll show how to do that in a bit.
Note
ansible allows Jinja2 loops and conditionals in templates, but in playbooks, we do not use them. Ansible playbooks are pure machine-parseable YAML. This is a rather important feature as it means it is possible to code-generate pieces of files, or to have other ecosystem tools read Ansible files. Not everyone will need this but it can unlock possibilities.
Note
These are infrequently utilized features. Use them if they fit a use case you have, but this is optional knowledge.
Filters in Jinja2 are a way of transforming template expressions from one kind of data into another. Jinja2 ships with many of these. See builtin filters [http://jinja.pocoo.org/docs/templates/#builtin-filters] in the official Jinja2 template documentation.
In addition to those, Ansible supplies many more.
The following filters will take a data structure in a template and render it in a slightly different format. These are occasionally useful for debugging:
{{ some_variable | to_nice_json }}
{{ some_variable | to_nice_yaml }}
Filters Often Used With Conditionals
The following tasks are illustrative of how filters can be used with conditionals:
tasks:
- shell: /usr/bin/foo
register: result
ignore_errors: True
- debug: msg="it failed"
when: result|failed
in most cases you'll want a handler, but if you want to do something right now, this is nice
- debug: msg="it changed"
when: result|changed
- debug: msg="it succeeded"
when: result|success
- debug: msg="it was skipped"
when: result|skipped
Forcing Variables To Be Defined
The default behavior from ansible and ansible.cfg is to fail if variables are undefined, but you can turn this off.
This allows an explicit check with this feature off:
{{ variable | mandatory }}
The variable value will be used as is, but the template evaluation will raise an error if it is undefined.
Defaulting Undefined Variables
Jinja2 provides a useful ‘default’ filter, that is often a better approach to failing if a variable is not defined:
{{ some_variable | default(5) }}
In the above example, if the variable ‘some_variable’ is not defined, the value used will be 5, rather than an error being raised.
All these functions return a unique set from sets or lists.
New in version 1.4.
To get a unique set from a list:
{{ list1 | unique }}
To get a union of two lists:
{{ list1 | union(list2) }}
To get the intersection of 2 lists (unique list of all items in both):
{{ list1 | intersect(list2) }}
To get the difference of 2 lists (items in 1 that don’t exist in 2):
{{ list1 | difference(list2) }}
To get the symmetric difference of 2 lists (items exclusive to each list):
{{ list1 | symmetric_difference(list2) }}
New in version 1.6.
To compare a version number, such as checking if the ansible_distribution_version version is greater than or equal to ‘12.04’, you can use the version_compare filter.
The version_compare filter can also be used to evaluate the ansible_distribution_version:
{{ ansible_distribution_version | version_compare('12.04', '>=') }}
If ansible_distribution_version is greater than or equal to 12, this filter will return True, otherwise it will return False.
The version_compare filter accepts the following operators:
<, lt, <=, le, >, gt, >=, ge, ==, =, eq, !=, <>, ne
This filter also accepts a 3rd parameter, strict which defines if strict version parsing should be used. The default is False, and if set as True will use more strict version parsing:
{{ sample_version_var | version_compare('1.0', operator='lt', strict=True) }}
New in version 1.6.
This filter can be used similar to the default jinja2 random filter (returning a random item from a sequence of items), but can also generate a random number based on a range.
To get a random item from a list:
{{ ['a','b','c']|random }} => 'c'
To get a random number from 0 to supplied end:
{{ 59 |random}} * * * * root /script/from/cron
Get a random number from 0 to 100 but in steps of 10:
{{ 100 |random(step=10) }} => 70
Get a random number from 1 to 100 but in steps of 10:
{{ 100 |random(1, 10) }} => 31
{{ 100 |random(start=1, step=10) }} => 51
To concatenate a list into a string:
{{ list | join(" ") }}
To get the last name of a file path, like ‘foo.txt’ out of ‘/etc/asdf/foo.txt’:
{{ path | basename }}
To get the directory from a path:
{{ path | dirname }}
To expand a path containing a tilde (~) character (new in version 1.5):
{{ path | expanduser }}
To work with Base64 encoded strings:
{{ encoded | b64decode }}
{{ decoded | b64encode }}
To take an md5sum of a filename:
{{ filename | md5 }}
To cast values as certain types, such as when you input a string as “True” from a vars_prompt and the system doesn’t know it is a boolean value:
- debug: msg=test
when: some_string_value | bool
To match strings against a regex, use the “match” or “search” filter:
vars:
url: "http://example.com/users/foo/resources/bar"
tasks:
- shell: "msg='matched pattern 1'"
when: url | match("http://example.com/users/.*/resources/.*")
- debug: "msg='matched pattern 2'"
when: url | search("/users/.*/resources/.*")
‘match’ will require a complete match in the string, while ‘search’ will require a match inside of the string.
To replace text in a string with regex, use the “regex_replace” filter:
convert "ansible" to "able"
{{ 'ansible' | regex_replace('^a.*i(.*)$', 'a\\1') }}
convert "foobar" to "bar"
{{ 'foobar' | regex_replace('^f.*o(.*)$', '\\1') }}
A few useful filters are typically added with each new Ansible release. The development documentation shows how to extend Ansible filters by writing your own as plugins, though in general, we encourage new ones to be added to core so everyone can make use of them.
YAML syntax requires that if you start a value with {{ foo }} you quote the whole line, since it wants to be sure you aren’t trying to start a YAML dictionary. This is covered on the YAML Syntax page.
This won’t work:
- hosts: app_servers
vars:
app_path: {{ base_path }}/22
Do it like this and you’ll be fine:
- hosts: app_servers
vars:
app_path: "{{ base_path }}/22"
Information discovered from systems: Facts
There are other places where variables can come from, but these are a type of variable that are discovered, not set by the user.
Facts are information derived from speaking with your remote systems.
An example of this might be the ip address of the remote host, or what the operating system is.
To see what information is available, try the following:
ansible hostname -m setup
This will return a ginormous amount of variable data, which may look like this, as taken from Ansible 1.4 on a Ubuntu 12.04 system:
"ansible_all_ipv4_addresses": [
"REDACTED IP ADDRESS"
],
"ansible_all_ipv6_addresses": [
"REDACTED IPV6 ADDRESS"
],
"ansible_architecture": "x86_64",
"ansible_bios_date": "09/20/2012",
"ansible_bios_version": "6.00",
"ansible_cmdline": {
"BOOT_IMAGE": "/boot/vmlinuz-3.5.0-23-generic",
"quiet": true,
"ro": true,
"root": "UUID=4195bff4-e157-4e41-8701-e93f0aec9e22",
"splash": true
},
"ansible_date_time": {
"date": "2013-10-02",
"day": "02",
"epoch": "1380756810",
"hour": "19",
"iso8601": "2013-10-02T23:33:30Z",
"iso8601_micro": "2013-10-02T23:33:30.036070Z",
"minute": "33",
"month": "10",
"second": "30",
"time": "19:33:30",
"tz": "EDT",
"year": "2013"
},
"ansible_default_ipv4": {
"address": "REDACTED",
"alias": "eth0",
"gateway": "REDACTED",
"interface": "eth0",
"macaddress": "REDACTED",
"mtu": 1500,
"netmask": "255.255.255.0",
"network": "REDACTED",
"type": "ether"
},
"ansible_default_ipv6": {},
"ansible_devices": {
"fd0": {
"holders": [],
"host": "",
"model": null,
"partitions": {},
"removable": "1",
"rotational": "1",
"scheduler_mode": "deadline",
"sectors": "0",
"sectorsize": "512",
"size": "0.00 Bytes",
"support_discard": "0",
"vendor": null
},
"sda": {
"holders": [],
"host": "SCSI storage controller: LSI Logic / Symbios Logic 53c1030 PCI-X Fusion-MPT Dual Ultra320 SCSI (rev 01)",
"model": "VMware Virtual S",
"partitions": {
"sda1": {
"sectors": "39843840",
"sectorsize": 512,
"size": "19.00 GB",
"start": "2048"
},
"sda2": {
"sectors": "2",
"sectorsize": 512,
"size": "1.00 KB",
"start": "39847934"
},
"sda5": {
"sectors": "2093056",
"sectorsize": 512,
"size": "1022.00 MB",
"start": "39847936"
}
},
"removable": "0",
"rotational": "1",
"scheduler_mode": "deadline",
"sectors": "41943040",
"sectorsize": "512",
"size": "20.00 GB",
"support_discard": "0",
"vendor": "VMware,"
},
"sr0": {
"holders": [],
"host": "IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)",
"model": "VMware IDE CDR10",
"partitions": {},
"removable": "1",
"rotational": "1",
"scheduler_mode": "deadline",
"sectors": "2097151",
"sectorsize": "512",
"size": "1024.00 MB",
"support_discard": "0",
"vendor": "NECVMWar"
}
},
"ansible_distribution": "Ubuntu",
"ansible_distribution_release": "precise",
"ansible_distribution_version": "12.04",
"ansible_domain": "",
"ansible_env": {
"COLORTERM": "gnome-terminal",
"DISPLAY": ":0",
"HOME": "/home/mdehaan",
"LANG": "C",
"LESSCLOSE": "/usr/bin/lesspipe %s %s",
"LESSOPEN": "| /usr/bin/lesspipe %s",
"LOGNAME": "root",
"LS_COLORS": "rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lz=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=00;36:*.au=00;36:*.flac=00;36:*.mid=00;36:*.midi=00;36:*.mka=00;36:*.mp3=00;36:*.mpc=00;36:*.ogg=00;36:*.ra=00;36:*.wav=00;36:*.axa=00;36:*.oga=00;36:*.spx=00;36:*.xspf=00;36:",
"MAIL": "/var/mail/root",
"OLDPWD": "/root/ansible/docsite",
"PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"PWD": "/root/ansible",
"SHELL": "/bin/bash",
"SHLVL": "1",
"SUDO_COMMAND": "/bin/bash",
"SUDO_GID": "1000",
"SUDO_UID": "1000",
"SUDO_USER": "mdehaan",
"TERM": "xterm",
"USER": "root",
"USERNAME": "root",
"XAUTHORITY": "/home/mdehaan/.Xauthority",
"_": "/usr/local/bin/ansible"
},
"ansible_eth0": {
"active": true,
"device": "eth0",
"ipv4": {
"address": "REDACTED",
"netmask": "255.255.255.0",
"network": "REDACTED"
},
"ipv6": [
{
"address": "REDACTED",
"prefix": "64",
"scope": "link"
}
],
"macaddress": "REDACTED",
"module": "e1000",
"mtu": 1500,
"type": "ether"
},
"ansible_form_factor": "Other",
"ansible_fqdn": "ubuntu2",
"ansible_hostname": "ubuntu2",
"ansible_interfaces": [
"lo",
"eth0"
],
"ansible_kernel": "3.5.0-23-generic",
"ansible_lo": {
"active": true,
"device": "lo",
"ipv4": {
"address": "127.0.0.1",
"netmask": "255.0.0.0",
"network": "127.0.0.0"
},
"ipv6": [
{
"address": "::1",
"prefix": "128",
"scope": "host"
}
],
"mtu": 16436,
"type": "loopback"
},
"ansible_lsb": {
"codename": "precise",
"description": "Ubuntu 12.04.2 LTS",
"id": "Ubuntu",
"major_release": "12",
"release": "12.04"
},
"ansible_machine": "x86_64",
"ansible_memfree_mb": 74,
"ansible_memtotal_mb": 991,
"ansible_mounts": [
{
"device": "/dev/sda1",
"fstype": "ext4",
"mount": "/",
"options": "rw,errors=remount-ro",
"size_available": 15032406016,
"size_total": 20079898624
}
],
"ansible_os_family": "Debian",
"ansible_pkg_mgr": "apt",
"ansible_processor": [
"Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz"
],
"ansible_processor_cores": 1,
"ansible_processor_count": 1,
"ansible_processor_threads_per_core": 1,
"ansible_processor_vcpus": 1,
"ansible_product_name": "VMware Virtual Platform",
"ansible_product_serial": "REDACTED",
"ansible_product_uuid": "REDACTED",
"ansible_product_version": "None",
"ansible_python_version": "2.7.3",
"ansible_selinux": false,
"ansible_ssh_host_key_dsa_public": "REDACTED KEY VALUE"
"ansible_ssh_host_key_ecdsa_public": "REDACTED KEY VALUE"
"ansible_ssh_host_key_rsa_public": "REDACTED KEY VALUE"
"ansible_swapfree_mb": 665,
"ansible_swaptotal_mb": 1021,
"ansible_system": "Linux",
"ansible_system_vendor": "VMware, Inc.",
"ansible_user_id": "root",
"ansible_userspace_architecture": "x86_64",
"ansible_userspace_bits": "64",
"ansible_virtualization_role": "guest",
"ansible_virtualization_type": "VMware"
In the above the model of the first harddrive may be referenced in a template or playbook as:
{{ ansible_devices.sda.model }}
Similarly, the hostname as the system reports it is:
{{ ansible_hostname }}
Facts are frequently used in conditionals (see Conditionals) and also in templates.
Facts can be also used to create dynamic groups of hosts that match particular criteria, see the About Modules documentation on ‘group_by’ for details, as well as in generalized conditional statements as discussed in the Conditionals chapter.
If you know you don’t need any fact data about your hosts, and know everything about your systems centrally, you can turn off fact gathering. This has advantages in scaling Ansible in push mode with very large numbers of systems, mainly, or if you are using Ansible on experimental platforms. In any play, just do this:
- hosts: whatever
gather_facts: no
New in version 1.3.
As discussed in the playbooks chapter, Ansible facts are a way of getting data about remote systems for use in playbook variables.
Usually these are discovered automatically by the ‘setup’ module in Ansible. Users can also write custom facts modules, as described in the API guide. However, what if you want to have a simple way to provide system or user provided data for use in Ansible variables, without writing a fact module?
For instance, what if you want users to be able to control some aspect about how their systems are managed? “Facts.d” is one such mechanism.
Note
Perhaps “local facts” is a bit of a misnomer, it means “locally supplied user values” as opposed to “centrally supplied user values”, or what facts are – “locally dynamically determined values”.
If a remotely managed system has an “/etc/ansible/facts.d” directory, any files in this directory ending in ”.fact”, can be JSON, INI, or executable files returning JSON, and these can supply local facts in Ansible.
For instance assume a /etc/ansible/facts.d/preferences.fact:
[general]
asdf=1
bar=2
This will produce a hash variable fact named “general” with ‘asdf’ and ‘bar’ as members. To validate this, run the following:
ansible <hostname> -m setup -a "filter=ansible_local"
And you will see the following fact added:
"ansible_local": {
"preferences": {
"general": {
"asdf" : "1",
"bar" : "2"
}
}
}
And this data can be accessed in a template/playbook as:
{{ ansible_local.preferences.general.asdf }}
The local namespace prevents any user supplied fact from overriding system facts or variables defined elsewhere in the playbook.
If you have a playbook that is copying over a custom fact and then running it, making an explicit call to re-run the setup module can allow that fact to be used during that particular play. Otherwise, it will be available in the next play that gathers fact information. Here is an example of what that might look like:
- hosts: webservers
tasks:
- name: create directory for ansible custom facts
file: state=directory recurse=yes path=/etc/ansible/facts.d
- name: install custom impi fact
copy: src=ipmi.fact dest=/etc/ansible/facts.d
- name: re-read facts after adding custom fact
setup: filter=ansible_local
In this pattern however, you could also write a fact module as well, and may wish to consider this as an option.
Another major use of variables is running a command and using the result of that command to save the result into a variable. Results will vary from module to module. Use of -v when executing playbooks will show possible values for the results.
The value of a task being executed in ansible can be saved in a variable and used later. See some examples of this in the Conditionals chapter.
While it’s mentioned elsewhere in that document too, here’s a quick syntax example:
- hosts: web_servers
tasks:
- shell: /usr/bin/foo
register: foo_result
ignore_errors: True
- shell: /usr/bin/bar
when: foo_result.rc == 5
Registered variables are valid on the host the remainder of the playbook run, which is the same as the lifetime of “facts” in Ansible. Effectively registered variables are just like facts.
Accessing Complex Variable Data
We already talked about facts a little higher up in the documentation.
Some provided facts, like networking information, are made available as nested data structures. To access them a simple {{ foo }} is not sufficient, but it is still easy to do. Here’s how we get an IP address:
{{ ansible_eth0["ipv4"]["address"] }}
OR alternatively:
{{ ansible_eth0.ipv4.address }}
Similarly, this is how we access the first element of an array:
{{ foo[0] }}
Magic Variables, and How To Access Information About Other Hosts
Even if you didn’t define them yourself, Ansible provides a few variables for you automatically. The most important of these are ‘hostvars’, ‘group_names’, and ‘groups’. Users should not use these names themselves as they are reserved. ‘environment’ is also reserved.
Hostvars lets you ask about the variables of another host, including facts that have been gathered about that host. If, at this point, you haven’t talked to that host yet in any play in the playbook or set of playbooks, you can get at the variables, but you will not be able to see the facts.
If your database server wants to use the value of a ‘fact’ from another node, or an inventory variable assigned to another node, it’s easy to do so within a template or even an action line:
{{ hostvars['test.example.com']['ansible_distribution'] }}
Additionally, group_names is a list (array) of all the groups the current host is in. This can be used in templates using Jinja2 syntax to make template source files that vary based on the group membership (or role) of the host:
{% if 'webserver' in group_names %}
some part of a configuration file that only applies to webservers
{% endif %}
groups is a list of all the groups (and hosts) in the inventory. This can be used to enumerate all hosts within a group. For example:
{% for host in groups['app_servers'] %}
something that applies to all app servers.
{% endfor %}
A frequently used idiom is walking a group to find all IP addresses in that group:
{% for host in groups['app_servers'] %}
{{ hostvars[host]['ansible_eth0']['ipv4']['address'] }}
{% endfor %}
An example of this could include pointing a frontend proxy server to all of the app servers, setting up the correct firewall rules between servers, etc.
Additionally, inventory_hostname is the name of the hostname as configured in Ansible’s inventory host file. This can be useful for when you don’t want to rely on the discovered hostname ansible_hostname or for other mysterious reasons. If you have a long FQDN, inventory_hostname_short also contains the part up to the first period, without the rest of the domain.
play_hosts is available as a list of hostnames that are in scope for the current play. This may be useful for filling out templates with multiple hostnames or for injecting the list into the rules for a load balancer.
Don’t worry about any of this unless you think you need it. You’ll know when you do.
Also available, inventory_dir is the pathname of the directory holding Ansible’s inventory host file, inventory_file is the pathname and the filename pointing to the Ansible’s inventory host file.
It’s a great idea to keep your playbooks under source control, but you may wish to make the playbook source public while keeping certain important variables private. Similarly, sometimes you may just want to keep certain information in different files, away from the main playbook.
You can do this by using an external variables file, or files, just like this:

- hosts: all
remote_user: root
vars:
favcolor: blue
vars_files:
- /vars/external_vars.yml
tasks:
- name: this is just a placeholder
command: /bin/echo foo
This removes the risk of sharing sensitive data with others when sharing your playbook source with them.
The contents of each variables file is a simple YAML dictionary, like this:

in the above example, this would be vars/external_vars.yml
somevar: somevalue
password: magic
Note
It’s also possible to keep per-host and per-group variables in very similar files, this is covered in Patterns.
Passing Variables On The Command Line
In addition to vars_prompt and vars_files, it is possible to send variables over the Ansible command line. This is particularly useful when writing a generic release playbook where you may want to pass in the version of the application to deploy:
ansible-playbook release.yml --extra-vars "version=1.23.45 other_variable=foo"
This is useful, for, among other things, setting the hosts group or the user for the playbook.
Example:

- hosts: '{{ hosts }}'
remote_user: '{{ user }}'
tasks:
- ...
ansible-playbook release.yml --extra-vars "hosts=vipers user=starbuck"
As of Ansible 1.2, you can also pass in extra vars as quoted JSON, like so:
--extra-vars '{"pacman":"mrs","ghosts":["inky","pinky","clyde","sue"]}'
The key=value form is obviously simpler, but it’s there if you need it!
As of Ansible 1.3, extra vars can be loaded from a JSON file with the “@” syntax:
--extra-vars "@some_file.json"
Also as of Ansible 1.3, extra vars can be formatted as YAML, either on the command line or in a file as above.
Note
This behavior is infrequently used in Ansible. You may wish to skip this section. The ‘group_by’ module as described in the module documentation is a better way to achieve this behavior in most cases.
Sometimes you will want to do certain things differently in a playbook based on certain criteria. Having one playbook that works on multiple platforms and OS versions is a good example.
As an example, the name of the Apache package may be different between CentOS and Debian, but it is easily handled with a minimum of syntax in an Ansible Playbook:

- hosts: all
remote_user: root
vars_files:
- "vars/common.yml"
- ["vars/{{ ansible_os_family }}.yml", "vars/os_defaults.yml"]
tasks:
- name: make sure apache is running
service: name={{ apache }} state=running
Note
The variable ‘ansible_os_family’ is being interpolated into the list of filenames being defined for vars_files.
As a reminder, the various YAML files contain just keys and values:

for vars/CentOS.yml
apache: httpd
somethingelse: 42
How does this work? If the operating system was ‘CentOS’, the first file Ansible would try to import would be ‘vars/CentOS.yml’, followed by ‘/vars/os_defaults.yml’ if that file did not exist. If no files in the list were found, an error would be raised. On Debian, it would instead first look towards ‘vars/Debian.yml’ instead of ‘vars/CentOS.yml’, before falling back on ‘vars/os_defaults.yml’. Pretty simple.
To use this conditional import feature, you’ll need facter or ohai installed prior to running the playbook, but you can of course push this out with Ansible if you like:
for facter
ansible -m yum -a "pkg=facter ensure=installed"
ansible -m yum -a "pkg=ruby-json ensure=installed"
for ohai
ansible -m yum -a "pkg=ohai ensure=installed"
Ansible’s approach to configuration – separating variables from tasks, keeps your playbooks from turning into arbitrary code with ugly nested ifs, conditionals, and so on - and results in more streamlined & auditable configuration rules – especially because there are a minimum of decision points to track.
Variable Precedence: Where Should I Put A Variable?
A lot of folks may ask about how variables override another. Ultimately it’s Ansible’s philosophy that it’s better you know where to put a variable, and then you have to think about it a lot less.
Avoid defining the variable “x” in 47 places and then ask the question “which x gets used”. Why? Because that’s not Ansible’s Zen philosophy of doing things.
There is only one Empire State Building. One Mona Lisa, etc. Figure out where to define a variable, and don’t make it complicated.
However, let’s go ahead and get precedence out of the way! It exists. It’s a real thing, and you might have a use for it.
If multiple variables of the same name are defined in different places, they win in a certain order, which is:
* -e variables always win
* then comes "most everything else"
* then comes variables defined in inventory
* then comes facts discovered about a system
* then "role defaults", which are the most "defaulty" and lose in priority to everything.
Note
In versions prior to 1.5.4, facts discovered about a system were in the “most everything else” category above.
That seems a little theoretical. Let’s show some examples and where you would choose to put what based on the kind of control you might want over values.
First off, group variables are super powerful.
Site wide defaults should be defined as a ‘group_vars/all’ setting. Group variables are generally placed alongside your inventory file. They can also be returned by a dynamic inventory script (see Dynamic Inventory) or defined in things like Ansible Tower from the UI or API:

file: /etc/ansible/group_vars/all
this is the site wide default
ntp_server: default-time.example.com
Regional information might be defined in a ‘group_vars/region’ variable. If this group is a child of the ‘all’ group (which it is, because all groups are), it will override the group that is higher up and more general:

file: /etc/ansible/group_vars/boston
ntp_server: boston-time.example.com
If for some crazy reason we wanted to tell just a specific host to use a specific NTP server, it would then override the group variable!:

file: /etc/ansible/host_vars/xyz.boston.example.com
ntp_server: override.example.com
So that covers inventory and what you would normally set there. It’s a great place for things that deal with geography or behavior. Since groups are frequently the entity that maps roles onto hosts, it is sometimes a shortcut to set variables on the group instead of defining them on a role. You could go either way.
Remember: Child groups override parent groups, and hosts always override their groups.
Next up: learning about role variable precedence.
We’ll pretty much assume you are using roles at this point. You should be using roles for sure. Roles are great. You are using roles aren’t you? Hint hint.
Ok, so if you are writing a redistributable role with reasonable defaults, put those in the ‘roles/x/defaults/main.yml’ file. This means the role will bring along a default value but ANYTHING in Ansible will override it. It’s just a default. That’s why it says “defaults” :) See Playbook Roles and Include Statements for more info about this:

file: roles/x/defaults/main.yml
if not overridden in inventory or as a parameter, this is the value that will be used
http_port: 80
if you are writing a role and want to ensure the value in the role is absolutely used in that role, and is not going to be overridden by inventory, you should put it in roles/x/vars/main.yml like so, and inventory values cannot override it. -e however, still will:

file: roles/x/vars/main.yml
this will absolutely be used in this role
http_port: 80
So the above is a great way to plug in constants about the role that are always true. If you are not sharing your role with others, app specific behaviors like ports is fine to put in here. But if you are sharing roles with others, putting variables in here might be bad. Nobody will be able to override them with inventory, but they still can by passing a parameter to the role.
Parameterized roles are useful.
If you are using a role and want to override a default, pass it as a parameter to the role like so:
roles:
- { name: apache, http_port: 8080 }
This makes it clear to the playbook reader that you’ve made a conscious choice to override some default in the role, or pass in some configuration that the role can’t assume by itself. It also allows you to pass something site-specific that isn’t really part of the role you are sharing with others.
This can often be used for things that might apply to some hosts multiple times, like so:
roles:
- { role: app_user, name: Ian }
- { role: app_user, name: Terry }
- { role: app_user, name: Graham }
- { role: app_user, name: John }
That’s a bit arbitrary, but you can see how the same role was invoked multiple Times. In that example it’s quite likely there was no default for ‘name’ supplied at all. Ansible can yell at you when variables aren’t defined – it’s the default behavior in fact.
So that’s a bit about roles.
There are a few bonus things that go on with roles.
Generally speaking, variables set in one role are available to others. This means if you have a “roles/common/vars/main.yml” you can set variables in there and make use of them in other roles and elsewhere in your playbook:
roles:
- { role: common_settings }
- { role: something, foo: 12 }
- { role: something_else }
Note
There are some protections in place to avoid the need to namespace variables. In the above, variables defined in common_settings are most definitely available to ‘app_user’ and ‘something_else’ tasks, but if “something’s” guaranteed to have foo set at 12, even if somewhere deep in common settings it set foo to 20.
So, that’s precedence, explained in a more direct way. Don’t worry about precedence, just think about if your role is defining a variable that is a default, or a “live” variable you definitely want to use. Inventory lies in precedence right in the middle, and if you want to forcibly override something, use -e.
If you found that a little hard to understand, take a look at the ansible-examples [https://github.com/ansible/ansible-examples] repo on our github for a bit more about how all of these things can work together.
See also
Playbooks
An introduction to playbooks
Conditionals
Conditional statements in playbooks
Loops
Looping in playbooks
Playbook Roles and Include Statements
Playbook organization by roles
Best Practices
Best practices in playbooks
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Often the result of a play may depend on the value of a variable, fact (something learned about the remote system), or previous task result. In some cases, the values of variables may depend on other variables. Further, additional groups can be created to manage hosts based on whether the hosts match other criteria. There are many options to control execution flow in Ansible.
Let’s dig into what they are.
Sometimes you will want to skip a particular step on a particular host. This could be something as simple as not installing a certain package if the operating system is a particular version, or it could be something like performing some cleanup steps if a filesystem is getting full.
This is easy to do in Ansible, with the when clause, which contains a Jinja2 expression (see Variables). It’s actually pretty simple:
tasks:
- name: "shutdown Debian flavored systems"
command: /sbin/shutdown -t now
when: ansible_os_family == "Debian"
A number of Jinja2 “filters” can also be used in when statements, some of which are unique and provided by Ansible. Suppose we want to ignore the error of one statement and then decide to do something conditionally based on success or failure:
tasks:
- command: /bin/false
register: result
ignore_errors: True
- command: /bin/something
when: result|failed
- command: /bin/something_else
when: result|success
- command: /bin/still/something_else
when: result|skipped
Note that was a little bit of foreshadowing on the ‘register’ statement. We’ll get to it a bit later in this chapter.
As a reminder, to see what facts are available on a particular system, you can do:
ansible hostname.example.com -m setup
Tip: Sometimes you’ll get back a variable that’s a string and you’ll want to do a math operation comparison on it. You can do this like so:
tasks:
- shell: echo "only on Red Hat 6, derivatives, and later"
when: ansible_os_family == "RedHat" and ansible_lsb.major_release|int >= 6
Note
the above example requires the lsb_release package on the target host in order to return the ansible_lsb.major_release fact.
Variables defined in the playbooks or inventory can also be used. An example may be the execution of a task based on a variable’s boolean value:
vars:
epic: true
Then a conditional execution might look like:
tasks:
- shell: echo "This certainly is epic!"
when: epic
or:
tasks:
- shell: echo "This certainly isn't epic!"
when: not epic
If a required variable has not been set, you can skip or fail using Jinja2’s defined test. For example:
tasks:
- shell: echo "I've got '{{ foo }}' and am not afraid to use it!"
when: foo is defined
- fail: msg="Bailing out. this play requires 'bar'"
when: bar is not defined
This is especially useful in combination with the conditional import of vars files (see below).
Note that when combining when with with_items (see Loops), be aware that the when statement is processed separately for each item. This is by design:
tasks:
- command: echo {{ item }}
with_items: [0, 2, 4, 6, 8, 10]
when: item > 5
It’s also easy to provide your own facts if you want, which is covered in Developing Modules. To run them, just make a call to your own custom fact gathering module at the top of your list of tasks, and variables returned there will be accessible to future tasks:
tasks:
- name: gather site specific fact data
action: site_facts
- command: /usr/bin/thingy
when: my_custom_fact_just_retrieved_from_the_remote_system == '1234'
Applying ‘when’ to roles and includes
Note that if you have several tasks that all share the same conditional statement, you can affix the conditional to a task include statement as below. Note this does not work with playbook includes, just task includes. All the tasks get evaluated, but the conditional is applied to each and every task:
- include: tasks/sometasks.yml
when: "'reticulating splines' in output"
Or with a role:
- hosts: webservers
roles:
- { role: debian_stock_config, when: ansible_os_family == 'Debian' }
You will note a lot of ‘skipped’ output by default in Ansible when using this approach on systems that don’t match the criteria. Read up on the ‘group_by’ module in the About Modules docs for a more streamlined way to accomplish the same thing.
Note
This is an advanced topic that is infrequently used. You can probably skip this section.
Sometimes you will want to do certain things differently in a playbook based on certain criteria. Having one playbook that works on multiple platforms and OS versions is a good example.
As an example, the name of the Apache package may be different between CentOS and Debian, but it is easily handled with a minimum of syntax in an Ansible Playbook:

- hosts: all
remote_user: root
vars_files:
- "vars/common.yml"
- ["vars/{{ ansible_os_family }}.yml", "vars/os_defaults.yml"]
tasks:
- name: make sure apache is running
service: name={{ apache }} state=running
Note
The variable ‘ansible_os_family’ is being interpolated into the list of filenames being defined for vars_files.
As a reminder, the various YAML files contain just keys and values:

for vars/CentOS.yml
apache: httpd
somethingelse: 42
How does this work? If the operating system was ‘CentOS’, the first file Ansible would try to import would be ‘vars/CentOS.yml’, followed by ‘/vars/os_defaults.yml’ if that file did not exist. If no files in the list were found, an error would be raised. On Debian, it would instead first look towards ‘vars/Debian.yml’ instead of ‘vars/CentOS.yml’, before falling back on ‘vars/os_defaults.yml’. Pretty simple.
To use this conditional import feature, you’ll need facter or ohai installed prior to running the playbook, but you can of course push this out with Ansible if you like:
for facter
ansible -m yum -a "pkg=facter ensure=installed"
ansible -m yum -a "pkg=ruby-json ensure=installed"
for ohai
ansible -m yum -a "pkg=ohai ensure=installed"
Ansible’s approach to configuration – separating variables from tasks, keeps your playbooks from turning into arbitrary code with ugly nested ifs, conditionals, and so on - and results in more streamlined & auditable configuration rules – especially because there are a minimum of decision points to track.
Selecting Files And Templates Based On Variables
Note
This is an advanced topic that is infrequently used. You can probably skip this section.
Sometimes a configuration file you want to copy, or a template you will use may depend on a variable. The following construct selects the first available file appropriate for the variables of a given host, which is often much cleaner than putting a lot of if conditionals in a template.
The following example shows how to template out a configuration file that was very different between, say, CentOS and Debian:
- name: template a file
template: src={{ item }} dest=/etc/myapp/foo.conf
with_first_found:
- files:
- {{ ansible_distribution }}.conf
- default.conf
paths:
- search_location_one/somedir/
- /opt/other_location/somedir/
Often in a playbook it may be useful to store the result of a given command in a variable and access it later. Use of the command module in this way can in many ways eliminate the need to write site specific facts, for instance, you could test for the existence of a particular program.
The ‘register’ keyword decides what variable to save a result in. The resulting variables can be used in templates, action lines, or when statements. It looks like this (in an obviously trivial example):
- name: test play
hosts: all
tasks:
- shell: cat /etc/motd
register: motd_contents
- shell: echo "motd contains the word hi"
when: motd_contents.stdout.find('hi') != -1
As shown previously, the registered variable’s string contents are accessible with the ‘stdout’ value. The registered result can be used in the “with_items” of a task if it is converted into a list (or already is a list) as shown below. “stdout_lines” is already available on the object as well though you could also call “home_dirs.stdout.split()” if you wanted, and could split by other fields:
- name: registered variable usage as a with_items list
hosts: all
tasks:
- name: retrieve the list of home directories
command: ls /home
register: home_dirs
- name: add home dirs to the backup spooler
file: path=/mnt/bkspool/{{ item }} src=/home/{{ item }} state=link
with_items: home_dirs.stdout_lines
same as with_items: home_dirs.stdout.split()
See also
Playbooks
An introduction to playbooks
Playbook Roles and Include Statements
Playbook organization by roles
Best Practices
Best practices in playbooks
Conditionals
Conditional statements in playbooks
Variables
All about variables
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Often you’ll want to do many things in one task, such as create a lot of users, install a lot of packages, or repeat a polling step until a certain result is reached.
This chapter is all about how to use loops in playbooks.
Topics
To save some typing, repeated tasks can be written in short-hand like so:
- name: add several users
user: name={{ item }} state=present groups=wheel
with_items:
- testuser1
- testuser2
If you have defined a YAML list in a variables file, or the ‘vars’ section, you can also do:
with_items: somelist
The above would be the equivalent of:
- name: add user testuser1
user: name=testuser1 state=present groups=wheel
- name: add user testuser2
user: name=testuser2 state=present groups=wheel
The yum and apt modules use with_items to execute fewer package manager transactions.
Note that the types of items you iterate over with ‘with_items’ do not have to be simple lists of strings. If you have a list of hashes, you can reference subkeys using things like:
- name: add several users
user: name={{ item.name }} state=present groups={{ item.groups }}
with_items:
- { name: 'testuser1', groups: 'wheel' }
- { name: 'testuser2', groups: 'root' }
Loops can be nested as well:
- name: give users access to multiple databases
mysql_user: name={{ item[0] }} priv={{ item[1] }}.*:ALL append_privs=yes password=foo
with_nested:
- ['alice', 'bob']
- ['clientdb', 'employeedb', 'providerdb']
As with the case of ‘with_items’ above, you can use previously defined variables. Just specify the variable’s name without templating it with ‘{{ }}’:
- name: here, 'users' contains the above list of employees
mysql_user: name={{ item[0] }} priv={{ item[1] }}.*:ALL append_privs=yes password=foo
with_nested:
- users
- ['clientdb', 'employeedb', 'providerdb']
New in version 1.5.
Suppose you have the following variable:

users:
alice:
name: Alice Appleworth
telephone: 123-456-7890
bob:
name: Bob Bananarama
telephone: 987-654-3210
And you want to print every user’s name and phone number. You can loop through the elements of a hash using with_dict like this:
tasks:
- name: Print phone records
debug: msg="User {{ item.key }} is {{ item.value.name }} ({{ item.value.telephone }})"
with_dict: users
with_fileglob matches all files in a single directory, non-recursively, that match a pattern. It can be used like this:

- hosts: all
tasks:
first ensure our target directory exists
- file: dest=/etc/fooapp state=directory
copy each file over that matches the given pattern
- copy: src={{ item }} dest=/etc/fooapp/ owner=root mode=600
with_fileglob:
- /playbooks/files/fooapp/*
Note
When using a relative path with with_fileglob in a role, Ansible resolves the path relative to the roles/<rolename>/files directory.
Looping over Parallel Sets of Data
Note
This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.
Suppose you have the following variable data was loaded in via somewhere:

alpha: ['a', 'b', 'c', 'd']
numbers: [1, 2, 3, 4]
And you want the set of ‘(a, 1)’ and ‘(b, 2)’ and so on. Use ‘with_together’ to get this:
tasks:
- debug: msg="{{ item.0 }} and {{ item.1 }}"
with_together:
- alpha
- numbers
Suppose you want to do something like loop over a list of users, creating them, and allowing them to login by a certain set of SSH keys.
How might that be accomplished? Let’s assume you had the following defined and loaded in via “vars_files” or maybe a “group_vars/all” file:

users:
- name: alice
authorized:
- /tmp/alice/onekey.pub
- /tmp/alice/twokey.pub
- name: bob
authorized:
- /tmp/bob/id_rsa.pub
It might happen like so:
- user: name={{ item.name }} state=present generate_ssh_key=yes
with_items: users
- authorized_key: "user={{ item.0.name }} key='{{ lookup('file', item.1) }}'"
with_subelements:
- users
- authorized
Subelements walks a list of hashes (aka dictionaries) and then traverses a list with a given key inside of those records.
The authorized_key pattern is exactly where it comes up most.
Looping over Integer Sequences
with_sequence generates a sequence of items in ascending numerical order. You can specify a start, end, and an optional step value.
Arguments should be specified in key=value pairs. If supplied, the ‘format’ is a printf style string.
Numerical values can be specified in decimal, hexadecimal (0x3f8) or octal (0600). Negative numbers are not supported. This works as follows:

- hosts: all
tasks:
create groups
- group: name=evens state=present
- group: name=odds state=present
create some test users
- user: name={{ item }} state=present groups=evens
with_sequence: start=0 end=32 format=testuser%02x
create a series of directories with even numbers for some reason
- file: dest=/var/stuff/{{ item }} state=directory
with_sequence: start=4 end=16 stride=2
a simpler way to use the sequence plugin
create 4 groups
- group: name=group{{ item }} state=present
with_sequence: count=4
The ‘random_choice’ feature can be used to pick something at random. While it’s not a load balancer (there are modules for those), it can somewhat be used as a poor man’s loadbalancer in a MacGyver like situation:
- debug: msg={{ item }}
with_random_choice:
- "go through the door"
- "drink from the goblet"
- "press the red button"
- "do nothing"
One of the provided strings will be selected at random.
At a more basic level, they can be used to add chaos and excitement to otherwise predictable automation environments.
Sometimes you would want to retry a task until a certain condition is met. Here’s an example:
- action: shell /usr/bin/foo
register: result
until: result.stdout.find("all systems go") != -1
retries: 5
delay: 10
The above example run the shell module recursively till the module’s result has “all systems go” in its stdout or the task has been retried for 5 times with a delay of 10 seconds. The default value for “retries” is 3 and “delay” is 5.
The task returns the results returned by the last task run. The results of individual retries can be viewed by -vv option. The registered variable will also have a new key “attempts” which will have the number of the retries for the task.
Note
This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.
This isn’t exactly a loop, but it’s close. What if you want to use a reference to a file based on the first file found that matches a given criteria, and some of the filenames are determined by variable names? Yes, you can do that as follows:
- name: INTERFACES | Create Ansible header for /etc/network/interfaces
template: src={{ item }} dest=/etc/foo.conf
with_first_found:
- "{{ansible_virtualization_type}}_foo.conf"
- "default_foo.conf"
This tool also has a long form version that allows for configurable search paths. Here’s an example:
- name: some configuration template
template: src={{ item }} dest=/etc/file.cfg mode=0444 owner=root group=root
with_first_found:
- files:
- "{{inventory_hostname}}/etc/file.cfg"
paths:
- ../../../templates.overwrites
- ../../../templates
- files:
- etc/file.cfg
paths:
- templates
Iterating Over The Results of a Program Execution
Note
This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.
Sometimes you might want to execute a program, and based on the output of that program, loop over the results of that line by line. Ansible provides a neat way to do that, though you should remember, this is always executed on the control machine, not the local machine:
- name: Example of looping over a command result
shell: /usr/bin/frobnicate {{ item }}
with_lines: /usr/bin/frobnications_per_host --param {{ inventory_hostname }}
Ok, that was a bit arbitrary. In fact, if you’re doing something that is inventory related you might just want to write a dynamic inventory source instead (see Dynamic Inventory), but this can be occasionally useful in quick-and-dirty implementations.
Should you ever need to execute a command remotely, you would not use the above method. Instead do this:
- name: Example of looping over a REMOTE command result
shell: /usr/bin/something
register: command_result
- name: Do something with each result
shell: /usr/bin/something_else --param {{ item }}
with_items: command_result.stdout_lines
Looping Over A List With An Index
Note
This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.
If you want to loop over an array and also get the numeric index of where you are in the array as you go, you can also do that. It’s uncommonly used:
- name: indexed loop demo
debug: msg="at array position {{ item.0 }} there is a value {{ item.1 }}"
with_indexed_items: some_list
Note
This is an uncommon thing to want to do, but we’re documenting it for completeness. You probably won’t be reaching for this one often.
In rare instances you might have several lists of lists, and you just want to iterate over every item in all of those lists. Assume a really crazy hypothetical datastructure:

file: roles/foo/vars/main.yml
packages_base:
- ['foo-package', 'bar-package']
packages_apps:
- [['one-package', 'two-package']]
- [['red-package'], ['blue-package']]
As you can see the formatting of packages in these lists is all over the place. How can we install all of the packages in both lists?:
- name: flattened loop demo
yum: name={{ item }} state=installed
with_flattened:
- packages_base
- packages_apps
That’s how!
When using register with a loop the data structure placed in the variable during a loop, will contain a results attribute, that is a list of all responses from the module.
Here is an example of using register with with_items:
- shell: echo "{{ item }}"
with_items:
- one
- two
register: echo
This differs from the data structure returned when using register without a loop:
{
"changed": true,
"msg": "All items completed",
"results": [
{
"changed": true,
"cmd": "echo \"one\" ",
"delta": "0:00:00.003110",
"end": "2013-12-19 12:00:05.187153",
"invocation": {
"module_args": "echo \"one\"",
"module_name": "shell"
},
"item": "one",
"rc": 0,
"start": "2013-12-19 12:00:05.184043",
"stderr": "",
"stdout": "one"
},
{
"changed": true,
"cmd": "echo \"two\" ",
"delta": "0:00:00.002920",
"end": "2013-12-19 12:00:05.245502",
"invocation": {
"module_args": "echo \"two\"",
"module_name": "shell"
},
"item": "two",
"rc": 0,
"start": "2013-12-19 12:00:05.242582",
"stderr": "",
"stdout": "two"
}
]
}
Subsequent loops over the registered variable to inspect the results may look like:
- name: Fail if return code is not 0
fail:
msg: "The command ({{ item.cmd }}) did not have a 0 return code"
when: item.rc != 0
with_items: echo.results
While you ordinarily shouldn’t have to, should you wish to write your own ways to loop over arbitrary datastructures, you can read Developing Plugins for some starter information. Each of the above features are implemented as plugins in ansible, so there are many implementations to reference.
See also
Playbooks
An introduction to playbooks
Playbook Roles and Include Statements
Playbook organization by roles
Best Practices
Best practices in playbooks
Conditionals
Conditional statements in playbooks
Variables
All about variables
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Here are some tips for making the most of Ansible playbooks.
You can find some example playbooks illustrating these best practices in our ansible-examples repository [https://github.com/ansible/ansible-examples]. (NOTE: These may not use all of the features in the latest release, but are still an excellent reference!).
Topics
The following section shows one of many possible ways to organize playbook content. Your usage of Ansible should fit your needs, however, not ours, so feel free to modify this approach and organize as you see fit.
(One thing you will definitely want to do though, is use the “roles” organization feature, which is documented as part of the main playbooks page. See Playbook Roles and Include Statements).
The top level of the directory would contain files and directories like so:
production # inventory file for production servers
stage # inventory file for stage environment
group_vars/
group1 # here we assign variables to particular groups
group2 # ""
host_vars/
hostname1 # if systems need specific variables, put them here
hostname2 # ""
site.yml # master playbook
webservers.yml # playbook for webserver tier
dbservers.yml # playbook for dbserver tier
roles/
common/ # this hierarchy represents a "role"
tasks/ #
main.yml # <-- tasks file can include smaller files if warranted
handlers/ #
main.yml # <-- handlers file
templates/ # <-- files for use with the template resource
ntp.conf.j2 # <------- templates end in .j2
files/ #
bar.txt # <-- files for use with the copy resource
foo.sh # <-- script files for use with the script resource
vars/ #
main.yml # <-- variables associated with this role
meta/ #
main.yml # <-- role dependencies
webtier/ # same kind of structure as "common" was above, done for the webtier role
monitoring/ # ""
fooapp/ # ""
How to Arrange Inventory, Stage vs Production
In the example below, the production file contains the inventory of all of your production hosts. Of course you can pull inventory from an external data source as well, but this is just a basic example.
It is suggested that you define groups based on purpose of the host (roles) and also geography or datacenter location (if applicable):
file: production
[atlanta-webservers]
www-atl-1.example.com
www-atl-2.example.com
[boston-webservers]
www-bos-1.example.com
www-bos-2.example.com
[atlanta-dbservers]
db-atl-1.example.com
db-atl-2.example.com
[boston-dbservers]
db-bos-1.example.com
webservers in all geos
[webservers:children]
atlanta-webservers
boston-webservers
dbservers in all geos
[dbservers:children]
atlanta-dbservers
boston-dbservers
everything in the atlanta geo
[atlanta:children]
atlanta-webservers
atlanta-dbservers
everything in the boston geo
[boston:children]
boston-webservers
boston-dbservers
Now, groups are nice for organization, but that’s not all groups are good for. You can also assign variables to them! For instance, atlanta has its own NTP servers, so when setting up ntp.conf, we should use them. Let’s set those now:

file: group_vars/atlanta
ntp: ntp-atlanta.example.com
backup: backup-atlanta.example.com
Variables aren’t just for geographic information either! Maybe the webservers have some configuration that doesn’t make sense for the database servers:

file: group_vars/webservers
apacheMaxRequestsPerChild: 3000
apacheMaxClients: 900
If we had any default values, or values that were universally true, we would put them in a file called group_vars/all:

file: group_vars/all
ntp: ntp-boston.example.com
backup: backup-boston.example.com
We can define specific hardware variance in systems in a host_vars file, but avoid doing this unless you need to:

file: host_vars/db-bos-1.example.com
foo_agent_port: 86
bar_agent_port: 99
Top Level Playbooks Are Separated By Role
In site.yml, we include a playbook that defines our entire infrastructure. Note this is SUPER short, because it’s just including some other playbooks. Remember, playbooks are nothing more than lists of plays:

file: site.yml
- include: webservers.yml
- include: dbservers.yml
In a file like webservers.yml (also at the top level), we simply map the configuration of the webservers group to the roles performed by the webservers group. Also notice this is incredibly short. For example:

file: webservers.yml
- hosts: webservers
roles:
- common
- webtier
Task And Handler Organization For A Role
Below is an example tasks file that explains how a role works. Our common role here just sets up NTP, but it could do more if we wanted:

file: roles/common/tasks/main.yml
- name: be sure ntp is installed
yum: pkg=ntp state=installed
tags: ntp
- name: be sure ntp is configured
template: src=ntp.conf.j2 dest=/etc/ntp.conf
notify:
- restart ntpd
tags: ntp
- name: be sure ntpd is running and enabled
service: name=ntpd state=running enabled=yes
tags: ntp
Here is an example handlers file. As a review, handlers are only fired when certain tasks report changes, and are run at the end of each play:

file: roles/common/handlers/main.yml
- name: restart ntpd
service: name=ntpd state=restarted
See Playbook Roles and Include Statements for more information.
What This Organization Enables (Examples)
Above we’ve shared our basic organizational structure.
Now what sort of use cases does this layout enable? Lots! If I want to reconfigure my whole infrastructure, it’s just:
ansible-playbook -i production site.yml
What about just reconfiguring NTP on everything? Easy.:
ansible-playbook -i production site.yml --tags ntp
What about just reconfiguring my webservers?:
ansible-playbook -i production webservers.yml
What about just my webservers in Boston?:
ansible-playbook -i production webservers.yml --limit boston
What about just the first 10, and then the next 10?:
ansible-playbook -i production webservers.yml --limit boston[0-10]
ansible-playbook -i production webservers.yml --limit boston[10-20]
And of course just basic ad-hoc stuff is also possible.:
ansible boston -i production -m ping
ansible boston -i production -m command -a '/sbin/reboot'
And there are some useful commands to know (at least in 1.1 and higher):
confirm what task names would be run if I ran this command and said "just ntp tasks"
ansible-playbook -i production webservers.yml --tags ntp --list-tasks
confirm what hostnames might be communicated with if I said "limit to boston"
ansible-playbook -i production webservers.yml --limit boston --list-hosts
Deployment vs Configuration Organization
The above setup models a typical configuration topology. When doing multi-tier deployments, there are going to be some additional playbooks that hop between tiers to roll out an application. In this case, ‘site.yml’ may be augmented by playbooks like ‘deploy_exampledotcom.yml’ but the general concepts can still apply.
Consider “playbooks” as a sports metaphor – you don’t have to just have one set of plays to use against your infrastructure all the time – you can have situational plays that you use at different times and for different purposes.
Ansible allows you to deploy and configure using the same tool, so you would likely reuse groups and just keep the OS configuration in separate playbooks from the app deployment.
As also mentioned above, a good way to keep your stage (or testing) and production environments separate is to use a separate inventory file for stage and production. This way you pick with -i what you are targeting. Keeping them all in one file can lead to surprises!
Testing things in a stage environment before trying in production is always a great idea. Your environments need not be the same size and you can use group variables to control the differences between those environments.
Understand the ‘serial’ keyword. If updating a webserver farm you really want to use it to control how many machines you are updating at once in the batch.
See Delegation, Rolling Updates, and Local Actions.
The ‘state’ parameter is optional to a lot of modules. Whether ‘state=present’ or ‘state=absent’, it’s always best to leave that parameter in your playbooks to make it clear, especially as some modules support additional states.
A system can be in multiple groups. See Inventory and Patterns. Having groups named after things like webservers and dbservers is repeated in the examples because it’s a very powerful concept.
This allows playbooks to target machines based on role, as well as to assign role specific variables using the group variable system.
See Playbook Roles and Include Statements.
Operating System and Distribution Variance
When dealing with a parameter that is different between two different operating systems, the best way to handle this is by using the group_by module.
This makes a dynamic group of hosts matching certain criteria, even if that group is not defined in the inventory file:

talk to all hosts just so we can learn about them
- hosts: all
tasks:
- group_by: key={{ ansible_distribution }}
now just on the CentOS hosts...
- hosts: CentOS
gather_facts: False
tasks:
- # tasks that only happen on CentOS go here
If group-specific settings are needed, this can also be done. For example:

file: group_vars/all
asdf: 10

file: group_vars/CentOS
asdf: 42
In the above example, CentOS machines get the value of ‘42’ for asdf, but other machines get ‘10’.
Bundling Ansible Modules With Playbooks
New in version 0.5.
If a playbook has a ”./library” directory relative to its YAML file, this directory can be used to add ansible modules that will automatically be in the ansible module path. This is a great way to keep modules that go with a playbook together.
Generous use of whitespace to break things up, and use of comments (which start with ‘#’), is encouraged.
It is possible to leave off the ‘name’ for a given task, though it is recommended to provide a description about why something is being done instead. This name is shown when the playbook is run.
When you can do something simply, do something simply. Do not reach to use every feature of Ansible together, all at once. Use what works for you. For example, you will probably not need vars, vars_files, vars_prompt and --extra-vars all at once, while also using an external inventory file.
Use version control. Keep your playbooks and inventory file in git (or another version control system), and commit when you make changes to them. This way you have an audit trail describing when and why you changed the rules that are automating your infrastructure.
See also
YAML Syntax
Learn about YAML syntax
Playbooks
Review the basic playbook features
About Modules
Learn about available modules
Developing Modules
Learn how to extend Ansible by writing your own modules
Patterns
Learn about how to select hosts
Github examples directory [https://github.com/ansible/ansible/tree/devel/examples/playbooks]
Complete playbook files from the github project source
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Playbooks: Special Topics
Here are some playbook features that not everyone may need to learn, but can be quite useful for particular applications. Browsing these topics is recommended as you may find some useful tips here, but feel free to learn the basics of Ansible first and adopt these only if they seem relevant or useful to your environment.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Accelerated Mode
New in version 1.3.
You Might Not Need This!
Are you running Ansible 1.5 or later? If so, you may not need accelerate mode due to a new feature called “SSH pipelining” and should read the pipelining section of the documentation.
For users on 1.5 and later, accelerate mode only makes sense if you (A) are managing from an Enterprise Linux 6 or earlier host
and still are on paramiko, or (B) can’t enable TTYs with sudo as described in the pipelining docs.
If you can use pipelining, Ansible will reduce the amount of files transferred over the wire, making everything much more efficient, and performance will be on par with accelerate mode in nearly all cases, possibly excluding very large file transfer. Because less moving parts are involved, pipelining is better than accelerate mode for nearly all use cases.
Accelerate mode remains around in support of EL6 control machines and other constrained environments.
Accelerate Mode Details
While OpenSSH using the ControlPersist feature is quite fast and scalable, there is a certain small amount of overhead involved in using SSH connections. While many people will not encounter a need, if you are running on a platform that doesn’t have ControlPersist support (such as an EL6 control machine), you’ll probably be even more interested in tuning options.
Accelerate mode is there to help connections work faster, but still uses SSH for initial secure key exchange. There is no additional public key infrastructure to manage, and this does not require things like NTP or even DNS.
Accelerated mode can be anywhere from 2-6x faster than SSH with ControlPersist enabled, and 10x faster than paramiko.
Accelerated mode works by launching a temporary daemon over SSH. Once the daemon is running, Ansible will connect directly to it via a socket connection. Ansible secures this communication by using a temporary AES key that is exchanged during the SSH connection (this key is different for every host, and is also regenerated periodically).
By default, Ansible will use port 5099 for the accelerated connection, though this is configurable. Once running, the daemon will accept connections for 30 minutes, after which time it will terminate itself and need to be restarted over SSH.
Accelerated mode offers several improvements over the (deprecated) original fireball mode from which it was based:
In order to use accelerated mode, simply add accelerate: true to your play:

- hosts: all
accelerate: true
tasks:
- name: some task
command: echo {{ item }}
with_items:
- foo
- bar
- baz
If you wish to change the port Ansible will use for the accelerated connection, just add the accelerated_port option:

- hosts: all
accelerate: true
default port is 5099
accelerate_port: 10000
The accelerate_port option can also be specified in the environment variable ACCELERATE_PORT, or in your ansible.cfg configuration:
[accelerate]
accelerate_port = 5099
As noted above, accelerated mode also supports running tasks via sudo, however there are two important caveats:
As of Ansible version 1.6, you can also allow the use of multiple keys for connections from multiple Ansible management nodes. To do so, add the following option to your ansible.cfg configuration:
accelerate_multi_key = yes
When enabled, the daemon will open a UNIX socket file (by default $ANSIBLE_REMOTE_TEMP/.ansible-accelerate/.local.socket). New connections over SSH can use this socket file to upload new keys to the daemon.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Asynchronous Actions and Polling
By default tasks in playbooks block, meaning the connections stay open until the task is done on each node. This may not always be desirable, or you may be running operations that take longer than the SSH timeout.
The easiest way to do this is to kick them off all at once and then poll until they are done.
You will also want to use asynchronous mode on very long running operations that might be subject to timeout.
To launch a task asynchronously, specify its maximum runtime and how frequently you would like to poll for status. The default poll value is 10 seconds if you do not specify a value for poll:

- hosts: all
remote_user: root
tasks:
- name: simulate long running op (15 sec), wait for up to 45 sec, poll every 5 sec
command: /bin/sleep 15
async: 45
poll: 5
Note
There is no default for the async time limit. If you leave off the ‘async’ keyword, the task runs synchronously, which is Ansible’s default.
Alternatively, if you do not need to wait on the task to complete, you may “fire and forget” by specifying a poll value of 0:

- hosts: all
remote_user: root
tasks:
- name: simulate long running op, allow to run for 45 sec, fire and forget
command: /bin/sleep 15
async: 45
poll: 0
Note
You shouldn’t “fire and forget” with operations that require exclusive locks, such as yum transactions, if you expect to run other commands later in the playbook against those same resources.
Note
Using a higher value for --forks will result in kicking off asynchronous tasks even faster. This also increases the efficiency of polling.
See also
Playbooks
An introduction to playbooks
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
New in version 1.1.
Topics
When ansible-playbook is executed with --check it will not make any changes on remote systems. Instead, any module instrumented to support ‘check mode’ (which contains most of the primary core modules, but it is not required that all modules do this) will report what changes they would have made rather than making them. Other modules that do not support check mode will also take no action, but just will not report what changes they might have made.
Check mode is just a simulation, and if you have steps that use conditionals that depend on the results of prior commands, it may be less useful for you. However it is great for one-node-at-time basic configuration management use cases.
Example:
ansible-playbook foo.yml --check
New in version 1.3.
Sometimes you may want to have a task to be executed even in check mode. To achieve this, use the always_run clause on the task. Its value is a Jinja2 expression, just like the when clause. In simple cases a boolean YAML value would be sufficient as a value.
Example:
tasks:
- name: this task is run even in check mode
command: /something/to/run --even-in-check-mode
always_run: yes
As a reminder, a task with a when clause evaluated to false, will still be skipped even if it has a always_run clause evaluated to true.
Showing Differences with --diff
New in version 1.1.
The --diff option to ansible-playbook works great with --check (detailed above) but can also be used by itself. When this flag is supplied, if any templated files on the remote system are changed, and the ansible-playbook CLI will report back the textual changes made to the file (or, if used with --check, the changes that would have been made). Since the diff feature produces a large amount of output, it is best used when checking a single host at a time, like so:
ansible-playbook foo.yml --check --diff --limit foo.example.com
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Delegation, Rolling Updates, and Local Actions
Topics
Being designed for multi-tier deployments since the beginning, Ansible is great at doing things on one host on behalf of another, or doing local steps with reference to some remote hosts.
This in particular is very applicable when setting up continuous deployment infrastructure or zero downtime rolling updates, where you might be talking with load balancers or monitoring systems.
Additional features allow for tuning the orders in which things complete, and assigning a batch window size for how many machines to process at once during a rolling update.
This section covers all of these features. For examples of these items in use, please see the ansible-examples repository [http://github.com/ansible/ansible-examples/]. There are quite a few examples of zero-downtime update procedures for different kinds of applications.
You should also consult the About Modules section, various modules like ‘ec2_elb’, ‘nagios’, and ‘bigip_pool’, and ‘netscaler’ dovetail neatly with the concepts mentioned here.
You’ll also want to read up on Playbook Roles and Include Statements, as the ‘pre_task’ and ‘post_task’ concepts are the places where you would typically call these modules.
New in version 0.7.
By default, Ansible will try to manage all of the machines referenced in a play in parallel. For a rolling updates use case, you can define how many hosts Ansible should manage at a single time by using the ‘’serial’’ keyword:
- name: test play
hosts: webservers
serial: 3
In the above example, if we had 100 hosts, 3 hosts in the group ‘webservers’ would complete the play completely before moving on to the next 3 hosts.
New in version 1.3.
By default, Ansible will continue executing actions as long as there are hosts in the group that have not yet failed. In some situations, such as with the rolling updates described above, it may be desirable to abort the play when a certain threshold of failures have been reached. To achieve this, as of version 1.3 you can set a maximum failure percentage on a play as follows:
- hosts: webservers
max_fail_percentage: 30
serial: 10
In the above example, if more than 3 of the 10 servers in the group were to fail, the rest of the play would be aborted.
Note
The percentage set must be exceeded, not equaled. For example, if serial were set to 4 and you wanted the task to abort when 2 of the systems failed, the percentage should be set at 49 rather than 50.
New in version 0.7.
This isn’t actually rolling update specific but comes up frequently in those cases.
If you want to perform a task on one host with reference to other hosts, use the ‘delegate_to’ keyword on a task. This is ideal for placing nodes in a load balanced pool, or removing them. It is also very useful for controlling outage windows. Using this with the ‘serial’ keyword to control the number of hosts executing at one time is also a good idea:

- hosts: webservers
serial: 5
tasks:
- name: take out of load balancer pool
command: /usr/bin/take_out_of_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1
- name: actual steps would go here
yum: name=acme-web-stack state=latest
- name: add back to load balancer pool
command: /usr/bin/add_back_to_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1
These commands will run on 127.0.0.1, which is the machine running Ansible. There is also a shorthand syntax that you can use on a per-task basis: ‘local_action’. Here is the same playbook as above, but using the shorthand syntax for delegating to 127.0.0.1:

...
tasks:
- name: take out of load balancer pool
local_action: command /usr/bin/take_out_of_pool {{ inventory_hostname }}
...
- name: add back to load balancer pool
local_action: command /usr/bin/add_back_to_pool {{ inventory_hostname }}
A common pattern is to use a local action to call ‘rsync’ to recursively copy files to the managed servers. Here is an example:

...
tasks:
- name: recursively copy files from management server to target
local_action: command rsync -a /path/to/files {{ inventory_hostname }}:/path/to/target/
Note that you must have passphrase-less SSH keys or an ssh-agent configured for this to work, otherwise rsync will need to ask for a passphrase.
It may be useful to use a playbook locally, rather than by connecting over SSH. This can be useful for assuring the configuration of a system by putting a playbook on a crontab. This may also be used to run a playbook inside an OS installer, such as an Anaconda kickstart.
To run an entire playbook locally, just set the “hosts:” line to “hosts:127.0.0.1” and then run the playbook like so:
ansible-playbook playbook.yml --connection=local
Alternatively, a local connection can be used in a single playbook play, even if other plays in the playbook use the default remote connection type:
- hosts: 127.0.0.1
connection: local
See also
Playbooks
An introduction to playbooks
Ansible Examples on GitHub [http://github.com/ansible/ansible-examples]
Many examples of full-stack deployments
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Setting the Environment (and Working With Proxies)
New in version 1.1.
It is quite possible that you may need to get package updates through a proxy, or even get some package updates through a proxy and access other packages not through a proxy. Or maybe a script you might wish to call may also need certain environment variables set to run properly.
Ansible makes it easy for you to configure your environment by using the ‘environment’ keyword. Here is an example:
- hosts: all
remote_user: root
tasks:
- apt: name=cobbler state=installed
environment:
http_proxy: http://proxy.example.com:8080
The environment can also be stored in a variable, and accessed like so:
- hosts: all
remote_user: root
here we make a variable named "proxy_env" that is a dictionary
vars:
proxy_env:
http_proxy: http://proxy.example.com:8080
tasks:
- apt: name=cobbler state=installed
environment: proxy_env
While just proxy settings were shown above, any number of settings can be supplied. The most logical place to define an environment hash might be a group_vars file, like so:

file: group_vars/boston
ntp_server: ntp.bos.example.com
backup: bak.bos.example.com
proxy_env:
http_proxy: http://proxy.bos.example.com:8080
https_proxy: http://proxy.bos.example.com:8080
See also
Playbooks
An introduction to playbooks
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Ansible normally has defaults that make sure to check the return codes of commands and modules and it fails fast – forcing an error to be dealt with unless you decide otherwise.
Sometimes a command that returns 0 isn’t an error. Sometimes a command might not always need to report that it ‘changed’ the remote system. This section describes how to change the default behavior of Ansible for certain tasks so output and error handling behavior is as desired.
New in version 0.6.
Generally playbooks will stop executing any more steps on a host that has a failure. Sometimes, though, you want to continue on. To do so, write a task that looks like this:
- name: this will not be counted as a failure
command: /bin/false
ignore_errors: yes
Note that the above system only governs the failure of the particular task, so if you have an undefined variable used, it will still raise an error that users will need to address.
Controlling What Defines Failure
New in version 1.4.
Suppose the error code of a command is meaningless and to tell if there is a failure what really matters is the output of the command, for instance if the string “FAILED” is in the output.
Ansible in 1.4 and later provides a way to specify this behavior as follows:
- name: this command prints FAILED when it fails
command: /usr/bin/example-command -x -y -z
register: command_result
failed_when: "'FAILED' in command_result.stderr"
In previous version of Ansible, this can be still be accomplished as follows:
- name: this command prints FAILED when it fails
command: /usr/bin/example-command -x -y -z
register: command_result
ignore_errors: True
- name: fail the play if the previous command did not succeed
fail: msg="the command failed"
when: "'FAILED' in command_result.stderr"
New in version 1.3.
When a shell/command or other module runs it will typically report “changed” status based on whether it thinks it affected machine state.
Sometimes you will know, based on the return code or output that it did not make any changes, and wish to override the “changed” result such that it does not appear in report output or does not cause handlers to fire:
tasks:
- shell: /usr/bin/billybass --mode="take me to the river"
register: bass_result
changed_when: "bass_result.rc != 2"
this will never report 'changed' status
- shell: wall 'beep'
changed_when: False
See also
Playbooks
An introduction to playbooks
Best Practices
Best practices in playbooks
Conditionals
Conditional statements in playbooks
Variables
All about variables
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Lookup plugins allow access of data in Ansible from outside sources. These plugins are evaluated on the Ansible control machine, and can include reading the filesystem but also contacting external datastores and services. These values are then made available using the standard templating system in Ansible, and are typically used to load variables or templates with information from those systems.
Note
This is considered an advanced feature, and many users will probably not rely on these features.
Note
Lookups occur on the local computer, not on the remote computer.
Topics
Intro to Lookups: Getting File Contents
The file lookup is the most basic lookup type.
Contents can be read off the filesystem as follows:
- hosts: all
vars:
contents: "{{ lookup('file', '/etc/foo.txt') }}"
tasks:
- debug: msg="the value of foo.txt is {{ contents }}"
Note
A great alternative to the password lookup plugin, if you don’t need to generate random passwords on a per-host basis, would be to use Vault. Read the documentation there and consider using it first, it will be more desirable for most applications.
password generates a random plaintext password and stores it in a file at a given filepath.
(Docs about crypted save modes are pending)
If the file exists previously, it will retrieve its contents, behaving just like with_file. Usage of variables like “{{ inventory_hostname }}” in the filepath can be used to set up random passwords per host (what simplifies password management in ‘host_vars’ variables).
Generated passwords contain a random mix of upper and lowercase ASCII letters, the numbers 0-9 and punctuation (”. , : - _”). The default length of a generated password is 20 characters. This length can be changed by passing an extra parameter:

- hosts: all
tasks:
create a mysql user with a random password:
- mysql_user: name={{ client }}
password="{{ lookup('password', 'credentials/' + client + '/' + tier + '/' + role + '/mysqlpassword length=15') }}"
priv={{ client }}_{{ tier }}_{{ role }}.*:ALL
(...)
Note
If the file already exists, no data will be written to it. If the file has contents, those contents will be read in as the password. Empty files cause the password to return as an empty string
Starting in version 1.4, password accepts a “chars” parameter to allow defining a custom character set in the generated passwords. It accepts comma separated list of names that are either string module attributes (ascii_letters,digits, etc) or are used literally:

- hosts: all
tasks:
create a mysql user with a random password using only ascii letters:
- mysql_user: name={{ client }}
password="{{ lookup('password', '/tmp/passwordfile chars=ascii_letters') }}"
priv={{ client }}_{{ tier }}_{{ role }}.*:ALL
create a mysql user with a random password using only digits:
- mysql_user: name={{ client }}
password="{{ lookup('password', '/tmp/passwordfile chars=digits') }}"
priv={{ client }}_{{ tier }}_{{ role }}.*:ALL
create a mysql user with a random password using many different char sets:
- mysql_user: name={{ client }}
password="{{ lookup('password', '/tmp/passwordfile chars=ascii_letters,digits,hexdigits,punctuation') }}"
priv={{ client }}_{{ tier }}_{{ role }}.*:ALL
(...)
To enter comma use two commas ‘,,’ somewhere - preferably at the end. Quotes and double quotes are not supported.
Note
This feature is very infrequently used in Ansible. You may wish to skip this section.
New in version 0.8.
Various lookup plugins allow additional ways to iterate over data. In Loops you will learn how to use them to walk over collections of numerous types. However, they can also be used to pull in data from remote sources, such as shell commands or even key value stores. This section will cover lookup plugins in this capacity.
Here are some examples:

- hosts: all
tasks:
- debug: msg="{{ lookup('env','HOME') }} is an environment variable"
- debug: msg="{{ item }} is a line from the result of this command"
with_lines:
- cat /etc/motd
- debug: msg="{{ lookup('pipe','date') }} is the raw result of running this command"
- debug: msg="{{ lookup('redis_kv', 'redis://localhost:6379,somekey') }} is value in Redis for somekey"
- debug: msg="{{ lookup('dnstxt', 'example.com') }} is a DNS TXT record for example.com"
- debug: msg="{{ lookup('template', './some_template.j2') }} is a value from evaluation of this template"
As an alternative you can also assign lookup plugins to variables or use them elsewhere. This macros are evaluated each time they are used in a task (or template):
vars:
motd_value: "{{ lookup('file', '/etc/motd') }}"
tasks:
- debug: msg="motd value is {{ motd_value }}"
See also
Playbooks
An introduction to playbooks
Conditionals
Conditional statements in playbooks
Variables
All about variables
Loops
Looping in playbooks
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Prompts
When running a playbook, you may wish to prompt the user for certain input, and can do so with the ‘vars_prompt’ section.
A common use for this might be for asking for sensitive data that you do not want to record.
This has uses beyond security, for instance, you may use the same playbook for all software releases and would prompt for a particular release version in a push-script.
Here is a most basic example:

- hosts: all
remote_user: root
vars:
from: "camelot"
vars_prompt:
name: "what is your name?"
quest: "what is your quest?"
favcolor: "what is your favorite color?"
If you have a variable that changes infrequently, it might make sense to provide a default value that can be overridden. This can be accomplished using the default argument:
vars_prompt:
- name: "release_version"
prompt: "Product release version"
default: "1.0"
An alternative form of vars_prompt allows for hiding input from the user, and may later support some other options, but otherwise works equivalently:
vars_prompt:
- name: "some_password"
prompt: "Enter password"
private: yes
- name: "release_version"
prompt: "Product release version"
private: no
If Passlib [http://pythonhosted.org/passlib/] is installed, vars_prompt can also crypt the entered value so you can use it, for instance, with the user module to define a password:
vars_prompt:
- name: "my_password2"
prompt: "Enter password2"
private: yes
encrypt: "md5_crypt"
confirm: yes
salt_size: 7
You can use any crypt scheme supported by ‘Passlib’:
However, the only parameters accepted are ‘salt’ or ‘salt_size’. You can use your own salt using ‘salt’, or have one generated automatically using ‘salt_size’. If nothing is specified, a salt of size 8 will be generated.
See also
Playbooks
An introduction to playbooks
Conditionals
Conditional statements in playbooks
Variables
All about variables
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Tags
If you have a large playbook it may become useful to be able to run a specific part of the configuration without running the whole playbook.
Both plays and tasks support a “tags:” attribute for this reason.
Example:
tasks:
- yum: name={{ item }} state=installed
with_items:
- httpd
- memcached
tags:
- packages
- template: src=templates/src.j2 dest=/etc/foo.conf
tags:
- configuration
If you wanted to just run the “configuration” and “packages” part of a very long playbook, you could do this:
ansible-playbook example.yml --tags "configuration,packages"
On the other hand, if you want to run a playbook without certain tasks, you could do this:
ansible-playbook example.yml --skip-tags "notification"
You may also apply tags to roles:
roles:
- { role: webserver, port: 5000, tags: ['web', 'foo'] }
And you may also tag basic include statements:
- include: foo.yml tags=web,foo
Both of these have the function of tagging every single task inside the include statement.
See also
Playbooks
An introduction to playbooks
Playbook Roles and Include Statements
Playbook organization by roles
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
New in Ansible 1.5, “Vault” is a feature of ansible that allows keeping encrypted data in source control.
To enable this feature, a command line tool, ansible-vault is used to edit files, and a command line flag –ask-vault-pass or –vault-password-file is used.
What Can Be Encrypted With Vault
The vault feature can encrypt any structured data file used by Ansible. This can include “group_vars/” or “host_vars/” inventory variables, variables loaded by “include_vars” or “vars_files”, or variable files passed on the ansible-playbook command line with “-e @file.yml” or “-e @file.json”. Role variables and defaults are also included!
Because Ansible tasks, handlers, and so on are also data, these can also be encrypted with vault. If you’d like to not betray what variables you are even using, you can go as far to keep an individual task file entirely encrypted. However, that might be a little much and could annoy your coworkers :)
To create a new encrypted data file, run the following command:
ansible-vault create foo.yml
First you will be prompted for a password. The password used with vault currently must be the same for all files you wish to use together at the same time.
After providing a password, the tool will launch whatever editor you have defined with $EDITOR, and defaults to vim. Once you are done with the editor session, the file will be saved as encrypted data.
The default cipher is AES (which is shared-secret based).
To edit an encrypted file in place, use the ansible-vault edit command. This command will decrypt the file to a temporary file and allow you to edit the file, saving it back when done and removing the temporary file:
ansible-vault edit foo.yml
Should you wish to change your password on a vault-encrypted file or files, you can do so with the rekey command:
ansible-vault rekey foo.yml bar.yml baz.yml
This command can rekey multiple data files at once and will ask for the original password and also the new password.
If you have existing files that you wish to encrypt, use the ansible-vault encrypt command. This command can operate on multiple files at once:
ansible-vault encrypt foo.yml bar.yml baz.yml
If you have existing files that you no longer want to keep encrypted, you can permanently decrypt them by running the ansible-vault decrypt command. This command will save them unencrypted to the disk, so be sure you do not want ansible-vault edit instead:
ansible-vault decrypt foo.yml bar.yml baz.yml
To run a playbook that contains vault-encrypted data files, you must pass one of two flags. To specify the vault-password interactively:
ansible-playbook site.yml --ask-vault-pass
This prompt will then be used to decrypt (in memory only) any vault encrypted files that are accessed. Currently this requires that all passwords be encrypted with the same password.
Alternatively, passwords can be specified with a file. If this is done, be careful to ensure permissions on the file are such that no one else can access your key, and do not add your key to source control:
ansible-playbook site.yml --vault-password-file ~/.vault_pass.txt
The password should be a string stored as a single line in the file.
This is likely something you may wish to do if using Ansible from a continuous integration system like Jenkins.
(The –vault-password-file option can also be used with the Ansible-Pull command if you wish, though this would require distributing the keys to your nodes, so understand the implications – vault is more intended for push mode).
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
About Modules
Introduction
Ansible ships with a number of modules (called the ‘module library’) that can be executed directly on remote hosts or through Playbooks.
Users can also write their own modules. These modules can control system resources, like services, packages, or files (anything really), or handle executing system commands.
Let’s review how we execute three different modules from the command line:
ansible webservers -m service -a "name=httpd state=started"
ansible webservers -m ping
ansible webservers -m command -a "/sbin/reboot -t now"
Each module supports taking arguments. Nearly all modules take key=value arguments, space delimited. Some modules take no arguments, and the command/shell modules simply take the string of the command you want to run.
From playbooks, Ansible modules are executed in a very similar way:
- name: reboot the servers
action: command /sbin/reboot -t now
Which can be abbreviated to:
- name: reboot the servers
command: /sbin/reboot -t now
All modules technically return JSON format data, though if you are using the command line or playbooks, you don’t really need to know much about that. If you’re writing your own module, you care, and this means you do not have to write modules in any particular language – you get to choose.
Modules are idempotent, meaning they will seek to avoid changes to the system unless a change needs to be made. When using Ansible playbooks, these modules can trigger ‘change events’ in the form of notifying ‘handlers’ to run additional tasks.
Documentation for each module can be accessed from the command line with the ansible-doc tool:
ansible-doc yum
See also
Introduction To Ad-Hoc Commands
Examples of using modules in /usr/bin/ansible
Playbooks
Examples of using modules with /usr/bin/ansible-playbook
Developing Modules
How to write your own modules
Python API
Examples of using modules with the Python API
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Module Index
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
All Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
accelerate - Enable accelerated mode on remote node
Author: | James Cammarata |
---|
New in version 1.3.
This modules launches an ephemeral accelerate daemon on the remote node which Ansible can use to communicate with nodes at high speed. The daemon listens on a configurable port for a configurable amount of time. Fireball mode is AES encrypted
parameter | required | default | choices | comments |
---|---|---|---|---|
ipv6 | no | The listener daemon on the remote host will bind to the ipv6 localhost socket if this parameter is set to true. | ||
minutes | no | 30 | The accelerate listener daemon is started on nodes and will stay around for this number of minutes before turning itself off. | |
multi_key | no | When enabled, the daemon will open a local socket file which can be used by future daemon executions to upload a new key to the already running daemon, so that multiple users can connect using different keys. This access still requires an ssh connection as the uid for which the daemon is currently running. (added in Ansible 1.6) | ||
port | no | 5099 | TCP port for the socket connection | |
timeout | no | 300 | The number of seconds the socket will wait for data. If none is received when the timeout value is reached, the connection will be closed. |
Note
Requires python-keyczar
To use accelerate mode, simply add "accelerate: true" to your play. The initial
key exchange and starting up of the daemon will occur over SSH, but all commands and
subsequent actions will be conducted over the raw socket connection using AES encryption
- hosts: devservers
accelerate: true
tasks:
- command: /usr/bin/anything
Note
See the advanced playbooks chapter for more about using accelerated mode.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
acl - Sets and retrieves file ACL information.
Author: | Brian Coca |
---|
New in version 1.4.
Sets and retrieves file ACL information.
parameter | required | default | choices | comments |
---|---|---|---|---|
default | no |
| if the target is a directory, setting this to yes will make it the default acl for entities created inside the directory. It causes an error if name is a file. (added in Ansible 1.5) | |
entity | no | actual user or group that the ACL applies to when matching entity types user or group are selected. (added in Ansible 1.5) | ||
entry | no | DEPRECATED. The acl to set or remove. This must always be quoted in the form of '<etype>:<qualifier>:<perms>'. The qualifier may be empty for some types, but the type and perms are always requried. '-' can be used as placeholder when you do not care about permissions. This is now superceeded by entity, type and permissions fields. | ||
etype | no |
| the entity type of the ACL to apply, see setfacl documentation for more info. (added in Ansible 1.5) | |
follow | no | True |
| whether to follow symlinks on the path if a symlink is encountered. |
name | yes | The full path of the file or object. | ||
permissions | no | Permissions to apply/remove can be any combination of r, w and x (read, write and execute respectively) (added in Ansible 1.5) | ||
state | no | query |
| defines whether the ACL should be present or not. The query state gets the current acl present without changing it, for use in 'register' operations. |
Grant user Joe read access to a file
- acl: name=/etc/foo.conf entity=joe etype=user permissions="r" state=present
Removes the acl for Joe on a specific file
- acl: name=/etc/foo.conf entity=joe etype=user state=absent
Sets default acl for joe on foo.d
- acl: name=/etc/foo.d entity=joe etype=user permissions=rw default=yes state=present
Same as previous but using entry shorthand
- acl: name=/etc/foo.d entry="default:user:joe:rw-" state=present
Obtain the acl for a specific file
- acl: name=/etc/foo.conf
register: acl_info
Note
The “acl” module requires that acls are enabled on the target filesystem and that the setfacl and getfacl binaries are installed.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
add_host - add a host (and alternatively a group) to the ansible-playbook in-memory inventory
Author: | Seth Vidal |
---|
Use variables to create new hosts and groups in inventory for use in later plays of the same playbook. Takes variables so you can define the new hosts more fully.
parameter | required | default | choices | comments |
---|---|---|---|---|
groups | no | The groups to add the hostname to, comma separated. | ||
name | yes | The hostname/ip of the host to add to the inventory, can include a colon and a port number. |
add host to group 'just_created' with variable foo=42
- add_host: name={{ ip_from_ec2 }} groups=just_created foo=42
add a host with a non-standard port local to your machines
- add_host: name={{ new_ip }}:{{ new_port }}
add a host alias that we reach through a tunnel
- add_host: hostname={{ new_ip }}
ansible_ssh_host={{ inventory_hostname }}
ansible_ssh_port={{ new_port }}
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
airbrake_deployment - Notify airbrake about app deployments
Author: | Bruce Pennypacker |
---|
New in version 1.2.
Notify airbrake about app deployments (see http://help.airbrake.io/kb/api-2/deploy-tracking)
parameter | required | default | choices | comments |
---|---|---|---|---|
environment | yes | The airbrake environment name, typically 'production', 'staging', etc. | ||
repo | no | URL of the project repository | ||
revision | no | A hash, number, tag, or other identifier showing what revision was deployed | ||
token | yes | API token. | ||
url | no | https://airbrake.io/deploys | Optional URL to submit the notification to. Use to send notifications to Airbrake-compliant tools like Errbit. (added in Ansible 1.5) | |
user | no | The username of the person doing the deployment | ||
validate_certs | no | yes |
| If no, SSL certificates for the target url will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
Note
Requires urllib
Note
Requires urllib2
- airbrake_deployment: token=AAAAAA
environment='staging'
user='ansible'
revision=4.2
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
alternatives - Manages alternative programs for common commands
New in version 1.6.
Manages symbolic links using the ‘update-alternatives’ tool provided on debian-like systems. Useful when multiple programs are installed but provide similar functionality (e.g. different editors).
parameter | required | default | choices | comments |
---|---|---|---|---|
link | no | The path to the symbolic link that should point to the real executable. | ||
name | yes | The generic name of the link. | ||
path | yes | The path to the real executable that the link should point to. |
Note
Requires update-alternatives
- name: correct java version selected
alternatives: name=java path=/usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java
- name: alternatives link created
alternatives: name=hadoop-conf link=/etc/hadoop/conf path=/etc/hadoop/conf.ansible
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
apache2_module - enables/disables a module of the Apache2 webserver
New in version 1.6.
Enables or disables a specified module of the Apache2 webserver.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | name of the module to enable/disable | ||
state | no | present |
| indicate the desired state of the resource |
enables the Apache2 module "wsgi"
- apache2_module: state=present name=wsgi
disables the Apache2 module "wsgi"
- apache2_module: state=absent name=wsgi
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
apt - Manages apt-packages
Author: | Matthew Williams |
---|
Manages apt packages (such as for Debian/Ubuntu).
parameter | required | default | choices | comments |
---|---|---|---|---|
cache_valid_time | no | If update_cache is specified and the last run is less or equal than cache_valid_time seconds ago, the update_cache gets skipped. | ||
deb | no | Path to a .deb package on the remote machine. (added in Ansible 1.6) | ||
default_release | no | Corresponds to the -t option for apt and sets pin priorities | ||
dpkg_options | no | force-confdef,force-confold | Add dpkg options to apt command. Defaults to '-o "Dpkg::Options::=--force-confdef" -o "Dpkg::Options::=--force-confold"'Options should be supplied as comma separated list | |
force | no | no |
| If yes, force installs/removes. |
install_recommends | no | True |
| Corresponds to the --no-install-recommends option for apt. Default behavior (yes) replicates apt's default behavior; no does not install recommended packages. Suggested packages are never installed. |
name | no | A package name, like foo, or package specifier with version, like foo=1.0. Wildcards (fnmatch) like apt* are also supported. | ||
purge | no |
| Will force purging of configuration files if the module state is set to absent. | |
state | no | present |
| Indicates the desired package state. latest ensures that the latest version is installed. |
update_cache | no |
| Run the equivalent of apt-get update before the operation. Can be run as part of the package installation or as a separate step. | |
upgrade | no | yes |
| If yes or safe, performs an aptitude safe-upgrade.If full, performs an aptitude full-upgrade.If dist, performs an apt-get dist-upgrade.Note: This does not upgrade a specific package, use state=latest for that. (added in Ansible 1.1) |
Note
Requires python-apt
Note
Requires aptitude
Update repositories cache and install "foo" package
- apt: name=foo update_cache=yes
Remove "foo" package
- apt: name=foo state=absent
Install the package "foo"
- apt: name=foo state=present
Install the version '1.00' of package "foo"
- apt: name=foo=1.00 state=present
Update the repository cache and update package "nginx" to latest version using default release squeeze-backport
- apt: name=nginx state=latest default_release=squeeze-backports update_cache=yes
Install latest version of "openjdk-6-jdk" ignoring "install-recommends"
- apt: name=openjdk-6-jdk state=latest install_recommends=no
Update all packages to the latest version
- apt: upgrade=dist
Run the equivalent of "apt-get update" as a separate step
- apt: update_cache=yes
Only run "update_cache=yes" if the last one is more than 3600 seconds ago
- apt: update_cache=yes cache_valid_time=3600
Pass options to dpkg on run
- apt: upgrade=dist update_cache=yes dpkg_options='force-confold,force-confdef'
Install a .deb package
- apt: deb=/tmp/mypackage.deb
Note
Three of the upgrade modes (full, safe and its alias yes) require aptitude, otherwise apt-get suffices.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
apt_key - Add or remove an apt key
Author: | Jayson Vantuyl & others |
---|
New in version 1.0.
Add or remove an apt key, optionally downloading it
parameter | required | default | choices | comments |
---|---|---|---|---|
data | no | none | keyfile contents | |
file | no | none | keyfile path | |
id | no | none | identifier of key | |
keyring | no | none | path to specific keyring file in /etc/apt/trusted.gpg.d (added in Ansible 1.3) | |
keyserver | no | none | keyserver to retrieve key from. (added in Ansible 1.6) | |
state | no | present |
| used to specify if key is being added or revoked |
url | no | none | url to retrieve key from. | |
validate_certs | no | yes |
| If no, SSL certificates for the target url will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
Add an Apt signing key, uses whichever key is at the URL
- apt_key: url=https://ftp-master.debian.org/keys/archive-key-6.0.asc state=present
Add an Apt signing key, will not download if present
- apt_key: id=473041FA url=https://ftp-master.debian.org/keys/archive-key-6.0.asc state=present
Remove an Apt signing key, uses whichever key is at the URL
- apt_key: url=https://ftp-master.debian.org/keys/archive-key-6.0.asc state=absent
Remove a Apt specific signing key, leading 0x is valid
- apt_key: id=0x473041FA state=absent
Add a key from a file on the Ansible server
- apt_key: data="{{ lookup('file', 'apt.gpg') }}" state=present
Add an Apt signing key to a specific keyring file
- apt_key: id=473041FA url=https://ftp-master.debian.org/keys/archive-key-6.0.asc keyring=/etc/apt/trusted.gpg.d/debian.gpg state=present
Note
doesn’t download the key unless it really needs it
Note
as a sanity check, downloaded key id must match the one specified
Note
best practice is to specify the key id and the url
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
apt_repository - Add and remove APT repositores
Author: | Alexander Saltanov |
---|
Add or remove an APT repositories in Ubuntu and Debian.
parameter | required | default | choices | comments |
---|---|---|---|---|
mode | no | 420 | The octal mode for newly created files in sources.list.d (added in Ansible 1.6) | |
repo | yes | none | A source string for the repository. | |
state | no | present |
| A source string state. |
update_cache | no | yes |
| Run the equivalent of apt-get update when a change occurs. Cache updates are run after making changes. |
Note
Requires python-apt
Add specified repository into sources list.
apt_repository: repo='deb http://archive.canonical.com/ubuntu hardy partner' state=present
Add source repository into sources list.
apt_repository: repo='deb-src http://archive.canonical.com/ubuntu hardy partner' state=present
Remove specified repository from sources list.
apt_repository: repo='deb http://archive.canonical.com/ubuntu hardy partner' state=absent
On Ubuntu target: add nginx stable repository from PPA and install its signing key.
On Debian target: adding PPA is not available, so it will fail immediately.
apt_repository: repo='ppa:nginx/stable'
Note
This module works on Debian and Ubuntu and requires python-apt.
Note
This module supports Debian Squeeze (version 6) as well as its successors.
Note
This module treats Debian and Ubuntu distributions separately. So PPA could be installed only on Ubuntu machines.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
apt_rpm - apt_rpm package manager
Author: | Evgenii Terechkov |
---|
New in version 1.5.
Manages packages with apt-rpm. Both low-level (rpm) and high-level (apt-get) package manager binaries required.
parameter	required	default	choices	comments
pkg	yes	name of package to install, upgrade or remove.		
state	no	present		
Indicates the desired package state				
update_cache	no			
update the package database first apt-get update.				
install package foo
- apt_rpm: pkg=foo state=present
remove package foo
- apt_rpm: pkg=foo state=absent
description: remove packages foo and bar
- apt_rpm: pkg=foo,bar state=absent
description: update the package database and install bar (bar will be the updated if a newer version exists)
- apt_rpm: name=bar state=present update_cache=yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
arista_interface - Manage physical Ethernet interfaces
Author: | Peter Sprygada |
---|
New in version 1.3.
Manage physical Ethernet interface resources on Arista EOS network devices
parameter | required | default | choices | comments |
---|---|---|---|---|
admin | no |
| controls the operational state of the interface | |
description | no | a single line text string describing the interface | ||
duplex | no | auto |
| sets the interface duplex setting |
interface_id | yes | the full name of the interface | ||
logging | no |
| enables or disables the syslog facility for this module | |
mtu | no | 1500 | configureds the maximum transmission unit for the interface | |
speed | no | auto |
| sets the interface speed setting |
Note
Requires Arista EOS 4.10
Note
Requires Netdev extension for EOS
Example playbook entries using the arista_interface module to manage resource
state. Note that interface names must be the full interface name not shortcut
names (ie Ethernet, not Et1)
tasks:
- name: enable interface Ethernet 1
action: arista_interface interface_id=Ethernet1 admin=up speed=10g duplex=full logging=true
- name: set mtu on Ethernet 1
action: arista_interface interface_id=Ethernet1 mtu=1600 speed=10g duplex=full logging=true
- name: reset changes to Ethernet 1
action: arista_interface interface_id=Ethernet1 admin=down mtu=1500 speed=10g duplex=full logging=true
Note
Requires EOS 4.10 or later
Note
The Netdev extension for EOS must be installed and active in the available extensions (show extensions from the EOS CLI)
Note
See http://eos.aristanetworks.com for details
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
arista_l2interface - Manage layer 2 interfaces
Author: | Peter Sprygada |
---|
New in version 1.2.
Manage layer 2 interface resources on Arista EOS network devices
parameter | required | default | choices | comments |
---|---|---|---|---|
interface_id | yes | the full name of the interface | ||
logging | no |
| enables or disables the syslog facility for this module | |
state | no | present |
| describe the desired state of the interface related to the config |
tagged_vlans | no | specifies the list of vlans that should be allowed to transit this interface | ||
untagged_vlan | no | default | specifies the vlan that untagged traffic should be placed in for transit across a vlan tagged link | |
vlan_tagging | no | True |
| specifies whether or not vlan tagging should be enabled for this interface |
Note
Requires Arista EOS 4.10
Note
Requires Netdev extension for EOS
Example playbook entries using the arista_l2interface module to manage resource
state. Note that interface names must be the full interface name not shortcut
names (ie Ethernet, not Et1)
tasks:
- name: create switchport ethernet1 access port
action: arista_l2interface interface_id=Ethernet1 logging=true
- name: create switchport ethernet2 trunk port
action: arista_l2interface interface_id=Ethernet2 vlan_tagging=enable logging=true
- name: add vlans to red and blue switchport ethernet2
action: arista_l2interface interface_id=Ethernet2 tagged_vlans=red,blue logging=true
- name: set untagged vlan for Ethernet1
action: arista_l2interface interface_id=Ethernet1 untagged_vlan=red logging=true
- name: convert access to trunk
action: arista_l2interface interface_id=Ethernet1 vlan_tagging=enable tagged_vlans=red,blue logging=true
- name: convert trunk to access
action: arista_l2interface interface_id=Ethernet2 vlan_tagging=disable untagged_vlan=blue logging=true
- name: delete switchport ethernet1
action: arista_l2interface interface_id=Ethernet1 state=absent logging=true
Note
Requires EOS 4.10 or later
Note
The Netdev extension for EOS must be installed and active in the available extensions (show extensions from the EOS CLI)
Note
See http://eos.aristanetworks.com for details
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
arista_lag - Manage port channel (lag) interfaces
Author: | Peter Sprygada |
---|
New in version 1.3.
Manage port channel interface resources on Arista EOS network devices
parameter | required | default | choices | comments |
---|---|---|---|---|
interface_id | yes | the full name of the interface | ||
lacp | no | active |
| enables the use of the LACP protocol for managing link bundles |
links | no | array of physical interface links to include in this lag | ||
logging | no |
| enables or disables the syslog facility for this module | |
minimum_links | no | the minimum number of physical interaces that must be operationally up to consider the lag operationally up | ||
state | no | present |
| describe the desired state of the interface related to the config |
Note
Requires Arista EOS 4.10
Note
Requires Netdev extension for EOS
Example playbook entries using the arista_lag module to manage resource
state. Note that interface names must be the full interface name not shortcut
names (ie Ethernet, not Et1)
tasks:
- name: create lag interface
action: arista_lag interface_id=Port-Channel1 links=Ethernet1,Ethernet2 logging=true
- name: add member links
action: arista_lag interface_id=Port-Channel1 links=Ethernet1,Ethernet2,Ethernet3 logging=true
- name: remove member links
action: arista_lag interface_id=Port-Channel1 links=Ethernet2,Ethernet3 logging=true
- name: remove lag interface
action: arista_lag interface_id=Port-Channel1 state=absent logging=true
Note
Requires EOS 4.10 or later
Note
The Netdev extension for EOS must be installed and active in the available extensions (show extensions from the EOS CLI)
Note
See http://eos.aristanetworks.com for details
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
arista_vlan - Manage VLAN resources
Author: | Peter Sprygada |
---|
New in version 1.3.
Manage VLAN resources on Arista EOS network devices. This module requires the Netdev EOS extension to be installed in EOS. For detailed instructions for installing and using the Netdev module please see [link]
parameter | required | default | choices | comments |
---|---|---|---|---|
logging | no |
| enables or disables the syslog facility for this module | |
name | no | a descriptive name for the vlan | ||
state | no | present |
| describe the desired state of the vlan related to the config |
vlan_id | yes | the vlan id |
Note
Requires Arista EOS 4.10
Note
Requires Netdev extension for EOS
Example playbook entries using the arista_vlan module to manage resource
state.
tasks:
- name: create vlan 999
action: arista_vlan vlan_id=999 logging=true
- name: create / edit vlan 999
action: arista_vlan vlan_id=999 name=test logging=true
- name: remove vlan 999
action: arista_vlan vlan_id=999 state=absent logging=true
Note
Requires EOS 4.10 or later
Note
The Netdev extension for EOS must be installed and active in the available extensions (show extensions from the EOS CLI)
Note
See http://eos.aristanetworks.com for details
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
assemble - Assembles a configuration file from fragments
Author: | Stephen Fromm |
---|
Assembles a configuration file from fragments. Often a particular program will take a single configuration file and does not support a conf.d style structure where it is easy to build up the configuration from multiple sources. assemble will take a directory of files that can be local or have already been transferred to the system, and concatenate them together to produce a destination file. Files are assembled in string sorting order. Puppet calls this idea fragments.
parameter | required | default | choices | comments |
---|---|---|---|---|
backup | no | no |
| Create a backup file (if yes), including the timestamp information so you can get the original file back if you somehow clobbered it incorrectly. |
delimiter | no | A delimiter to separate the file contents. (added in Ansible 1.4) | ||
dest | yes | A file to create using the concatenation of all of the source files. | ||
others | no | all arguments accepted by the file module also work here | ||
regexp | no | Assemble files only if regex matches the filename. If not set, all files are assembled. All "\" (backslash) must be escaped as "\\" to comply yaml syntax. Uses Python regular expressions; see http://docs.python.org/2/library/re.html. | ||
remote_src | no | True |
| If False, it will search for src at originating/master machine, if True it will go to the remote/target machine for the src. Default is True. (added in Ansible 1.4) |
src | yes | An already existing directory full of source files. |
Example from Ansible Playbooks
- assemble: src=/etc/someapp/fragments dest=/etc/someapp/someapp.conf
When a delimiter is specified, it will be inserted in between each fragment
- assemble: src=/etc/someapp/fragments dest=/etc/someapp/someapp.conf delimiter='### START FRAGMENT ###'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
assert - Fail with custom message
Author: | Michael DeHaan |
---|
New in version 1.5.
This module asserts that a given expression is true and can be a simpler alternative to the ‘fail’ module in some cases.
parameter | required | default | choices | comments |
---|---|---|---|---|
that | yes | A string expression of the same form that can be passed to the 'when' statementAlternatively, a list of string expressions |
- assert: { that: "ansible_os_family != 'RedHat'" }
- assert:
that:
- "'foo' in some_command_result.stdout"
- "number_of_the_counting == 3"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
async_status - Obtain status of asynchronous task
Author: | Michael DeHaan |
---|
This module gets the status of an asynchronous task.
parameter | required | default | choices | comments |
---|---|---|---|---|
jid | yes | Job or task identifier | ||
mode | no | status |
| if status, obtain the status; if cleanup, clean up the async job cache located in ~/.ansible_async/ for the specified job jid. |
Note
See also http://docs.ansible.com/playbooks_async.html
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
at - Schedule the execution of a command or script file via the at command.
Author: | Richard Isaacson |
---|
New in version 1.5.
Use this module to schedule a command or script file to run once in the future. All jobs are executed in the ‘a’ queue.
parameter | required | default | choices | comments |
---|---|---|---|---|
command | no | A command to be executed in the future. | ||
count | yes | The count of units in the future to execute the command or script file. | ||
script_file | no | An existing script file to be executed in the future. | ||
state | no | present |
| The state dictates if the command or script file should be evaluated as present(added) or absent(deleted). |
unique | no | If a matching job is present a new job will not be added. | ||
units | yes |
| The type of units in the future to execute the command or script file. |
Note
Requires at
Schedule a command to execute in 20 minutes as root.
- at: command="ls -d / > /dev/null" count=20 units="minutes"
Match a command to an existing job and delete the job.
- at: command="ls -d / > /dev/null" state="absent"
Schedule a command to execute in 20 minutes making sure it is unique in the queue.
- at: command="ls -d / > /dev/null" unique=true count=20 units="minutes"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
authorized_key - Adds or removes an SSH authorized key
Author: | Brad Olson |
---|
Adds or removes authorized keys for particular user accounts
parameter | required | default | choices | comments |
---|---|---|---|---|
key | yes | The SSH public key, as a string | ||
key_options | no | A string of ssh key options to be prepended to the key in the authorized_keys file (added in Ansible 1.4) | ||
manage_dir | no | yes |
| Whether this module should manage the directory of the authorized key file. If set, the module will create the directory, as well as set the owner and permissions of an existing directory. Be sure to set manage_dir=no if you are using an alternate directory for authorized_keys, as set with path, since you could lock yourself out of SSH access. See the example below. (added in Ansible 1.2) |
path | no | (homedir)+/.ssh/authorized_keys | Alternate path to the authorized_keys file (added in Ansible 1.2) | |
state | no | present |
| Whether the given key (with the given key_options) should or should not be in the file |
user | yes | The username on the remote host whose authorized_keys file will be modified |
Example using key data from a local file on the management machine
- authorized_key: user=charlie key="{{ lookup('file', '/home/charlie/.ssh/id_rsa.pub') }}"
Using alternate directory locations:
- authorized_key: user=charlie
key="{{ lookup('file', '/home/charlie/.ssh/id_rsa.pub') }}"
path='/etc/ssh/authorized_keys/charlie'
manage_dir=no
Using with_file
- name: Set up authorized_keys for the deploy user
authorized_key: user=deploy
key="{{ item }}"
with_file:
- public_keys/doe-jane
- public_keys/doe-john
Using key_options:
- authorized_key: user=charlie
key="{{ lookup('file', '/home/charlie/.ssh/id_rsa.pub') }}"
key_options='no-port-forwarding,host="10.0.1.1"'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
azure - create or terminate a virtual machine in azure
Author: | John Whitbeck |
---|
New in version 1.7.
Creates or terminates azure instances. When created optionally waits for it to be ‘running’. This module has a dependency on python-azure >= 0.7.1
parameter | required | default | choices | comments |
---|---|---|---|---|
endpoints | no | 22 | a comma-separated list of TCP ports to expose on the virtual machine (e.g., "22,80") | |
hostname | no | hostname to write /etc/hostname. Defaults to <name>.cloudapp.net. | ||
image | yes | system image for creating the virtual machine (e.g., b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu_DAILY_BUILD-precise-12_04_3-LTS-amd64-server-20131205-en-us-30GB) | ||
location | yes | the azure location to use (e.g. 'East US') | ||
management_cert_path | no | path to an azure management certificate associated with the subscription id. Overrides the AZURE_CERT_PATH environement variable. | ||
name | yes | name of the virtual machine and associated cloud service. | ||
password | no | the unix password for the new virtual machine. | ||
role_size | no | Small | azure role size for the new virtual machine (e.g., Small, ExtraLarge, A6) | |
ssh_cert_path | no | path to an X509 certificate containing the public ssh key to install in the virtual machine. See http://www.windowsazure.com/en-us/manage/linux/tutorials/intro-to-linux/ for more details.if this option is specified, password-based ssh authentication will be disabled. | ||
state | no | present | create or terminate instances | |
storage_account | yes | the azure storage account in which to store the data disks. | ||
subscription_id | no | azure subscription id. Overrides the AZURE_SUBSCRIPTION_ID environement variable. | ||
user | no | the unix username for the new virtual machine. | ||
virtual_network_name | no | Name of virtual network. | ||
wait | no | no |
| wait for the instance to be in state 'running' before returning |
wait_timeout | no | 600 | how long before wait gives up, in seconds | |
wait_timeout_redirects | no | 300 | how long before wait gives up for redirects, in seconds |
Note
Requires azure
Note: None of these examples set subscription_id or management_cert_path
It is assumed that their matching environment variables are set.
Provision virtual machine example
- local_action:
module: azure
name: my-virtual-machine
role_size: Small
image: b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu_DAILY_BUILD-precise-12_04_3-LTS-amd64-server-20131205-en-us-30GB
location: 'East US'
user: ubuntu
ssh_cert_path: /path/to/azure_x509_cert.pem
storage_account: my-storage-account
wait: yes
Terminate virtual machine example
- local_action:
module: azure
name: my-virtual-machine
state: absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
bigip_facts - Collect facts from F5 BIG-IP devices
Author: | Matt Hite |
---|
New in version 1.6.
Collect facts from F5 BIG-IP devices via iControl SOAP API
parameter | required | default | choices | comments |
---|---|---|---|---|
filter | no | Shell-style glob matching string used to filter fact keys. Not applicable for software and system_info fact categories. | ||
include | yes |
| Fact category or list of categories to collect | |
password | yes | BIG-IP password | ||
server | yes | BIG-IP host | ||
session | no | True | BIG-IP session support; may be useful to avoid concurrency issues in certain circumstances. | |
user | yes | BIG-IP username |
Note
Requires bigsuds
playbook task examples:

file bigip-test.yml
...
- hosts: bigip-test
tasks:
- name: Collect BIG-IP facts
local_action: >
bigip_facts
server=lb.mydomain.com
user=admin
password=mysecret
include=interface,vlan
Note
Requires BIG-IP software version >= 11.4
Note
F5 developed module ‘bigsuds’ required (see http://devcentral.f5.com)
Note
Best run as a local_action in your playbook
Note
Tested with manager and above account privilege level
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
bigip_monitor_http - Manages F5 BIG-IP LTM http monitors
Author: | Serge van Ginderachter |
---|
New in version 1.4.
Manages F5 BIG-IP LTM monitors via iControl SOAP API
parameter | required | default | choices | comments |
---|---|---|---|---|
interval | no | none | The interval specifying how frequently the monitor instance of this template will run. By default, this interval is used for up and down states. The default API setting is 5. | |
ip | no | none | IP address part of the ipport definition. The default API setting is "0.0.0.0". | |
name | yes | Monitor name | ||
parent | no | http | The parent template of this monitor template | |
parent_partition | no | Common | Partition for the parent monitor | |
partition | no | Common | Partition for the monitor | |
password | yes | BIG-IP password | ||
port | no | none | port address part op the ipport definition. Tyhe default API setting is 0. | |
receive | yes | none | The receive string for the monitor call | |
receive_disable | yes | none | The receive disable string for the monitor call | |
send | yes | none | The send string for the monitor call | |
server | yes | BIG-IP host | ||
state | no | present |
| Monitor state |
time_until_up | no | none | Specifies the amount of time in seconds after the first successful response before a node will be marked up. A value of 0 will cause a node to be marked up immediately after a valid response is received from the node. The default API setting is 0. | |
timeout | no | none | The number of seconds in which the node or service must respond to the monitor request. If the target responds within the set time period, it is considered up. If the target does not respond within the set time period, it is considered down. You can change this number to any number you want, however, it should be 3 times the interval number of seconds plus 1 second. The default API setting is 16. | |
user | yes | BIG-IP username |
Note
Requires bigsuds
- name: BIGIP F5 | Create HTTP Monitor
local_action:
module: bigip_monitor_http
state: present
server: "{{ f5server }}"
user: "{{ f5user }}"
password: "{{ f5password }}"
name: "{{ item.monitorname }}"
send: "{{ item.send }}"
receive: "{{ item.receive }}"
with_items: f5monitors
- name: BIGIP F5 | Remove HTTP Monitor
local_action:
module: bigip_monitor_http
state: absent
server: "{{ f5server }}"
user: "{{ f5user }}"
password: "{{ f5password }}"
name: "{{ monitorname }}"
Note
Requires BIG-IP software version >= 11
Note
F5 developed module ‘bigsuds’ required (see http://devcentral.f5.com)
Note
Best run as a local_action in your playbook
Note
Monitor API documentation: https://devcentral.f5.com/wiki/iControl.LocalLB__Monitor.ashx
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
bigip_monitor_tcp - Manages F5 BIG-IP LTM tcp monitors
Author: | Serge van Ginderachter |
---|
New in version 1.4.
Manages F5 BIG-IP LTM tcp monitors via iControl SOAP API
parameter | required | default | choices | comments |
---|---|---|---|---|
interval | no | none | The interval specifying how frequently the monitor instance of this template will run. By default, this interval is used for up and down states. The default API setting is 5. | |
ip | no | none | IP address part of the ipport definition. The default API setting is "0.0.0.0". | |
name | yes | Monitor name | ||
parent | no | tcp |
| The parent template of this monitor template |
parent_partition | no | Common | Partition for the parent monitor | |
partition | no | Common | Partition for the monitor | |
password | yes | BIG-IP password | ||
port | no | none | port address part op the ipport definition. Tyhe default API setting is 0. | |
receive | yes | none | The receive string for the monitor call | |
send | yes | none | The send string for the monitor call | |
server | yes | BIG-IP host | ||
state | no | present |
| Monitor state |
time_until_up | no | none | Specifies the amount of time in seconds after the first successful response before a node will be marked up. A value of 0 will cause a node to be marked up immediately after a valid response is received from the node. The default API setting is 0. | |
timeout | no | none | The number of seconds in which the node or service must respond to the monitor request. If the target responds within the set time period, it is considered up. If the target does not respond within the set time period, it is considered down. You can change this number to any number you want, however, it should be 3 times the interval number of seconds plus 1 second. The default API setting is 16. | |
type | no | tcp |
| The template type of this monitor template |
user | yes | BIG-IP username |
Note
Requires bigsuds
- name: BIGIP F5 | Create TCP Monitor
local_action:
module: bigip_monitor_tcp
state: present
server: "{{ f5server }}"
user: "{{ f5user }}"
password: "{{ f5password }}"
name: "{{ item.monitorname }}"
type: tcp
send: "{{ item.send }}"
receive: "{{ item.receive }}"
with_items: f5monitors-tcp
- name: BIGIP F5 | Create TCP half open Monitor
local_action:
module: bigip_monitor_tcp
state: present
server: "{{ f5server }}"
user: "{{ f5user }}"
password: "{{ f5password }}"
name: "{{ item.monitorname }}"
type: tcp
send: "{{ item.send }}"
receive: "{{ item.receive }}"
with_items: f5monitors-halftcp
- name: BIGIP F5 | Remove TCP Monitor
local_action:
module: bigip_monitor_tcp
state: absent
server: "{{ f5server }}"
user: "{{ f5user }}"
password: "{{ f5password }}"
name: "{{ monitorname }}"
with_flattened:
- f5monitors-tcp
- f5monitors-halftcp
Note
Requires BIG-IP software version >= 11
Note
F5 developed module ‘bigsuds’ required (see http://devcentral.f5.com)
Note
Best run as a local_action in your playbook
Note
Monitor API documentation: https://devcentral.f5.com/wiki/iControl.LocalLB__Monitor.ashx
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
bigip_node - Manages F5 BIG-IP LTM nodes
Author: | Matt Hite |
---|
New in version 1.4.
Manages F5 BIG-IP LTM nodes via iControl SOAP API
parameter | required | default | choices | comments |
---|---|---|---|---|
description | no | Node description. | ||
host | yes | Node IP. Required when state=present and node does not exist. Error when state=absent. | ||
name | no | Node name | ||
partition | no | Common | Partition | |
password | yes | BIG-IP password | ||
server | yes | BIG-IP host | ||
state | yes | present |
| Pool member state |
user | yes | BIG-IP username |
Note
Requires bigsuds
playbook task examples:

file bigip-test.yml
...
- hosts: bigip-test
tasks:
- name: Add node
local_action: >
bigip_node
server=lb.mydomain.com
user=admin
password=mysecret
state=present
partition=matthite
host="{{ ansible_default_ipv4["address"] }}"
name="{{ ansible_default_ipv4["address"] }}"
Note that the BIG-IP automatically names the node using the
IP address specified in previous play's host parameter.
Future plays referencing this node no longer use the host
parameter but instead use the name parameter.
Alternatively, you could have specified a name with the
name parameter when state=present.
- name: Modify node description
local_action: >
bigip_node
server=lb.mydomain.com
user=admin
password=mysecret
state=present
partition=matthite
name="{{ ansible_default_ipv4["address"] }}"
description="Our best server yet"
- name: Delete node
local_action: >
bigip_node
server=lb.mydomain.com
user=admin
password=mysecret
state=absent
partition=matthite
name="{{ ansible_default_ipv4["address"] }}"
Note
Requires BIG-IP software version >= 11
Note
F5 developed module ‘bigsuds’ required (see http://devcentral.f5.com)
Note
Best run as a local_action in your playbook
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
bigip_pool - Manages F5 BIG-IP LTM pools
Author: | Matt Hite |
---|
New in version 1.2.
Manages F5 BIG-IP LTM pools via iControl SOAP API
parameter | required | default | choices | comments |
---|---|---|---|---|
host | no | Pool member IP | ||
lb_method | no | round_robin |
| Load balancing method (added in Ansible 1.3) |
monitor_type | no |
| Monitor rule type when monitors > 1 (added in Ansible 1.3) | |
monitors | no | Monitor template name list. Always use the full path to the monitor. (added in Ansible 1.3) | ||
name | yes | Pool name | ||
partition | no | Common | Partition of pool/pool member | |
password | yes | BIG-IP password | ||
port | no | Pool member port | ||
quorum | no | Monitor quorum value when monitor_type is m_of_n (added in Ansible 1.3) | ||
server | yes | BIG-IP host | ||
service_down_action | no |
| Sets the action to take when node goes down in pool (added in Ansible 1.3) | |
slow_ramp_time | no | Sets the ramp-up time (in seconds) to gradually ramp up the load on newly added or freshly detected up pool members (added in Ansible 1.3) | ||
state | no | present |
| Pool/pool member state |
user | yes | BIG-IP username |
Note
Requires bigsuds
playbook task examples:

file bigip-test.yml
...
- hosts: localhost
tasks:
- name: Create pool
local_action: >
bigip_pool
server=lb.mydomain.com
user=admin
password=mysecret
state=present
name=matthite-pool
partition=matthite
lb_method=least_connection_member
slow_ramp_time=120
- name: Modify load balancer method
local_action: >
bigip_pool
server=lb.mydomain.com
user=admin
password=mysecret
state=present
name=matthite-pool
partition=matthite
lb_method=round_robin
- hosts: bigip-test
tasks:
- name: Add pool member
local_action: >
bigip_pool
server=lb.mydomain.com
user=admin
password=mysecret
state=present
name=matthite-pool
partition=matthite
host="{{ ansible_default_ipv4["address"] }}"
port=80
- name: Remove pool member from pool
local_action: >
bigip_pool
server=lb.mydomain.com
user=admin
password=mysecret
state=absent
name=matthite-pool
partition=matthite
host="{{ ansible_default_ipv4["address"] }}"
port=80
- hosts: localhost
tasks:
- name: Delete pool
local_action: >
bigip_pool
server=lb.mydomain.com
user=admin
password=mysecret
state=absent
name=matthite-pool
partition=matthite
Note
Requires BIG-IP software version >= 11
Note
F5 developed module ‘bigsuds’ required (see http://devcentral.f5.com)
Note
Best run as a local_action in your playbook
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
bigip_pool_member - Manages F5 BIG-IP LTM pool members
Author: | Matt Hite |
---|
New in version 1.4.
Manages F5 BIG-IP LTM pool members via iControl SOAP API
parameter | required | default | choices | comments |
---|---|---|---|---|
connection_limit | no | Pool member connection limit. Setting this to 0 disables the limit. | ||
description | no | Pool member description | ||
host | yes | Pool member IP | ||
partition | no | Common | Partition | |
password | yes | BIG-IP password | ||
pool | yes | Pool name. This pool must exist. | ||
port | yes | Pool member port | ||
rate_limit | no | Pool member rate limit (connections-per-second). Setting this to 0 disables the limit. | ||
ratio | no | Pool member ratio weight. Valid values range from 1 through 100. New pool members -- unless overriden with this value -- default to 1. | ||
server | yes | BIG-IP host | ||
state | yes | present |
| Pool member state |
user | yes | BIG-IP username |
Note
Requires bigsuds
playbook task examples:

file bigip-test.yml
...
- hosts: bigip-test
tasks:
- name: Add pool member
local_action: >
bigip_pool_member
server=lb.mydomain.com
user=admin
password=mysecret
state=present
pool=matthite-pool
partition=matthite
host="{{ ansible_default_ipv4["address"] }}"
port=80
description="web server"
connection_limit=100
rate_limit=50
ratio=2
- name: Modify pool member ratio and description
local_action: >
bigip_pool_member
server=lb.mydomain.com
user=admin
password=mysecret
state=present
pool=matthite-pool
partition=matthite
host="{{ ansible_default_ipv4["address"] }}"
port=80
ratio=1
description="nginx server"
- name: Remove pool member from pool
local_action: >
bigip_pool_member
server=lb.mydomain.com
user=admin
password=mysecret
state=absent
pool=matthite-pool
partition=matthite
host="{{ ansible_default_ipv4["address"] }}"
port=80
Note
Requires BIG-IP software version >= 11
Note
F5 developed module ‘bigsuds’ required (see http://devcentral.f5.com)
Note
Best run as a local_action in your playbook
Note
Supersedes bigip_pool for managing pool members
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
boundary_meter - Manage boundary meters
Author: | curtis @serverascode.com |
---|
New in version 1.3.
This module manages boundary meters
parameter | required | default | choices | comments |
---|---|---|---|---|
apiid | yes | Organizations boundary API ID | ||
apikey | yes | Organizations boundary API KEY | ||
name | yes | meter name | ||
state | no | True |
| Whether to create or remove the client from boundary |
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
Note
Requires Boundary API access
Note
Requires bprobe is required to send data, but not to register a meter
Note
Requires Python urllib2
- name: Create meter
boundary_meter: apiid=AAAAAA api_key=BBBBBB state=present name={{ inventory_hostname }}"
- name: Delete meter
boundary_meter: apiid=AAAAAA api_key=BBBBBB state=absent name={{ inventory_hostname }}"
Note
This module does not yet support boundary tags.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
bzr - Deploy software (or files) from bzr branches
Author: | André Paramés |
---|
New in version 1.1.
Manage bzr branches to deploy files or software.
parameter | required | default | choices | comments |
---|---|---|---|---|
dest | yes | Absolute path of where the branch should be cloned to. | ||
executable | no | Path to bzr executable to use. If not supplied, the normal mechanism for resolving binary paths will be used. (added in Ansible 1.4) | ||
force | no | yes |
| If yes, any modified files in the working tree will be discarded. |
name | yes | SSH or HTTP protocol address of the parent branch. | ||
version | no | head | What version of the branch to clone. This can be the bzr revno or revid. |
Example bzr checkout from Ansible Playbooks
- bzr: name=bzr+ssh://foosball.example.org/path/to/branch dest=/srv/checkout version=22
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
campfire - Send a message to Campfire
Author: | Adam Garside <adam .garside@gmail.com> |
---|
New in version 1.2.
Send a message to Campfire. Messages with newlines will result in a “Paste” message being sent.
parameter | required | default | choices | comments |
---|---|---|---|---|
msg | yes | The message body. | ||
notify | no |
| Send a notification sound before the message. | |
room | yes | Room number to which the message should be sent. | ||
subscription | yes | The subscription name to use. | ||
token | yes | API token. |
Note
Requires urllib2
Note
Requires cgi
- campfire: subscription=foo token=12345 room=123 msg="Task completed."
- campfire: subscription=foo token=12345 room=123 notify=loggins
msg="Task completed ... with feeling."
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
capabilities - Manage Linux capabilities
Author: | Nate Coraor <nate @bx.psu.edu> |
---|
New in version 1.6.
This module manipulates files privileges using the Linux capabilities(7) system.
parameter | required | default | choices | comments |
---|---|---|---|---|
capability | yes | Desired capability to set (with operator and flags, if state is present) or remove (if state is absent) | ||
path | yes | Specifies the path to the file to be managed. | ||
state | no | present |
| Whether the entry should be present or absent in the file's capabilities. |
Set cap_sys_chroot+ep on /foo
- capabilities: path=/foo capability=cap_sys_chroot+ep state=present
Remove cap_net_bind_service from /bar
- capabilities: path=/bar capability=cap_net_bind_service state=absent
Note
The capabilities system will automatically transform operators and flags into the effective set, so (for example, cap_foo=ep will probably become cap_foo+ep). This module does not attempt to determine the final operator and flags to compare, so you will want to ensure that your capabilities argument matches the final capabilities.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
cloudformation - create a AWS CloudFormation stack
Author: | James S. Martin |
---|
New in version 1.1.
Launches an AWS CloudFormation stack and waits for it complete.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. (added in Ansible 1.5) | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. (added in Ansible 1.5) | ||
disable_rollback | no | no |
| If a stacks fails to form, rollback will remove the stack |
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. (added in Ansible 1.5) | ||
stack_name | yes | name of the cloudformation stack | ||
state | yes | If state is "present", stack will be created. If state is "present" and if stack exists and template has changed, it will be updated. If state is absent, stack will be removed. | ||
tags | no | Dictionary of tags to associate with stack and it's resources during stack creation. Cannot be updated later. Requires at least Boto version 2.6.0. (added in Ansible 1.4) | ||
template | yes | the path of the cloudformation template | ||
template_parameters | no | a list of hashes of all the template variables for the stack |
Note
Requires boto
Basic task example
tasks:
- name: launch ansible cloudformation example
action: cloudformation >
stack_name="ansible-cloudformation" state=present
region=us-east-1 disable_rollback=yes
template=files/cloudformation-example.json
args:
template_parameters:
KeyName: jmartin
DiskType: ephemeral
InstanceType: m1.small
ClusterSize: 3
tags:
Stack: ansible-cloudformation
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
command - Executes a command on a remote node
Author: | Michael DeHaan |
---|
The command module takes the command name followed by a list of space-delimited arguments. The given command will be executed on all selected nodes. It will not be processed through the shell, so variables like $HOME and operations like "<", ">", "|", and "&" will not work (use the shell module if you need these features).
parameter | required | default | choices | comments |
---|---|---|---|---|
chdir | no | cd into this directory before running the command (added in Ansible 0.6) | ||
creates | no | a filename, when it already exists, this step will not be run. | ||
executable | no | change the shell used to execute the command. Should be an absolute path to the executable. (added in Ansible 0.9) | ||
free_form | yes | the command module takes a free form command to run. There is no parameter actually named 'free form'. See the examples! | ||
removes | no | a filename, when it does not exist, this step will not be run. (added in Ansible 0.8) |
Example from Ansible Playbooks.
- command: /sbin/shutdown -t now
Run the command if the specified file does not exist.
- command: /usr/bin/make_database.sh arg1 arg2 creates=/path/to/database
You can also use the 'args' form to provide the options. This command
will change the working directory to somedir/ and will only run when
/path/to/database doesn't exist.
- command: /usr/bin/make_database.sh arg1 arg2
args:
chdir: somedir/
creates: /path/to/database
Note
If you want to run a command through the shell (say you are using <, >, |, etc), you actually want the shell module instead. The command module is much more secure as it’s not affected by the user’s environment.
Note
creates, removes, and chdir can be specified after the command. For instance, if you only want to run a command if a certain file does not exist, use this.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
composer - Dependency Manager for PHP
Author: | Dimitrios Tydeas Mengidis |
---|
New in version 1.6.
Composer is a tool for dependency management in PHP. It allows you to declare the dependent libraries your project needs and it will install them in your project for you
parameter | required | default | choices | comments |
---|---|---|---|---|
no_dev | no | yes |
| Disables installation of require-dev packages (see --no-dev) |
no_plugins | no | no |
| Disables all plugins (see --no-plugins) |
no_scripts | no | no |
| Skips the execution of all scripts defined in composer.json (see --no-scripts) |
optimize_autoloader | no | yes |
| Optimize autoloader during autoloader dump (see --optimize-autoloader). Convert PSR-0/4 autoloading to classmap to get a faster autoloader. This is recommended especially for production, but can take a bit of time to run so it is currently not done by default. |
prefer_dist | no | no |
| Forces installation from package dist even for de versions (see --prefer-dist) |
prefer_source | no | no |
| Forces installation from package sources when possible (see --prefer-source) |
working_dir | yes | Directory of your project (see --working-dir) |
Note
Requires php
Note
Requires composer installed in bin path (recommended /usr/local/bin)
Downloads and installs all the libs and dependencies outlined in the /path/to/project/composer.lock
- composer: working_dir=/path/to/project
Note
Default options that are always appended in each execution are –no-ansi, –no-progress, and –no-interaction
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
copy - Copies files to remote locations.
Author: | Michael DeHaan |
---|
The copy module copies a file on the local box to remote locations.
parameter | required | default | choices | comments |
---|---|---|---|---|
backup | no | no |
| Create a backup file including the timestamp information so you can get the original file back if you somehow clobbered it incorrectly. (added in Ansible 0.7) |
content | no | When used instead of 'src', sets the contents of a file directly to the specified value. (added in Ansible 1.1) | ||
dest | yes | Remote absolute path where the file should be copied to. If src is a directory, this must be a directory too. | ||
directory_mode | no | When doing a recursive copy set the mode for the directories. If this is not set we will default the system defaults. (added in Ansible 1.5) | ||
force | no | no |
| force the creation of the symlinks in two cases: the source file does not exist (but will appear later); the destination exists and is a file (so, we need to unlink the "path" file and create symlink to the "src" file in place of it). |
group | no | name of the group that should own the file/directory, as would be fed to chown | ||
mode | no | mode the file or directory should be, such as 0644 as would be fed to chmod | ||
owner | no | name of the user that should own the file/directory, as would be fed to chown | ||
path | yes | path to the file being managed. Aliases: dest, name | ||
recurse | no | no |
| recursively set the specified file attributes (applies only to state=directory) (added in Ansible 1.1) |
selevel | no | s0 | level part of the SELinux file context. This is the MLS/MCS attribute, sometimes known as the range. _default feature works as for seuser. | |
serole | no | role part of SELinux file context, _default feature works as for seuser. | ||
setype | no | type part of SELinux file context, _default feature works as for seuser. | ||
seuser | no | user part of SELinux file context. Will default to system policy, if applicable. If set to _default, it will use the user portion of the policy if available | ||
src | no | path of the file to link to (applies only to state=link). Will accept absolute, relative and nonexisting paths. Relative paths are not expanded. | ||
state | no | file |
| If directory, all immediate subdirectories will be created if they do not exist, since 1.7 they will be created with the supplied permissions. If file, the file will NOT be created if it does not exist, see the copy or template module if you want that behavior. If link, the symbolic link will be created or changed. Use hard for hardlinks. If absent, directories will be recursively deleted, and files or symlinks will be unlinked. If touch (new in 1.4), an empty file will be created if the c(path) does not exist, while an existing file or directory will receive updated file access and modification times (similar to the way `touch` works from the command line). |
validate | no | The validation command to run before copying into place. The path to the file to validate is passed in via '%s' which must be present as in the visudo example below. The command is passed securely so shell features like expansion and pipes won't work. (added in Ansible 1.2) |
Example from Ansible Playbooks
- copy: src=/srv/myfiles/foo.conf dest=/etc/foo.conf owner=foo group=foo mode=0644
Copy a new "ntp.conf file into place, backing up the original if it differs from the copied version
- copy: src=/mine/ntp.conf dest=/etc/ntp.conf owner=root group=root mode=644 backup=yes
Copy a new "sudoers" file into place, after passing validation with visudo
- copy: src=/mine/sudoers dest=/etc/sudoers validate='visudo -cf %s'
Note
The “copy” module recursively copy facility does not scale to lots (>hundreds) of files. For alternative, see synchronize module, which is a wrapper around rsync.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
cpanm - Manages Perl library dependencies.
Author: | Franck Cuny |
---|
New in version 1.6.
Manage Perl library dependencies.
parameter | required | default | choices | comments |
---|---|---|---|---|
from_path | no | The local directory from where to install | ||
locallib | no | Specify the install base to install modules | ||
mirror | no | Specifies the base URL for the CPAN mirror to use | ||
name | no | The name of the Perl library to install | ||
notest | no | Do not run unit tests |
Install Dancer perl package.
cpanm: name=Dancer
Install Dancer (http://perldancer.org/) into the specified locallib
cpanm: name=Dancer locallib=/srv/webapps/my_app/extlib
Install perl dependencies from local directory.
cpanm: from_path=/srv/webapps/my_app/src/
Install Dancer perl package without running the unit tests in indicated locallib.
cpanm: name=Dancer notest=True locallib=/srv/webapps/my_app/extlib
Install Dancer perl package from a specific mirror
cpanm: name=Dancer mirror=http://cpan.cpantesters.org/
Note
Please note that http://search.cpan.org/dist/App-cpanminus/bin/cpanm, cpanm must be installed on the remote host.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
cron - Manage cron.d and crontab entries.
Author: | Dane Summers |
---|
Use this module to manage crontab entries. This module allows you to create named crontab entries, update, or delete them. The module includes one line with the description of the crontab entry "#Ansible: <name>" corresponding to the “name” passed to the module, which is used by future ansible/module calls to find/check the state.
parameter | required | default | choices | comments |
---|---|---|---|---|
backup | no | If set, create a backup of the crontab before it is modified. The location of the backup is returned in the backup variable by this module. | ||
cron_file | no | If specified, uses this file in cron.d instead of an individual user's crontab. | ||
day | no | * | Day of the month the job should run (1-31, *, */2, etc) | |
hour | no | * | Hour when the job should run (0-23, *, */2, etc) | |
job | no | The command to execute. Required if state=present. | ||
minute | no | * | Minute when the job should run (0-59, *, */2, etc) | |
month | no | * | Month of the year the job should run (1-12, *, */2, etc) | |
name | no | Description of a crontab entry. | ||
reboot | no | no |
| If the job should be run at reboot. This option is deprecated. Users should use special_time. (added in Ansible 1.0) |
special_time | no |
| Special time specification nickname. (added in Ansible 1.3) | |
state | no | present |
| Whether to ensure the job is present or absent. |
user | no | root | The specific user whose crontab should be modified. | |
weekday | no | * | Day of the week that the job should run (0-6 for Sunday-Saturday, *, etc) |
Note
Requires cron
Ensure a job that runs at 2 and 5 exists.
Creates an entry like "* 5,2 * * ls -alh > /dev/null"
- cron: name="check dirs" hour="5,2" job="ls -alh > /dev/null"
Ensure an old job is no longer present. Removes any job that is prefixed
by "#Ansible: an old job" from the crontab
- cron: name="an old job" state=absent
Creates an entry like "@reboot /some/job.sh"
- cron: name="a job for reboot" special_time=reboot job="/some/job.sh"
Creates a cron file under /etc/cron.d
- cron: name="yum autoupdate" weekday="2" minute=0 hour=12
user="root" job="YUMINTERACTIVE=0 /usr/sbin/yum-autoupdate"
cron_file=ansible_yum-autoupdate
Removes a cron file from under /etc/cron.d
- cron: cron_file=ansible_yum-autoupdate state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
datadog_event - Posts events to DataDog service
Author: | Artūras ‘arturaz’ Šlajus <x11 @arturaz.net> |
---|
New in version 1.3.
Allows to post events to DataDog (www.datadoghq.com) service. Uses http://docs.datadoghq.com/api/#events API.
parameter | required | default | choices | comments |
---|---|---|---|---|
aggregation_key | no | An arbitrary string to use for aggregation. | ||
alert_type | no | info |
| Type of alert. |
api_key | yes | Your DataDog API key. | ||
date_happened | no | now | POSIX timestamp of the event.Default value is now. | |
priority | no | normal |
| The priority of the event. |
tags | no | Comma separated list of tags to apply to the event. | ||
text | yes | The body of the event. | ||
title | yes | The event title. | ||
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
Note
Requires urllib2
Post an event with low priority
datadog_event: title="Testing from ansible" text="Test!" priority="low"
api_key="6873258723457823548234234234"
Post an event with several tags
datadog_event: title="Testing from ansible" text="Test!"
api_key="6873258723457823548234234234"
tags=aa,bb,cc
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
debconf - Configure a .deb package
Author: | Brian Coca |
---|
New in version 1.6.
Configure a .deb package using debconf-set-selections. Or just query existing selections.
parameter	required	default	choices	comments
name	yes	Name of package to configure.		
question	no	A debconf configuration setting		
unseen	no	Do not set 'seen' flag when pre-seeding		
value	no	Value to set the configuration to		
vtype	no			
The type of the value supplied				
Note
Requires debconf
Note
Requires debconf-utils
Set default locale to fr_FR.UTF-8
debconf: name=locales question='locales/default_environment_locale' value=fr_FR.UTF-8 vtype='select'
set to generate locales:
debconf: name=locales question='locales/locales_to_be_generated' value='en_US.UTF-8 UTF-8, fr_FR.UTF-8 UTF-8' vtype='multiselect'
Accept oracle license
debconf: name='oracle-java7-installer' question='shared/accepted-oracle-license-v1-1' value='true' vtype='select'
Specifying package you can register/return the list of questions and current values
debconf: name='tzdata'
Note
This module requires the command line debconf tools.
Note
A number of questions have to be answered (depending on the package). Use ‘debconf-show <package>’ on any Debian or derivative with the package installed to see questions/settings available.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
debug - Print statements during execution
Author: | Dag Wieers, Michael DeHaan |
---|
This module prints statements during execution and can be useful for debugging variables or expressions without necessarily halting the playbook. Useful for debugging together with the ‘when:’ directive.
parameter	required	default	choices	comments
msg | no | Hello world! | The customized message that is printed. If omitted, prints a generic message. | |
var | no | A variable name to debug. Mutually exclusive with the 'msg' option. |
Example that prints the loopback address and gateway for each host
- debug: msg="System {{ inventory_hostname }} has uuid {{ ansible_product_uuid }}"
- debug: msg="System {{ inventory_hostname }} has gateway {{ ansible_default_ipv4.gateway }}"
when: ansible_default_ipv4.gateway is defined
- shell: /usr/bin/uptime
register: result
- debug: var=result
- name: Display all variables/facts known for a host
debug: var=hostvars[inventory_hostname]
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
digital_ocean - Create/delete a droplet/SSH_key in DigitalOcean
New in version 1.3.
Create/delete a droplet in DigitalOcean and optionally wait for it to be ‘running’, or deploy an SSH key.
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | DigitalOcean api key. | ||
backups_enabled | no | no |
| Optional, Boolean, enables backups for your droplet. (added in Ansible 1.6) |
client_id | no | DigitalOcean manager id. | ||
command | no | droplet |
| Which target you want to operate on. |
id | no | Numeric, the droplet id you want to operate on. | ||
image_id | no | Numeric, this is the id of the image you would like the droplet created with. | ||
name | no | String, this is the name of the droplet - must be formatted by hostname rules, or the name of a SSH key. | ||
private_networking | no | no |
| Bool, add an additional, private network interface to droplet for inter-droplet communication. (added in Ansible 1.4) |
region_id | no | Numeric, this is the id of the region you would like your server to be created in. | ||
size_id | no | Numeric, this is the id of the size you would like the droplet created with. | ||
ssh_key_ids | no | Optional, comma separated list of ssh_key_ids that you would like to be added to the server. | ||
ssh_pub_key | no | The public SSH key you want to add to your account. | ||
state | no | present |
| Indicate desired state of the target. |
unique_name | no | no |
| Bool, require unique hostnames. By default, DigitalOcean allows multiple hosts with the same name. Setting this to "yes" allows only one host per name. Useful for idempotence. (added in Ansible 1.4) |
virtio | no | yes |
| Bool, turn on virtio driver in droplet for improved network and storage I/O. (added in Ansible 1.4) |
wait | no | yes |
| Wait for the droplet to be in state 'running' before returning. If wait is "no" an ip_address may not be returned. |
wait_timeout | no | 300 | How long before wait gives up, in seconds. |
Note
Requires dopy
Ensure a SSH key is present
If a key matches this name, will return the ssh key id and changed = False
If no existing key matches this name, a new key is created, the ssh key id is returned and changed = False
- digital_ocean: >
state=present
command=ssh
name=my_ssh_key
ssh_pub_key='ssh-rsa AAAA...'
client_id=XXX
api_key=XXX
Create a new Droplet
Will return the droplet details including the droplet id (used for idempotence)
- digital_ocean: >
state=present
command=droplet
name=mydroplet
client_id=XXX
api_key=XXX
size_id=1
region_id=2
image_id=3
wait_timeout=500
register: my_droplet
- debug: msg="ID is {{ my_droplet.droplet.id }}"
- debug: msg="IP is {{ my_droplet.droplet.ip_address }}"
Ensure a droplet is present
If droplet id already exist, will return the droplet details and changed = False
If no droplet matches the id, a new droplet will be created and the droplet details (including the new id) are returned, changed = True.
- digital_ocean: >
state=present
command=droplet
id=123
name=mydroplet
client_id=XXX
api_key=XXX
size_id=1
region_id=2
image_id=3
wait_timeout=500
Create a droplet with ssh key
The ssh key id can be passed as argument at the creation of a droplet (see ssh_key_ids).
Several keys can be added to ssh_key_ids as id1,id2,id3
The keys are used to connect as root to the droplet.
- digital_ocean: >
state=present
ssh_key_ids=id1,id2
name=mydroplet
client_id=XXX
api_key=XXX
size_id=1
region_id=2
image_id=3
Note
Two environment variables can be used, DO_CLIENT_ID and DO_API_KEY.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
digital_ocean_domain - Create/delete a DNS record in DigitalOcean
New in version 1.6.
Create/delete a DNS record in DigitalOcean.
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Digital Ocean api key. | ||
client_id | no | Digital Ocean manager id. | ||
id | no | Numeric, the droplet id you want to operate on. | ||
ip | no | The IP address to point a domain at. | ||
name | no | String, this is the name of the droplet - must be formatted by hostname rules, or the name of a SSH key, or the name of a domain. | ||
state | no | present |
| Indicate desired state of the target. |
Create a domain record
- digital_ocean_domain: >
state=present
name=my.digitalocean.domain
ip=127.0.0.1
Create a droplet and a corresponding domain record
- digital_ocean: >
state=present
name=test_droplet
size_id=1
region_id=2
image_id=3
register: test_droplet
- digital_ocean_domain: >
state=present
name={{ test_droplet.droplet.name }}.my.domain
ip={{ test_droplet.droplet.ip_address }}
Note
Two environment variables can be used, DO_CLIENT_ID and DO_API_KEY.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
digital_ocean_sshkey - Create/delete an SSH key in DigitalOcean
New in version 1.6.
Create/delete an SSH key.
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Digital Ocean api key. | ||
client_id | no | Digital Ocean manager id. | ||
id | no | Numeric, the SSH key id you want to operate on. | ||
name | no | String, this is the name of an SSH key to create or destroy. | ||
ssh_pub_key | no | The public SSH key you want to add to your account. | ||
state | no | present |
| Indicate desired state of the target. |
Ensure a SSH key is present
If a key matches this name, will return the ssh key id and changed = False
If no existing key matches this name, a new key is created, the ssh key id is returned and changed = False
- digital_ocean_sshkey: >
state=present
name=my_ssh_key
ssh_pub_key='ssh-rsa AAAA...'
client_id=XXX
api_key=XXX
Note
Two environment variables can be used, DO_CLIENT_ID and DO_API_KEY.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
django_manage - Manages a Django application.
Author: | Scott Anderson |
---|
New in version 1.1.
Manages a Django application using the manage.py application frontend to django-admin. With the virtualenv parameter, all management commands will be executed by the given virtualenv installation.
parameter | required | default | choices | comments |
---|---|---|---|---|
app_path | yes | The path to the root of the Django application where manage.py lives. | ||
apps | no | A list of space-delimited apps to target. Used by the 'test' command. | ||
cache_table | no | The name of the table used for database-backed caching. Used by the 'createcachetable' command. | ||
command | yes |
| The name of the Django management command to run. Built in commands are cleanup, collectstatic, flush, loaddata, migrate, runfcgi, syncdb, test, and validate. Other commands can be entered, but will fail if they're unknown to Django. | |
database | no | The database to target. Used by the 'createcachetable', 'flush', 'loaddata', and 'syncdb' commands. | ||
failfast | no | no |
| Fail the command immediately if a test fails. Used by the 'test' command. |
fixtures | no | A space-delimited list of fixture file names to load in the database. Required by the 'loaddata' command. | ||
link | no | Will create links to the files instead of copying them, you can only use this parameter with 'collectstatic' command (added in Ansible 1.3) | ||
merge | no | Will run out-of-order or missing migrations as they are not rollback migrations, you can only use this parameter with 'migrate' command (added in Ansible 1.3) | ||
pythonpath | no | A directory to add to the Python path. Typically used to include the settings module if it is located external to the application directory. | ||
settings | no | The Python path to the application's settings module, such as 'myapp.settings'. | ||
skip | no | Will skip over out-of-order missing migrations, you can only use this parameter with migrate (added in Ansible 1.3) | ||
virtualenv | no | An optional path to a virtualenv installation to use while running the manage application. |
Note
Requires virtualenv
Note
Requires django
Run cleanup on the application installed in 'django_dir'.
- django_manage: command=cleanup app_path={{ django_dir }}
Load the initial_data fixture into the application
- django_manage: command=loaddata app_path={{ django_dir }} fixtures={{ initial_data }}
#Run syncdb on the application
- django_manage: >
command=syncdb
app_path={{ django_dir }}
settings={{ settings_app_name }}
pythonpath={{ settings_dir }}
virtualenv={{ virtualenv_dir }}
#Run the SmokeTest test case from the main app. Useful for testing deploys.
- django_manage: command=test app_path=django_dir apps=main.SmokeTest
Note
virtualenv (http://www.virtualenv.org) must be installed on the remote host if the virtualenv parameter is specified.
Note
This module will create a virtualenv if the virtualenv parameter is specified and a virtualenv does not already exist at the given location.
Note
This module assumes English error messages for the ‘createcachetable’ command to detect table existence, unfortunately.
Note
To be able to use the migrate command, you must have south installed and added as an app in your settings
Note
To be able to use the collectstatic command, you must have enabled staticfiles in your settings
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
dnsimple - Interface with dnsimple.com (a DNS hosting service).
Author: | Alex Coomans |
---|
New in version 1.6.
Manages domains and records via the DNSimple API, see the docs: http://developer.dnsimple.com/
parameter | required | default | choices | comments |
---|---|---|---|---|
account_api_token | no | Account API token. See account_email for info. | ||
account_email | no | Account email. If ommitted, the env variables DNSIMPLE_EMAIL and DNSIMPLE_API_TOKEN will be looked for. If those aren't found, a .dnsimple file will be looked for, see: https://github.com/mikemaccana/dnsimple-python#getting-started | ||
domain | no | Domain to work with. Can be the domain name (e.g. "mydomain.com") or the numeric ID of the domain in DNSimple. If ommitted, a list of domains will be returned.If domain is present but the domain doesn't exist, it will be created. | ||
priority | no | Record priority | ||
record | no | Record to add, if blank a record for the domain will be created, supports the wildcard (*) | ||
record_ids | no | List of records to ensure they either exist or don't exist | ||
solo | no | Whether the record should be the only one for that record type and record name. Only use with state=present on a record | ||
state | no |
| whether the record should exist or not | |
ttl | no | 3600 (one hour) | The TTL to give the new record | |
type | no |
| The type of DNS record to create | |
value | no | Record valueMust be specified when trying to ensure a record exists |
Note
Requires dnsimple
authenicate using email and API token
- local_action: dnsimple account_email=test@example.com account_api_token=dummyapitoken
fetch all domains
- local_action dnsimple
register: domains
fetch my.com domain records
- local_action: dnsimple domain=my.com state=present
register: records
delete a domain
- local_action: dnsimple domain=my.com state=absent
create a test.my.com A record to point to 127.0.0.01
- local_action: dnsimple domain=my.com record=test type=A value=127.0.0.1
register: record
and then delete it
- local_action: dnsimple domain=my.com record_ids={{ record['id'] }}
create a my.com CNAME record to example.com
- local_action: dnsimple domain=my.com record= type=CNAME value=example.com state=present
change it's ttl
- local_action: dnsimple domain=my.com record= type=CNAME value=example.com ttl=600 state=present
and delete the record
- local_action: dnsimpledomain=my.com record= type=CNAME value=example.com state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
dnsmadeeasy - Interface with dnsmadeeasy.com (a DNS hosting service).
Author: | Brice Burgess |
---|
New in version 1.3.
Manages DNS records via the v2 REST API of the DNS Made Easy service. It handles records only; there is no manipulation of domains or monitor/account support yet. See: http://www.dnsmadeeasy.com/services/rest-api/
parameter | required | default | choices | comments |
---|---|---|---|---|
account_key | yes | Accout API Key. | ||
account_secret | yes | Accout Secret Key. | ||
domain | yes | Domain to work with. Can be the domain name (e.g. "mydomain.com") or the numeric ID of the domain in DNS Made Easy (e.g. "839989") for faster resolution. | ||
record_name | no | Record name to get/create/delete/update. If record_name is not specified; all records for the domain will be returned in "result" regardless of the state argument. | ||
record_ttl | no | 1800 | record's "Time to live". Number of seconds the record remains cached in DNS servers. | |
record_type | no |
| Record type. | |
record_value | no | Record value. HTTPRED: <redirection URL>, MX: <priority> <target name>, NS: <name server>, PTR: <target name>, SRV: <priority> <weight> <port> <target name>, TXT: <text value>If record_value is not specified; no changes will be made and the record will be returned in 'result' (in other words, this module can be used to fetch a record's current id, type, and ttl) | ||
state | yes |
| whether the record should exist or not | |
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
Note
Requires urllib
Note
Requires urllib2
Note
Requires hashlib
Note
Requires hmac
fetch my.com domain records
- dnsmadeeasy: account_key=key account_secret=secret domain=my.com state=present
register: response
create / ensure the presence of a record
- dnsmadeeasy: account_key=key account_secret=secret domain=my.com state=present record_name="test" record_type="A" record_value="127.0.0.1"
update the previously created record
- dnsmadeeasy: account_key=key account_secret=secret domain=my.com state=present record_name="test" record_value="192.168.0.1"
fetch a specific record
- dnsmadeeasy: account_key=key account_secret=secret domain=my.com state=present record_name="test"
register: response
delete a record / ensure it is absent
- dnsmadeeasy: account_key=key account_secret=secret domain=my.com state=absent record_name="test"
Note
The DNS Made Easy service requires that machines interacting with the API have the proper time and timezone set. Be sure you are within a few seconds of actual time by using NTP.
Note
This module returns record(s) in the “result” element when ‘state’ is set to ‘present’. This value can be be registered and used in your playbooks.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
docker - manage docker containers
Author: | Cove Schneider, Joshua Conner, Pavel Antonov |
---|
New in version 1.4.
Manage the life cycle of docker containers.
parameter | required | default | choices | comments |
---|---|---|---|---|
command | no | Set command to run in a container on startup | ||
count | no | 1 | Set number of containers to run | |
detach | no | True | Enable detached mode on start up, leaves container running in background | |
dns | no | Set custom DNS servers for the container | ||
docker_url | no | unix://var/run/docker.sock | URL of docker host to issue commands to | |
env | no | Set environment variables (e.g. env="PASSWORD=sEcRe7,WORKERS=4") | ||
expose | no | Set container ports to expose for port mappings or links. (If the port is already exposed using EXPOSE in a Dockerfile, you don't need to expose it again.) (added in Ansible 1.5) | ||
hostname | no | Set container hostname | ||
image | yes | Set container image to use | ||
links | no | Link container(s) to other container(s) (e.g. links=redis,postgresql:db) (added in Ansible 1.5) | ||
lxc_conf | no | LXC config parameters, e.g. lxc.aa_profile:unconfined | ||
memory_limit | no | 256MB | Set RAM allocated to container | |
name | no | Set the name of the container (cannot use with count) (added in Ansible 1.5) | ||
password | no | Set remote API password | ||
ports | no | Set private to public port mapping specification using docker CLI-style syntax [([<host_interface>:[host_port]])|(<host_port>):]<container_port>[/udp] (added in Ansible 1.5) | ||
privileged | no | Set whether the container should run in privileged mode | ||
publish_all_ports | no | Publish all exposed ports to the host interfaces (added in Ansible 1.5) | ||
state | no | present |
| Set the state of the container |
stdin_open | no | Keep stdin open (added in Ansible 1.6) | ||
tty | no | Allocate a pseudo-tty (added in Ansible 1.6) | ||
username | no | Set remote API username | ||
volumes | no | Set volume(s) to mount on the container | ||
volumes_from | no | Set shared volume(s) from another container |
Note
Requires docker-py >= 0.3.0
Note
Requires docker >= 0.10.0
Start one docker container running tomcat in each host of the web group and bind tomcat's listening port to 8080
on the host:
- hosts: web
sudo: yes
tasks:
- name: run tomcat servers
docker: image=centos command="service tomcat6 start" ports=8080
The tomcat server's port is NAT'ed to a dynamic port on the host, but you can determine which port the server was
mapped to using docker_containers:
- hosts: web
sudo: yes
tasks:
- name: run tomcat servers
docker: image=centos command="service tomcat6 start" ports=8080 count=5
- name: Display IP address and port mappings for containers
debug: msg={{inventory_hostname}}:{{item['HostConfig']['PortBindings']['8080/tcp'][0]['HostPort']}}
with_items: docker_containers
Just as in the previous example, but iterates over the list of docker containers with a sequence:
- hosts: web
sudo: yes
vars:
start_containers_count: 5
tasks:
- name: run tomcat servers
docker: image=centos command="service tomcat6 start" ports=8080 count={{start_containers_count}}
- name: Display IP address and port mappings for containers
debug: msg="{{inventory_hostname}}:{{docker_containers[{{item}}]['HostConfig']['PortBindings']['8080/tcp'][0]['HostPort']}}"
with_sequence: start=0 end={{start_containers_count - 1}}
Stop, remove all of the running tomcat containers and list the exit code from the stopped containers:
- hosts: web
sudo: yes
tasks:
- name: stop tomcat servers
docker: image=centos command="service tomcat6 start" state=absent
- name: Display return codes from stopped containers
debug: msg="Returned {{inventory_hostname}}:{{item}}"
with_items: docker_containers
Create a named container:
- hosts: web
sudo: yes
tasks:
- name: run tomcat server
docker: image=centos name=tomcat command="service tomcat6 start" ports=8080
Create multiple named containers:
- hosts: web
sudo: yes
tasks:
- name: run tomcat servers
docker: image=centos name={{item}} command="service tomcat6 start" ports=8080
with_items:
- crookshank
- snowbell
- heathcliff
- felix
- sylvester
Create containers named in a sequence:
- hosts: web
sudo: yes
tasks:
- name: run tomcat servers
docker: image=centos name={{item}} command="service tomcat6 start" ports=8080
with_sequence: start=1 end=5 format=tomcat_%d.example.com
Create two linked containers:
- hosts: web
sudo: yes
tasks:
- name: ensure redis container is running
docker: image=crosbymichael/redis name=redis
- name: ensure redis_ambassador container is running
docker: image=svendowideit/ambassador ports=6379:6379 links=redis:redis name=redis_ambassador_ansible
Create containers with options specified as key-value pairs and lists:
- hosts: web
sudo: yes
tasks:
- docker:
image: namespace/image_name
links:
- postgresql:db
- redis:redis
Create containers with options specified as strings and lists as comma-separated strings:
- hosts: web
sudo: yes
tasks:
docker: image=namespace/image_name links=postgresql:db,redis:redis
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
docker_image - manage docker images
Author: | Pavel Antonov |
---|
New in version 1.5.
Create, check and remove docker images
parameter | required | default | choices | comments |
---|---|---|---|---|
docker_url | no | unix://var/run/docker.sock | URL of docker host to issue commands to | |
name | yes | Image name to work with | ||
nocache | no | Do not use cache with building | ||
path | no | Path to directory with Dockerfile | ||
state | no | present |
| Set the state of the image |
tag | no | latest | Image tag to work with | |
timeout | no | 600 | Set image operation timeout |
Note
Requires docker-py
Build docker image if required. Path should contains Dockerfile to build image:
- hosts: web
sudo: yes
tasks:
- name: check or build image
docker_image: path="/path/to/build/dir" name="my/app" state=present
Build new version of image:
- hosts: web
sudo: yes
tasks:
- name: check or build image
docker_image: path="/path/to/build/dir" name="my/app" state=build
Remove image from local docker storage:
- hosts: web
sudo: yes
tasks:
- name: remove image
docker_image: name="my/app" state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
easy_install - Installs Python libraries
Author: | Matt Wright |
---|
Installs Python libraries, optionally in a virtualenv
parameter | required | default | choices | comments |
---|---|---|---|---|
executable | no | The explicit executable or a pathname to the executable to be used to run easy_install for a specific version of Python installed in the system. For example easy_install-3.3, if there are both Python 2.7 and 3.3 installations in the system and you want to run easy_install for the Python 3.3 installation. (added in Ansible 1.3) | ||
name | yes | A Python library name | ||
virtualenv | no | an optional virtualenv directory path to install into. If the virtualenv does not exist, it is created automatically | ||
virtualenv_command | no | virtualenv | The command to create the virtual environment with. For example pyvenv, virtualenv, virtualenv2. (added in Ansible 1.1) | |
virtualenv_site_packages | no | no |
| Whether the virtual environment will inherit packages from the global site-packages directory. Note that if this setting is changed on an already existing virtual environment it will not have any effect, the environment must be deleted and newly created. (added in Ansible 1.1) |
Note
Requires virtualenv
Examples from Ansible Playbooks
- easy_install: name=pip
Install Bottle into the specified virtualenv.
- easy_install: name=bottle virtualenv=/webapps/myapp/venv
Note
Please note that the easy_install module can only install Python libraries. Thus this module is not able to remove libraries. It is generally recommended to use the pip module which you can first install using easy_install.
Note
Also note that virtualenv must be installed on the remote host if the virtualenv parameter is specified.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2 - create, terminate, start or stop an instance in ec2, return instanceid
Author: | Seth Vidal, Tim Gerla, Lester Wade |
---|
Creates or terminates ec2 instances. When created optionally waits for it to be ‘running’. This module has a dependency on python-boto >= 2.5
parameter | required | default | choices | comments |
---|---|---|---|---|
assign_public_ip | no | when provisioning within vpc, assign a public IP address. Boto library must be 2.13.0+ (added in Ansible 1.5) | ||
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
count | no | 1 | number of instances to launch | |
count_tag | no | Used with 'exact_count' to determine how many nodes based on a specific tag criteria should be running. This can be expressed in multiple ways and is shown in the EXAMPLES section. For instance, one can request 25 servers that are tagged with "class=webserver". (added in Ansible 1.5) | ||
ebs_optimized | no | whether instance is using optimized EBS volumes, see http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html (added in Ansible 1.6) | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
exact_count | no | An integer value which indicates how many instances that match the 'count_tag' parameter should be running. Instances are either created or terminated based on this value. (added in Ansible 1.5) | ||
group | no | security group (or list of groups) to use with the instance | ||
group_id | no | security group id (or list of ids) to use with the instance (added in Ansible 1.1) | ||
id | no | identifier for this instance or set of instances, so that the module will be idempotent with respect to EC2 instances. This identifier is valid for at least 24 hours after the termination of the instance, and should not be reused for another call later on. For details, see the description of client token at http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Run_Instance_Idempotency.html. | ||
image | yes | emi (or ami) to use for the instance | ||
instance_ids | no | list of instance ids, currently used for states: absent, running, stopped (added in Ansible 1.3) | ||
instance_profile_name | no | Name of the IAM instance profile to use. Boto library must be 2.5.0+ (added in Ansible 1.3) | ||
instance_tags | no | a hash/dictionary of tags to add to the new instance; '{"key":"value"}' and '{"key":"value","key":"value"}' (added in Ansible 1.0) | ||
instance_type | yes | instance type to use for the instance | ||
kernel | no | kernel eki to use for the instance | ||
key_name | no | key pair to use on the instance | ||
monitoring | no | enable detailed monitoring (CloudWatch) for instance (added in Ansible 1.1) | ||
placement_group | no | placement group for the instance when using EC2 Clustered Compute (added in Ansible 1.3) | ||
private_ip | no | the private ip address to assign the instance (from the vpc subnet) (added in Ansible 1.2) | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
ramdisk | no | ramdisk eri to use for the instance | ||
region | no | The AWS region to use. Must be specified if ec2_url is not used. If not specified then the value of the EC2_REGION environment variable, if any, is used. (added in Ansible 1.2) | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
source_dest_check | no | True | Enable or Disable the Source/Destination checks (for NAT instances and Virtual Routers) (added in Ansible 1.6) | |
spot_price | no | Maximum spot price to bid, If not set a regular on-demand instance is requested. A spot request is made with this maximum bid. When it is filled, the instance is started. (added in Ansible 1.5) | ||
spot_wait_timeout | no | 600 | how long to wait for the spot instance request to be fulfilled (added in Ansible 1.5) | |
state | no | present | create or terminate instances (added in Ansible 1.3) | |
user_data | no | opaque blob of data which is made available to the ec2 instance (added in Ansible 0.9) | ||
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
volumes | no | a list of volume dicts, each containing device name and optionally ephemeral id or snapshot id. Size and type (and number of iops for io device type) must be specified for a new volume or a root volume, and may be passed for a snapshot volume. For any volume, a volume size less than 1 will be interpreted as a request not to create the volume. (added in Ansible 1.5) | ||
vpc_subnet_id | no | the subnet ID in which to launch the instance (VPC) (added in Ansible 1.1) | ||
wait | no | no |
| wait for the instance to be in state 'running' before returning |
wait_timeout | no | 300 | how long before wait gives up, in seconds | |
zone | no | AWS availability zone in which to launch the instance (added in Ansible 1.2) |
Note
Requires boto
Note: None of these examples set aws_access_key, aws_secret_key, or region.
It is assumed that their matching environment variables are set.
Basic provisioning example
- local_action:
module: ec2
key_name: mykey
instance_type: c1.medium
image: emi-40603AD1
wait: yes
group: webserver
count: 3
Advanced example with tagging and CloudWatch
- local_action:
module: ec2
key_name: mykey
group: databases
instance_type: m1.large
image: ami-6e649707
wait: yes
wait_timeout: 500
count: 5
instance_tags:
db: postgres
monitoring: yes
Single instance with additional IOPS volume from snapshot and volume delete on termination
local_action:
module: ec2
key_name: mykey
group: webserver
instance_type: m1.large
image: ami-6e649707
wait: yes
wait_timeout: 500
volumes:
- device_name: /dev/sdb
snapshot: snap-abcdef12
device_type: io1
iops: 1000
volume_size: 100
delete_on_termination: true
monitoring: yes
Multiple groups example
local_action:
module: ec2
key_name: mykey
group: ['databases', 'internal-services', 'sshable', 'and-so-forth']
instance_type: m1.large
image: ami-6e649707
wait: yes
wait_timeout: 500
count: 5
instance_tags:
db: postgres
monitoring: yes
Multiple instances with additional volume from snapshot
local_action:
module: ec2
key_name: mykey
group: webserver
instance_type: m1.large
image: ami-6e649707
wait: yes
wait_timeout: 500
count: 5
volumes:
- device_name: /dev/sdb
snapshot: snap-abcdef12
volume_size: 10
monitoring: yes
VPC example
- local_action:
module: ec2
key_name: mykey
group_id: sg-1dc53f72
instance_type: m1.small
image: ami-6e649707
wait: yes
vpc_subnet_id: subnet-29e63245
assign_public_ip: yes
Spot instance example
- local_action:
module: ec2
spot_price: 0.24
spot_wait_timeout: 600
keypair: mykey
group_id: sg-1dc53f72
instance_type: m1.small
image: ami-6e649707
wait: yes
vpc_subnet_id: subnet-29e63245
assign_public_ip: yes
Launch instances, runs some tasks
and then terminate them
- name: Create a sandbox instance
hosts: localhost
gather_facts: False
vars:
key_name: my_keypair
instance_type: m1.small
security_group: my_securitygroup
image: my_ami_id
region: us-east-1
tasks:
- name: Launch instance
local_action: ec2 key_name={{ keypair }} group={{ security_group }} instance_type={{ instance_type }} image={{ image }} wait=true region={{ region }}
register: ec2
- name: Add new instance to host group
local_action: add_host hostname={{ item.public_ip }} groupname=launched
with_items: ec2.instances
- name: Wait for SSH to come up
local_action: wait_for host={{ item.public_dns_name }} port=22 delay=60 timeout=320 state=started
with_items: ec2.instances
- name: Configure instance(s)
hosts: launched
sudo: True
gather_facts: True
roles:
- my_awesome_role
- my_awesome_test
- name: Terminate instances
hosts: localhost
connection: local
tasks:
- name: Terminate instances that were previously launched
local_action:
module: ec2
state: 'absent'
instance_ids: '{{ ec2.instance_ids }}'
Start a few existing instances, run some tasks
and stop the instances
- name: Start sandbox instances
hosts: localhost
gather_facts: false
connection: local
vars:
instance_ids:
- 'i-xxxxxx'
- 'i-xxxxxx'
- 'i-xxxxxx'
region: us-east-1
tasks:
- name: Start the sandbox instances
local_action:
module: ec2
instance_ids: '{{ instance_ids }}'
region: '{{ region }}'
state: running
wait: True
role:
- do_neat_stuff
- do_more_neat_stuff
- name: Stop sandbox instances
hosts: localhost
gather_facts: false
connection: local
vars:
instance_ids:
- 'i-xxxxxx'
- 'i-xxxxxx'
- 'i-xxxxxx'
region: us-east-1
tasks:
- name: Stop the sanbox instances
local_action:
module: ec2
instance_ids: '{{ instance_ids }}'
region: '{{ region }}'
state: stopped
wait: True
#
Enforce that 5 instances with a tag "foo" are running
#
- local_action:
module: ec2
key_name: mykey
instance_type: c1.medium
image: emi-40603AD1
wait: yes
group: webserver
instance_tags:
foo: bar
exact_count: 5
count_tag: foo
#
Enforce that 5 running instances named "database" with a "dbtype" of "postgres"
#
- local_action:
module: ec2
key_name: mykey
instance_type: c1.medium
image: emi-40603AD1
wait: yes
group: webserver
instance_tags:
Name: database
dbtype: postgres
exact_count: 5
count_tag:
Name: database
dbtype: postgres
#
count_tag complex argument examples
#
instances with tag foo
count_tag:
foo:
instances with tag foo=bar
count_tag:
foo: bar
instances with tags foo=bar & baz
count_tag:
foo: bar
baz:
instances with tags foo & bar & baz=bang
count_tag:
- foo
- bar
- baz: bang
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_ami - create or destroy an image in ec2, return imageid
Author: | Evan Duffield <eduffield @iacquire.com> |
---|
New in version 1.3.
Creates or deletes ec2 images. This module has a dependency on python-boto >= 2.5
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
delete_snapshot | no | Whether or not to deleted an AMI while deregistering it. | ||
description | no | An optional human-readable string describing the contents and purpose of the AMI. | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
image_id | no | Image ID to be deregistered. | ||
instance_id | no | instance id of the image to create | ||
name | no | The name of the new image to create | ||
no_reboot | no |
| An optional flag indicating that the bundling process should not attempt to shutdown the instance before bundling. If this flag is True, the responsibility of maintaining file system integrity is left to the owner of the instance. The default choice is "no". | |
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | The AWS region to use. Must be specified if ec2_url is not used. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | no | present | create or deregister/delete image | |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
wait | no | no |
| wait for the AMI to be in state 'available' before returning. |
wait_timeout | no | 300 | how long before wait gives up, in seconds |
Note
Requires boto
Basic AMI Creation
- local_action:
module: ec2_ami
aws_access_key: xxxxxxxxxxxxxxxxxxxxxxx
aws_secret_key: xx
instance_id: i-xxxxxx
wait: yes
name: newtest
register: instance
Basic AMI Creation, without waiting
- local_action:
module: ec2_ami
aws_access_key: xxxxxxxxxxxxxxxxxxxxxxx
aws_secret_key: xx
region: xxxxxx
instance_id: i-xxxxxx
wait: no
name: newtest
register: instance
Deregister/Delete AMI
- local_action:
module: ec2_ami
aws_access_key: xxxxxxxxxxxxxxxxxxxxxxx
aws_secret_key: xx
region: xxxxxx
image_id: ${instance.image_id}
delete_snapshot: True
state: absent
Deregister AMI
- local_action:
module: ec2_ami
aws_access_key: xxxxxxxxxxxxxxxxxxxxxxx
aws_secret_key: xx
region: xxxxxx
image_id: ${instance.image_id}
delete_snapshot: False
state: absent
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_ami_search - Retrieve AWS AMI for a given operating system.
Author: | Lorin Hochstein |
---|
New in version 1.6.
Look up the most recent AMI on AWS for a given operating system. Returns ami, aki, ari, serial, tag If there is no AKI or ARI associated with an image, these will be null. Only supports images from cloud-images.ubuntu.com Example output: {"ami": "ami-69f5a900", "changed": false, "aki": "aki-88aa75e1", "tag": "release", "ari": null, "serial": "20131024"}
parameter | required | default | choices | comments |
---|---|---|---|---|
arch | no | amd64 |
| CPU architecture |
distro | yes |
| Linux distribution (e.g., C(ubuntu)) | |
region | no | us-east-1 |
| EC2 region |
release | yes | short name of the release (e.g., C(precise)) | ||
store | no | ebs |
| Back-end store for instance |
stream | no | server |
| Type of release. |
virt | no | paravirtual |
| virutalization type |
- name: Launch an Ubuntu 12.04 (Precise Pangolin) EC2 instance
hosts: 127.0.0.1
connection: local
tasks:
- name: Get the Ubuntu precise AMI
ec2_ami_search: distro=ubuntu release=precise region=us-west-1 store=instance-store
register: ubuntu_image
- name: Start the EC2 instance
ec2: image={{ ubuntu_image.ami }} instance_type=m1.small key_name=mykey
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_asg - Create or delete AWS Autoscaling Groups
Author: | Gareth Rushgrove |
---|
New in version 1.6.
Can create or delete AWS Autoscaling Groups Works with the ec2_lc module to manage Launch Configurations
parameter | required | default | choices | comments |
---|---|---|---|---|
availability_zones | no | List of availability zone names in which to create the group. Defaults to all the availability zones in the region if vpc_zone_identifier is not set. | ||
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
desired_capacity | no | Desired number of instances in group | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
health_check_period | no | 500 seconds | Length of time in seconds after a new EC2 instance comes into service that Auto Scaling starts checking its health. (added in Ansible 1.7) | |
health_check_type | no | EC2 | The service you want the health status from, Amazon EC2 or Elastic Load Balancer. (added in Ansible 1.7) | |
launch_config_name | no | Name of the Launch configuration to use for the group. See the ec2_lc module for managing these. | ||
load_balancers | no | List of ELB names to use for the group | ||
max_size | no | Maximum number of instances in group | ||
min_size | no | Minimum number of instances in group | ||
name | yes | Unique name for group to be created or deleted | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | yes |
| register or deregister the instance | |
tags | no | None | List of tag dictionaries to use. Required keys are 'key', 'value'. Optional key is 'propagate_at_launch', which defaults to true. (added in Ansible 1.7) | |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
vpc_zone_identifier | no | None | List of VPC subnets to use |
Note
Requires boto
- ec2_asg:
name: special
load_balancers: 'lb1,lb2'
availability_zones: 'eu-west-1a,eu-west-1b'
launch_config_name: 'lc-1'
min_size: 1
max_size: 10
desired_capacity: 5
vpc_zone_identifier: 'subnet-abcd1234,subnet-1a2b3c4d'
tags:
- key: environment
value: production
propagate_at_launch: no
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_eip - associate an EC2 elastic IP with an instance.
Author: | Lorin Hochstein <lorin @nimbisservices.com> |
---|
New in version 1.4.
This module associates AWS EC2 elastic IP addresses with instances
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
in_vpc | no | allocate an EIP inside a VPC or not (added in Ansible 1.4) | ||
instance_id | no | The EC2 instance id | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
public_ip | no | The elastic IP address to associate with the instance.If absent, allocate a new address | ||
region | no | the EC2 region to use | ||
reuse_existing_ip_allowed | no | Reuse an EIP that is not associated to an instance (when available), instead of allocating a new one. (added in Ansible 1.6) | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | no | present |
| If present, associate the IP with the instance.If absent, disassociate the IP with the instance. |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
Note
Requires boto
- name: associate an elastic IP with an instance
ec2_eip: instance_id=i-1212f003 ip=93.184.216.119
- name: disassociate an elastic IP from an instance
ec2_eip: instance_id=i-1212f003 ip=93.184.216.119 state=absent
- name: allocate a new elastic IP and associate it with an instance
ec2_eip: instance_id=i-1212f003
- name: allocate a new elastic IP without associating it to anything
ec2_eip:
register: eip
- name: output the IP
debug: msg="Allocated IP is {{ eip.public_ip }}"
- name: provision new instances with ec2
ec2: keypair=mykey instance_type=c1.medium image=emi-40603AD1 wait=yes group=webserver count=3
register: ec2
- name: associate new elastic IPs with each of the instances
ec2_eip: "instance_id={{ item }}"
with_items: ec2.instance_ids
- name: allocate a new elastic IP inside a VPC in us-west-2
ec2_eip: region=us-west-2 in_vpc=yes
register: eip
- name: output the IP
debug: msg="Allocated IP inside a VPC is {{ eip.public_ip }}"
Note
This module will return public_ip on success, which will contain the public IP address associated with the instance.
Note
There may be a delay between the time the Elastic IP is assigned and when the cloud instance is reachable via the new address. Use wait_for and pause to delay further playbook execution until the instance is reachable, if necessary.
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_elb - De-registers or registers instances from EC2 ELBs
Author: | John Jarvis |
---|
New in version 1.2.
This module de-registers or registers an AWS EC2 instance from the ELBs that it belongs to. Returns fact “ec2_elbs” which is a list of elbs attached to the instance if state=absent is passed as an argument. Will be marked changed when called only if there are ELBs found to operate on.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
ec2_elbs | no | None | List of ELB names, required for registration. The ec2_elbs fact should be used if there was a previous de-register. | |
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
enable_availability_zone | no | True |
| Whether to enable the availability zone of the instance on the target ELB if the availability zone has not already been enabled. If set to no, the task will fail if the availability zone is not enabled on the ELB. |
instance_id | yes | EC2 Instance ID | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | yes |
| register or deregister the instance | |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
wait | no | True |
| Wait for instance registration or deregistration to complete successfully before returning. |
wait_timeout | no | Number of seconds to wait for an instance to change state. If 0 then this module may return an error if a transient error occurs. If non-zero then any transient errors are ignored until the timeout is reached. Ignored when wait=no. (added in Ansible 1.6) |
Note
Requires boto
basic pre_task and post_task example
pre_tasks:
- name: Gathering ec2 facts
ec2_facts:
- name: Instance De-register
local_action: ec2_elb
args:
instance_id: "{{ ansible_ec2_instance_id }}"
state: 'absent'
roles:
- myrole
post_tasks:
- name: Instance Register
local_action: ec2_elb
args:
instance_id: "{{ ansible_ec2_instance_id }}"
ec2_elbs: "{{ item }}"
state: 'present'
with_items: ec2_elbs
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_elb_lb - Creates or destroys Amazon ELB. - Returns information about the load balancer. - Will be marked changed when called only if state is changed.
Author: | Jim Dalton |
---|
New in version 1.5.
C r e a t e s
o r
d e s t r o y s
A m a z o n
E L B .
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
health_check | no | None | An associative array of health check configuration settigs (see example) | |
listeners | no | List of ports/protocols for this ELB to listen on (see example) | ||
name | yes | The name of the ELB | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
purge_listeners | no | True | Purge existing listeners on ELB that are not found in listeners | |
purge_subnets | no | Purge existing subnet on ELB that are not found in subnets (added in Ansible 1.7) | ||
purge_zones | no | Purge existing availability zones on ELB that are not found in zones | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
scheme | no | internet-facing | The scheme to use when creating the ELB. For a private VPC-visible ELB use 'internal'. (added in Ansible 1.7) | |
security_group_ids | no | None | A list of security groups to apply to the elb (added in Ansible 1.6) | |
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | yes | Create or destroy the ELB | ||
subnets | no | None | A list of VPC subnets to use when creating ELB. Zones should be empty if using this. (added in Ansible 1.7) | |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
zones | no | List of availability zones to enable on this ELB |
Note
Requires boto
Note: None of these examples set aws_access_key, aws_secret_key, or region.
It is assumed that their matching environment variables are set.
Basic provisioning example
- local_action:
module: ec2_elb_lb
name: "test-please-delete"
state: present
zones:
- us-east-1a
- us-east-1d
listeners:
- protocol: http # options are http, https, ssl, tcp
load_balancer_port: 80
instance_port: 80
- protocol: https
load_balancer_port: 443
instance_protocol: http # optional, defaults to value of protocol setting
instance_port: 80
ssl certificate required for https or ssl
ssl_certificate_id: "arn:aws:iam::123456789012:server-certificate/company/servercerts/ProdServerCert"
Basic VPC provisioning example
- local_action:
module: ec2_elb_lb
name: "test-vpc"
scheme: internal
state: present
subnets:
- subnet-abcd1234
- subnet-1a2b3c4d
listeners:
- protocol: http # options are http, https, ssl, tcp
load_balancer_port: 80
instance_port: 80
Configure a health check
- local_action:
module: ec2_elb_lb
name: "test-please-delete"
state: present
zones:
- us-east-1d
listeners:
- protocol: http
load_balancer_port: 80
instance_port: 80
health_check:
ping_protocol: http # options are http, https, ssl, tcp
ping_port: 80
ping_path: "/index.html" # not required for tcp or ssl
response_timeout: 5 # seconds
interval: 30 # seconds
unhealthy_threshold: 2
healthy_threshold: 10
Ensure ELB is gone
- local_action:
module: ec2_elb_lb
name: "test-please-delete"
state: absent
Normally, this module will purge any listeners that exist on the ELB
but aren't specified in the listeners parameter. If purge_listeners is
false it leaves them alone
- local_action:
module: ec2_elb_lb
name: "test-please-delete"
state: present
zones:
- us-east-1a
- us-east-1d
listeners:
- protocol: http
load_balancer_port: 80
instance_port: 80
purge_listeners: no
Normally, this module will leave availability zones that are enabled
on the ELB alone. If purge_zones is true, then any extreneous zones
will be removed
- local_action:
module: ec2_elb_lb
name: "test-please-delete"
state: present
zones:
- us-east-1a
- us-east-1d
listeners:
- protocol: http
load_balancer_port: 80
instance_port: 80
purge_zones: yes
Creates a ELB and assigns a list of subnets to it.
- local_action:
module: ec2_elb_lb
state: present
name: 'New ELB'
security_group_ids: 'sg-123456, sg-67890'
region: us-west-2
subnets: 'subnet-123456, subnet-67890'
purge_subnets: yes
listeners:
- protocol: http
load_balancer_port: 80
instance_port: 80
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_facts - Gathers facts about remote hosts within ec2 (aws)
Author: | Silviu Dicu <silviudicu @gmail.com> |
---|
New in version 1.0.
This module fetches data from the metadata servers in ec2 (aws). Eucalyptus cloud provides a similar service and this module should work this cloud provider as well.
parameter | required | default | choices | comments |
---|---|---|---|---|
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
Conditional example
- name: Gather facts
action: ec2_facts
- name: Conditional
action: debug msg="This instance is a t1.micro"
when: ansible_ec2_instance_type == "t1.micro"
Note
Parameters to filter on ec2_facts may be added later.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_group - maintain an ec2 VPC security group.
New in version 1.3.
maintains ec2 security groups. This module has a dependency on python-boto >= 2.5
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
description | yes | Description of the security group. | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
name | yes | Name of the security group. | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | the EC2 region to use | ||
rules | no | List of firewall inbound rules to enforce in this group (see example). | ||
rules_egress | no | List of firewall outbound rules to enforce in this group (see example). (added in Ansible 1.6) | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | no | present | create or delete security group (added in Ansible 1.4) | |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
vpc_id | no | ID of the VPC to create the group in. |
Note
Requires boto
- name: example ec2 group
local_action:
module: ec2_group
name: example
description: an example EC2 group
vpc_id: 12345
region: eu-west-1a
aws_secret_key: SECRET
aws_access_key: ACCESS
rules:
- proto: tcp
from_port: 80
to_port: 80
cidr_ip: 0.0.0.0/0
- proto: tcp
from_port: 22
to_port: 22
cidr_ip: 10.0.0.0/8
- proto: udp
from_port: 10050
to_port: 10050
cidr_ip: 10.0.0.0/8
- proto: udp
from_port: 10051
to_port: 10051
group_id: sg-12345678
- proto: all
the containing group name may be specified here
group_name: example
rules_egress:
- proto: tcp
from_port: 80
to_port: 80
group_name: example-other
description to use if example-other needs to be created
group_desc: other example EC2 group
Note
If a rule declares a group_name and that group doesn’t exist, it will be automatically created. In that case, group_desc should be provided as well. The module will refuse to create a depended-on group without a description.
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_key - maintain an ec2 key pair.
Author: | Vincent Viallet |
---|
New in version 1.5.
maintains ec2 key pairs. This module has a dependency on python-boto >= 2.5
parameter	required	default	choices	comments
aws_access_key	no	AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used.		
aws_secret_key	no	AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used.		
ec2_url	no	Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used		
key_material	no	Public key material.		
name	yes	Name of the key pair.		
profile	no	uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6)		
region	no	the EC2 region to use		
security_token	no	security token to authenticate against AWS (added in Ansible 1.6)		
state	no	present	create or delete keypair	
validate_certs	no	yes		
When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5)				
wait | no | Wait for the specified action to complete before returning. (added in Ansible 1.6) | ||
wait_timeout | no | 300 | How long before wait gives up, in seconds (added in Ansible 1.6) |
Note
Requires boto
Note: None of these examples set aws_access_key, aws_secret_key, or region.
It is assumed that their matching environment variables are set.
Creates a new ec2 key pair named `example` if not present, returns generated
private key
- name: example ec2 key
local_action:
module: ec2_key
name: example
Creates a new ec2 key pair named `example` if not present using provided key
material
- name: example2 ec2 key
local_action:
module: ec2_key
name: example2
key_material: 'ssh-rsa AAAAxyz...== me@example.com'
state: present
Creates a new ec2 key pair named `example` if not present using provided key
material
- name: example3 ec2 key
local_action:
module: ec2_key
name: example3
key_material: "{{ item }}"
with_file: /path/to/public_key.id_rsa.pub
Removes ec2 key pair by name
- name: remove example key
local_action:
module: ec2_key
name: example
state: absent
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_lc - Create or delete AWS Autoscaling Launch Configurations
Author: | Gareth Rushgrove |
---|
New in version 1.6.
Can create or delete AwS Autoscaling Configurations Works with the ec2_asg module to manage Autoscaling Groups
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
image_id | no | The AMI unique identifier to be used for the group | ||
instance_monitoring | no | whether instances in group are launched with detailed monitoring. | ||
instance_type | yes | instance type to use for the instance | ||
key_name | no | The SSH key name to be used for access to managed instances | ||
name | yes | Unique name for configuration | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_groups | no | A list of security groups into which instances should be found | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
spot_price | no | The spot price you are bidding. Only applies for an autoscaling group with spot instances. | ||
state | yes |
| register or deregister the instance | |
user_data | no | opaque blob of data which is made available to the ec2 instance | ||
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
volumes | no | a list of volume dicts, each containing device name and optionally ephemeral id or snapshot id. Size and type (and number of iops for io device type) must be specified for a new volume or a root volume, and may be passed for a snapshot volume. For any volume, a volume size less than 1 will be interpreted as a request not to create the volume. |
Note
Requires boto
- ec2_lc:
name: special
image_id: ami-XXX
key_name: default
security_groups: 'group,group2'
instance_type: t1.micro
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_metric_alarm - Create/update or delete AWS Cloudwatch ‘metric alarms’
Author: | Zacharie Eakin |
---|
New in version 1.6.
Can create or delete AWS metric alarms Metrics you wish to alarm on must already exist
parameter | required | default | choices | comments |
---|---|---|---|---|
alarm_actions | no | A list of the names action(s) taken when the alarm is in the 'alarm' status | ||
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
comparison | no | Determines how the threshold value is compared | ||
description | no | A longer desciption of the alarm | ||
dimensions | no | Describes to what the alarm is applied | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
evaluation_periods | no | The number of times in which the metric is evaluated before final calculation | ||
insufficient_data_actions | no | A list of the names of action(s) to take when the alarm is in the 'insufficient_data' status | ||
metric | no | Name of the monitored metric (e.g. CPUUtilization)Metric must already exist | ||
name | yes | |||
namespace | no | Name of the appropriate namespace, which determines the category it will appear under in cloudwatch | ||
ok_actions | no | A list of the names of action(s) to take when the alarm is in the 'ok' status | ||
period | no | The time (in seconds) between metric evaluations | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | yes |
| register or deregister the alarm | |
statistic | no | Operation applied to the metricWorks in conjunction with period and evaluation_periods to determine the comparison value | ||
threshold | no | Sets the min/max bound for triggering the alarm | ||
unit | no | The threshold's unit of measurement | ||
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
Note
Requires boto
- name: create alarm
ec2_metric_alarm:
state: present
region: ap-southeast-2
name: "cpu-low"
metric: "CPUUtilization"
namespace: "AWS/EC2"
statistic: Average
comparison: "<="
threshold: 5.0
period: 300
evaluation_periods: 3
unit: "Percent"
description: "This will alarm when a bamboo slave's cpu usage average is lower than 5% for 15 minutes "
dimensions: {'InstanceId':'i-XXX'}
alarm_actions: ["action1","action2"]
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_scaling_policy - Create or delete AWS scaling policies for Autoscaling groups
Author: | Zacharie Eakin |
---|
New in version 1.6.
Can create or delete scaling policies for autoscaling groups Referenced autoscaling groups must already exist
parameter | required | default | choices | comments |
---|---|---|---|---|
adjustment_type | no |
| ||
asg_name | yes | Name of the associated autoscaling group | ||
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
cooldown | no | The minimum period of time between which autoscaling actions can take place | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
min_adjustment_step | no | Minimum amount of adjustment when policy is triggered | ||
name | yes | Unique name for the scaling policy | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
scaling_adjustment | no | The amount by which the autoscaling group is adjusted by the policy | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | yes |
| register or deregister the policy | |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
Note
Requires boto
- ec2_scaling_policy:
state: present
region: US-XXX
name: "scaledown-policy"
adjustment_type: "ChangeInCapacity"
asg_name: "slave-pool"
scaling_adjustment: -1
min_adjustment_step: 1
cooldown: 300
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_snapshot - creates a snapshot from an existing volume
Author: | Will Thames |
---|
New in version 1.5.
creates an EC2 snapshot from an existing EBS volume
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
description | no | description to be applied to the snapshot | ||
device_name | no | device name of a mounted volume to be snapshotted | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
instance_id | no | instance that has the required volume to snapshot mounted | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
snapshot_tags | no | a hash/dictionary of tags to add to the snapshot (added in Ansible 1.6) | ||
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
volume_id | no | volume from which to take the snapshot |
Note
Requires boto
Simple snapshot of volume using volume_id
- local_action:
module: ec2_snapshot
volume_id: vol-abcdef12
description: snapshot of /data from DB123 taken 2013/11/28 12:18:32
Snapshot of volume mounted on device_name attached to instance_id
- local_action:
module: ec2_snapshot
instance_id: i-12345678
device_name: /dev/sdb1
description: snapshot of /data from DB123 taken 2013/11/28 12:18:32
Snapshot of volume with tagging
- local_action:
module: ec2_snapshot
instance_id: i-12345678
device_name: /dev/sdb1
snapshot_tags:
frequency: hourly
source: /data
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_tag - create and remove tag(s) to ec2 resources.
Author: | Lester Wade |
---|
New in version 1.3.
Creates, removes and lists tags from any EC2 resource. The resource is referenced by its resource id (e.g. an instance being i-XXXXXXX). It is designed to be used with complex args (tags), see the examples. This module has a dependency on python-boto.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | region in which the resource exists. | ||
resource | yes | The EC2 resource id. | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
state | no | present |
| Whether the tags should be present or absent on the resource. Use list to interrogate the tags of an instance. |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
Note
Requires boto
Basic example of adding tag(s)
tasks:
- name: tag a resource
local_action: ec2_tag resource=vol-XXXXXX region=eu-west-1 state=present
args:
tags:
Name: ubervol
env: prod
Playbook example of adding tag(s) to spawned instances
tasks:
- name: launch some instances
local_action: ec2 keypair={{ keypair }} group={{ security_group }} instance_type={{ instance_type }} image={{ image_id }} wait=true region=eu-west-1
register: ec2
- name: tag my launched instances
local_action: ec2_tag resource={{ item.id }} region=eu-west-1 state=present
with_items: ec2.instances
args:
tags:
Name: webserver
env: prod
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_vol - create and attach a volume, return volume id and device map
Author: | Lester Wade |
---|
New in version 1.1.
creates an EBS volume and optionally attaches it to an instance. If both an instance ID and a device name is given and the instance has a device at the device name, then no volume is created and no attachment is made. This module has a dependency on python-boto.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
device_name | no | device id to override device mapping. Assumes /dev/sdf for Linux/UNIX and /dev/xvdf for Windows. | ||
ec2_url | no | Url to use to connect to EC2 or your Eucalyptus cloud (by default the module will use EC2 endpoints). Must be specified if region is not used. If not set then the value of the EC2_URL environment variable, if any, is used | ||
id | no | volume id if you wish to attach an existing volume (requires instance) or remove an existing volume (added in Ansible 1.6) | ||
instance | no | instance ID if you wish to attach the volume. | ||
iops | no | 100 | the provisioned IOPs you want to associate with this volume (integer). (added in Ansible 1.3) | |
name | no | volume Name tag if you wish to attach an existing volume (requires instance) (added in Ansible 1.6) | ||
profile | no | uses a boto profile. Only works with boto >= 2.24.0 (added in Ansible 1.6) | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_token | no | security token to authenticate against AWS (added in Ansible 1.6) | ||
snapshot | no | snapshot ID on which to base the volume (added in Ansible 1.5) | ||
state | no | present |
| whether to ensure the volume is present or absent (added in Ansible 1.6) |
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
volume_size | no | size of volume (in GB) to create. | ||
zone | no | zone in which to create the volume, if unset uses the zone the instance is in (if set) |
Note
Requires boto
Simple attachment action
- local_action:
module: ec2_vol
instance: XXXXXX
volume_size: 5
device_name: sdd
Example using custom iops params
- local_action:
module: ec2_vol
instance: XXXXXX
volume_size: 5
iops: 200
device_name: sdd
Example using snapshot id
- local_action:
module: ec2_vol
instance: XXXXXX
snapshot: "{{ snapshot }}"
Playbook example combined with instance launch
- local_action:
module: ec2
keypair: "{{ keypair }}"
image: "{{ image }}"
wait: yes
count: 3
register: ec2
- local_action:
module: ec2_vol
instance: "{{ item.id }} "
volume_size: 5
with_items: ec2.instances
register: ec2_vol
Example: Launch an instance and then add a volue if not already present
* Nothing will happen if the volume is already attached.
* Volume must exist in the same zone.
- local_action:
module: ec2
keypair: "{{ keypair }}"
image: "{{ image }}"
zone: YYYYYY
id: my_instance
wait: yes
count: 1
register: ec2
- local_action:
module: ec2_vol
instance: "{{ item.id }}"
name: my_existing_volume_Name_tag
device_name: /dev/xvdf
with_items: ec2.instances
register: ec2_vol
Remove a volume
- local_action:
module: ec2_vol
id: vol-XXXXXXXX
state: absent
Note
The following environment variables can be used AWS_ACCESS_KEY or EC2_ACCESS_KEY or AWS_ACCESS_KEY_ID, AWS_SECRET_KEY or EC2_SECRET_KEY or AWS_SECRET_ACCESS_KEY, AWS_REGION or EC2_REGION, AWS_SECURITY_TOKEN
Note
Ansible uses the boto configuration file (typically ~/.boto) if no credentials are provided. See http://boto.readthedocs.org/en/latest/boto_config_tut.html
Note
AWS_REGION or EC2_REGION can be typically be used to specify the AWS region, when required, but this can also be configured in the boto config file
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ec2_vpc - configure AWS virtual private clouds
Author: | Carson Gee |
---|
New in version 1.4.
Create or terminates AWS virtual private clouds. This module has a dependency on python-boto.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | None | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | |
aws_secret_key | no | None | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | |
cidr_block | yes | The cidr block representing the VPC, e.g. 10.0.0.0/16 | ||
dns_hostnames | no | yes |
| toggles the "Enable DNS hostname support for instances" flag |
dns_support | no | yes |
| toggles the "Enable DNS resolution" flag |
instance_tenancy | no | default |
| The supported tenancy options for instances launched into the VPC. |
internet_gateway | no | no |
| Toggle whether there should be an Internet gateway attached to the VPC |
region | no | region in which the resource exists. | ||
resource_tags | yes | A dictionary array of resource tags of the form: { tag1: value1, tag2: value2 }. Tags in this list are used in conjunction with CIDR block to uniquely identify a VPC in lieu of vpc_id. Therefore, if CIDR/Tag combination does not exits, a new VPC will be created. VPC tags not on this list will be ignored. Prior to 1.7, specifying a resource tag was optional. (added in Ansible 1.6) | ||
route_tables | no | A dictionary array of route tables to add of the form: { subnets: [172.22.2.0/24, 172.22.3.0/24,], routes: [{ dest: 0.0.0.0/0, gw: igw},] }. Where the subnets list is those subnets the route table should be associated with, and the routes list is a list of routes to be in the table. The special keyword for the gw of igw specifies that you should the route should go through the internet gateway attached to the VPC. gw also accepts instance-ids in addition igw. This module is currently unable to affect the "main" route table due to some limitations in boto, so you must explicitly define the associated subnets or they will be attached to the main table implicitly. | ||
state | yes | present | Create or terminate the VPC | |
subnets | no | A dictionary array of subnets to add of the form: { cidr: ..., az: ... , resource_tags: ... }. Where az is the desired availability zone of the subnet, but it is not required. Tags (i.e.: resource_tags) is also optional and use dictionary form: { "Environment":"Dev", "Tier":"Web", ...}. All VPC subnets not in this list will be removed. | ||
validate_certs | no | yes |
| When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. (added in Ansible 1.5) |
vpc_id | no | A VPC id to terminate when state=absent | ||
wait | no | no |
| wait for the VPC to be in state 'available' before returning |
wait_timeout | no | 300 | how long before wait gives up, in seconds |
Note
Requires boto
Note: None of these examples set aws_access_key, aws_secret_key, or region.
It is assumed that their matching environment variables are set.
Basic creation example:
local_action:
module: ec2_vpc
state: present
cidr_block: 172.23.0.0/16
resource_tags: { "Environment":"Development" }
region: us-west-2
Full creation example with subnets and optional availability zones.
The absence or presense of subnets deletes or creates them respectively.
local_action:
module: ec2_vpc
state: present
cidr_block: 172.22.0.0/16
resource_tags: { "Environment":"Development" }
subnets:
- cidr: 172.22.1.0/24
az: us-west-2c
resource_tags: { "Environment":"Dev", "Tier" : "Web" }
- cidr: 172.22.2.0/24
az: us-west-2b
resource_tags: { "Environment":"Dev", "Tier" : "App" }
- cidr: 172.22.3.0/24
az: us-west-2a
resource_tags: { "Environment":"Dev", "Tier" : "DB" }
internet_gateway: True
route_tables:
- subnets:
- 172.22.2.0/24
- 172.22.3.0/24
routes:
- dest: 0.0.0.0/0
gw: igw
- subnets:
- 172.22.1.0/24
routes:
- dest: 0.0.0.0/0
gw: igw
region: us-west-2
register: vpc
Removal of a VPC by id
local_action:
module: ec2_vpc
state: absent
vpc_id: vpc-aaaaaaa
region: us-west-2
If you have added elements not managed by this module, e.g. instances, NATs, etc then
the delete will fail until those dependencies are removed.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ejabberd_user - Manages users for ejabberd servers
Author: | Peter Sprygada |
---|
New in version 1.5.
This module provides user management for ejabberd servers
parameter	required	default	choices	comments
host	yes	the ejabberd host associated with this username		
logging	no			
enables or disables the local syslog facility for this module				
password	no	the password to assign to the username		
state	no	present		
describe the desired state of the user to be managed				
username | yes | the name of the user to manage |
Note
Requires ejabberd with mod_admin_extra
Example playbook entries using the ejabberd_user module to manage users state.
tasks:
- name: create a user if it does not exists
action: ejabberd_user username=test host=server password=password
- name: delete a user if it exists
action: ejabberd_user username=test host=server state=absent
Note
Password parameter is required for state == present only
Note
Passwords must be stored in clear text for this release
Note
The ejabberd configuration file must include mod_admin_extra as a module.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
elasticache - Manage cache clusters in Amazon Elasticache.
Author: | Jim Dalton |
---|
New in version 1.4.
Manage cache clusters in Amazon Elasticache. Returns information about the specified cache cluster.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | None | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | |
aws_secret_key | no | None | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | |
cache_engine_version | no | 1.4.14 | The version number of the cache engine | |
cache_port | no | 11211 | The port number on which each of the cache nodes will accept connections | |
cache_security_groups | no | ['default'] | A list of cache security group names to associate with this cache cluster | |
engine | no | memcached | Name of the cache engine to be used (memcached or redis) | |
hard_modify | no |
| Whether to destroy and recreate an existing cache cluster if necessary in order to modify its state | |
name | yes | The cache cluster identifier | ||
node_type | no | cache.m1.small | The compute and memory capacity of the nodes in the cache cluster | |
num_nodes | no | The initial number of cache nodes that the cache cluster will have | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_group_ids | no | ['default'] | A list of vpc security group names to associate with this cache cluster. Only use if inside a vpc (added in Ansible 1.6) | |
state | yes |
| absent or present are idempotent actions that will create or destroy a cache cluster as needed. rebooted will reboot the cluster, resulting in a momentary outage. | |
wait | no | True |
| Wait for cache cluster result before returning |
zone | no | None | The EC2 Availability Zone in which the cache cluster will be created |
Note
Requires boto
Note: None of these examples set aws_access_key, aws_secret_key, or region.
It is assumed that their matching environment variables are set.
Basic example
- local_action:
module: elasticache
name: "test-please-delete"
state: present
engine: memcached
cache_engine_version: 1.4.14
node_type: cache.m1.small
num_nodes: 1
cache_port: 11211
cache_security_groups:
- default
zone: us-east-1d
Ensure cache cluster is gone
- local_action:
module: elasticache
name: "test-please-delete"
state: absent
Reboot cache cluster
- local_action:
module: elasticache
name: "test-please-delete"
state: rebooted
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
facter - Runs the discovery program facter on the remote system
Author: | Michael DeHaan |
---|
Runs the facter discovery program (https://github.com/puppetlabs/facter) on the remote system, returning JSON data that can be useful for inventory purposes.
Note
Requires facter
Note
Requires ruby-json
Example command-line invocation
ansible www.example.net -m facter
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
fail - Fail with custom message
Author: | Dag Wieers |
---|
This module fails the progress with a custom message. It can be useful for bailing out when a certain condition is met using when.
parameter	required	default	choices	comments
msg | no | 'Failed as requested from task' | The customized message used for failing execution. If omitted, fail will simple bail out with a generic message. |
Example playbook using fail and when together
- fail: msg="The system may not be provisioned according to the CMDB status."
when: cmdb_status != "to-be-staged"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
fetch - Fetches a file from remote nodes
Author: | Michael DeHaan |
---|
This module works like copy, but in reverse. It is used for fetching files from remote machines and storing them locally in a file tree, organized by hostname. Note that this module is written to transfer log files that might not be present, so a missing remote file won’t be an error unless fail_on_missing is set to ‘yes’.
parameter | required | default | choices | comments |
---|---|---|---|---|
dest | yes | A directory to save the file into. For example, if the dest directory is /backup a src file named /etc/profile on host host.example.com, would be saved into /backup/host.example.com/etc/profile | ||
fail_on_missing | no | no |
| Makes it fails when the source file is missing. (added in Ansible 1.1) |
flat | no | Allows you to override the default behavior of prepending hostname/path/to/file to the destination. If dest ends with '/', it will use the basename of the source file, similar to the copy module. Obviously this is only handy if the filenames are unique. (added in Ansible 1.2) | ||
src | yes | The file on the remote system to fetch. This must be a file, not a directory. Recursive fetching may be supported in a later release. | ||
validate_md5 | no | yes |
| Verify that the source and destination md5sums match after the files are fetched. (added in Ansible 1.4) |
Store file into /tmp/fetched/host.example.com/tmp/somefile
- fetch: src=/tmp/somefile dest=/tmp/fetched
Specifying a path directly
- fetch: src=/tmp/somefile dest=/tmp/prefix-{{ ansible_hostname }} flat=yes
Specifying a destination path
- fetch: src=/tmp/uniquefile dest=/tmp/special/ flat=yes
Storing in a path relative to the playbook
- fetch: src=/tmp/uniquefile dest=special/prefix-{{ ansible_hostname }} flat=yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
file - Sets attributes of files
Author: | Michael DeHaan |
---|
Sets attributes of files, symlinks, and directories, or removes files/symlinks/directories. Many other modules support the same options as the file module - including copy, template, and assemble.
parameter | required | default | choices | comments |
---|---|---|---|---|
force | no | no |
| force the creation of the symlinks in two cases: the source file does not exist (but will appear later); the destination exists and is a file (so, we need to unlink the "path" file and create symlink to the "src" file in place of it). |
group | no | name of the group that should own the file/directory, as would be fed to chown | ||
mode | no | mode the file or directory should be, such as 0644 as would be fed to chmod | ||
owner | no | name of the user that should own the file/directory, as would be fed to chown | ||
path | yes | path to the file being managed. Aliases: dest, name | ||
recurse | no | no |
| recursively set the specified file attributes (applies only to state=directory) (added in Ansible 1.1) |
selevel | no | s0 | level part of the SELinux file context. This is the MLS/MCS attribute, sometimes known as the range. _default feature works as for seuser. | |
serole | no | role part of SELinux file context, _default feature works as for seuser. | ||
setype | no | type part of SELinux file context, _default feature works as for seuser. | ||
seuser | no | user part of SELinux file context. Will default to system policy, if applicable. If set to _default, it will use the user portion of the policy if available | ||
src | no | path of the file to link to (applies only to state=link). Will accept absolute, relative and nonexisting paths. Relative paths are not expanded. | ||
state | no | file |
| If directory, all immediate subdirectories will be created if they do not exist, since 1.7 they will be created with the supplied permissions. If file, the file will NOT be created if it does not exist, see the copy or template module if you want that behavior. If link, the symbolic link will be created or changed. Use hard for hardlinks. If absent, directories will be recursively deleted, and files or symlinks will be unlinked. If touch (new in 1.4), an empty file will be created if the c(path) does not exist, while an existing file or directory will receive updated file access and modification times (similar to the way `touch` works from the command line). |
- file: path=/etc/foo.conf owner=foo group=foo mode=0644
- file: src=/file/to/link/to dest=/path/to/symlink owner=foo group=foo state=link
- file: src=/tmp/{{ item.path }} dest={{ item.dest }} state=link
with_items:
- { path: 'x', dest: 'y' }
- { path: 'z', dest: 'k' }
Note
See also copy, template, assemble
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
filesystem - Makes file system on block device
Author: | Alexander Bulimov |
---|
New in version 1.2.
This module creates file system.
parameter | required | default | choices | comments |
---|---|---|---|---|
dev | yes | Target block device. | ||
force | no | no |
| If yes, allows to create new filesystem on devices that already has filesystem. |
fstype | yes | File System type to be created. | ||
opts | no | List of options to be passed to mkfs command. |
Create a ext2 filesystem on /dev/sdb1.
- filesystem: fstype=ext2 dev=/dev/sdb1
Create a ext4 filesystem on /dev/sdb1 and check disk blocks.
- filesystem: fstype=ext4 dev=/dev/sdb1 opts="-cc"
Note
uses mkfs command
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
fireball - Enable fireball mode on remote node
Author: | Michael DeHaan |
---|
This modules launches an ephemeral fireball ZeroMQ message bus daemon on the remote node which Ansible can use to communicate with nodes at high speed. The daemon listens on a configurable port for a configurable amount of time. Starting a new fireball as a given user terminates any existing user fireballs. Fireball mode is AES encrypted
parameter | required | default | choices | comments |
---|---|---|---|---|
minutes | no | 30 | The fireball listener daemon is started on nodes and will stay around for this number of minutes before turning itself off. | |
port | no | 5099 | TCP port for ZeroMQ |
Note
Requires zmq
Note
Requires keyczar
This example playbook has two plays: the first launches 'fireball' mode on all hosts via SSH, and
the second actually starts using it for subsequent management over the fireball connection
- hosts: devservers
gather_facts: false
connection: ssh
sudo: yes
tasks:
- action: fireball
- hosts: devservers
connection: fireball
tasks:
- command: /usr/bin/anything
Note
See the advanced playbooks chapter for more about using fireball mode.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
firewalld - Manage arbitrary ports/services with firewalld
Author: | Adam Miller <maxamillion @fedoraproject.org> |
---|
New in version 1.4.
This module allows for addition or deletion of services and ports either tcp or udp in either running or permanent firewalld rules
parameter | required | default | choices | comments |
---|---|---|---|---|
permanent | yes | True | Should this configuration be in the running firewalld configuration or persist across reboots | |
port | no | Name of a port to add/remove to/from firewalld must be in the form PORT/PROTOCOL | ||
rich_rule | no | Rich rule to add/remove to/from firewalld | ||
service | no | Name of a service to add/remove to/from firewalld - service must be listed in /etc/services | ||
state | yes | enabled | Should this port accept(enabled) or reject(disabled) connections | |
timeout | no | The amount of time the rule should be in effect for when non-permanent | ||
zone | no | system-default(public) |
| The firewalld zone to add/remove to/from (NOTE: default zone can be configured per system but "public" is default from upstream. Available choices can be extended based on per-system configs, listed here are "out of the box" defaults). |
Note
Requires firewalld >= 0.2.11
- firewalld: service=https permanent=true state=enabled
- firewalld: port=8081/tcp permanent=true state=disabled
- firewalld: zone=dmz service=http permanent=true state=enabled
- firewalld: rich_rule='rule service name="ftp" audit limit value="1/m" accept' permanent=true state=enabled
Note
Not tested on any debian based system
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
flowdock - Send a message to a flowdock
Author: | Matt Coddington |
---|
New in version 1.2.
Send a message to a flowdock team inbox or chat using the push API (see https://www.flowdock.com/api/team-inbox and https://www.flowdock.com/api/chat)
parameter | required | default | choices | comments |
---|---|---|---|---|
external_user_name | no | (chat only - required) Name of the "user" sending the message | ||
from_address | no | (inbox only - required) Email address of the message sender | ||
from_name | no | (inbox only) Name of the message sender | ||
link | no | (inbox only) Link associated with the message. This will be used to link the message subject in Team Inbox. | ||
msg | yes | Content of the message | ||
project | no | (inbox only) Human readable identifier for more detailed message categorization | ||
reply_to | no | (inbox only) Email address for replies | ||
source | no | (inbox only - required) Human readable identifier of the application that uses the Flowdock API | ||
subject | no | (inbox only - required) Subject line of the message | ||
tags | no | tags of the message, separated by commas | ||
token | yes | API token. | ||
type | yes |
| Whether to post to 'inbox' or 'chat' | |
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
Note
Requires urllib
Note
Requires urllib2
- flowdock: type=inbox
token=AAAAAA
from_address=user@example.com
source='my cool app'
msg='test from ansible'
subject='test subject'
- flowdock: type=chat
token=AAAAAA
external_user_name=testuser
msg='test from ansible'
tags=tag1,tag2,tag3
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
gc_storage - This module manages objects/buckets in Google Cloud Storage.
Author: | benno @ansible.com Note. Most of the code has been taken from the S3 module. |
---|
New in version 1.4.
This module allows users to manage their objects/buckets in Google Cloud Storage. It allows upload and download operations and can set some canned permissions. It also allows retrieval of URLs for objects for use in playbooks, and retrieval of string contents of objects. This module requires setting the default project in GCS prior to playbook usage. See https://developers.google.com/storage/docs/reference/v1/apiversion1 for information about setting the default project.
parameter | required | default | choices | comments |
---|---|---|---|---|
bucket | yes | Bucket name. | ||
dest | no | The destination file path when downloading an object/key with a GET operation. | ||
expiration | no | Time limit (in seconds) for the URL generated and returned by GCA when performing a mode=put or mode=get_url operation. This url is only avaialbe when public-read is the acl for the object. | ||
force | no | True | Forces an overwrite either locally on the filesystem or remotely with the object/key. Used with PUT and GET operations. | |
gcs_access_key | yes | GCS access key. If not set then the value of the GCS_ACCESS_KEY environment variable is used. | ||
gcs_secret_key | yes | GCS secret key. If not set then the value of the GCS_SECRET_KEY environment variable is used. | ||
mode | yes |
| Switches the module behaviour between upload, download, get_url (return download url) , get_str (download object as string), create (bucket) and delete (bucket). | |
object | no | Keyname of the object inside the bucket. Can be also be used to create "virtual directories" (see examples). | ||
permission | no | private | This option let's the user set the canned permissions on the object/bucket that are created. The permissions that can be set are 'private', 'public-read', 'authenticated-read'. | |
src | no | The source file path when performing a PUT operation. |
Note
Requires boto 2.9+
upload some content
- gc_storage: bucket=mybucket object=key.txt src=/usr/local/myfile.txt mode=put permission=public-read
download some content
- gc_storage: bucket=mybucket object=key.txt dest=/usr/local/myfile.txt mode=get
Download an object as a string to use else where in your playbook
- gc_storage: bucket=mybucket object=key.txt mode=get_str
Create an empty bucket
- gc_storage: bucket=mybucket mode=create
Create a bucket with key as directory
- gc_storage: bucket=mybucket object=/my/directory/path mode=create
Delete a bucket and all contents
- gc_storage: bucket=mybucket mode=delete
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
gce - create or terminate GCE instances
Author: | Eric Johnson <erjohnso @google.com> |
---|
New in version 1.4.
Creates or terminates Google Compute Engine (GCE) instances. See https://cloud.google.com/products/compute-engine for an overview. Full install/configuration instructions for the gce* modules can be found in the comments of ansible/test/gce_tests.py.
parameter | required | default | choices | comments |
---|---|---|---|---|
image | no | debian-7 | image string to use for the instance | |
instance_names | no | a comma-separated list of instance names to create or destroy | ||
machine_type | no | n1-standard-1 | machine type to use for the instance, use 'n1-standard-1' by default | |
metadata | no | a hash/dictionary of custom data for the instance; '{"key":"value",...}' | ||
name | no | identifier when working with a single instance | ||
network | no | default | name of the network, 'default' will be used if not specified | |
pem_file | no | path to the pem file associated with the service account email (added in Ansible 1.5.1) | ||
persistent_boot_disk | no | false | if set, create the instance with a persistent boot disk | |
project_id | no | your GCE project ID (added in Ansible 1.5.1) | ||
service_account_email | no | service account email (added in Ansible 1.5.1) | ||
state | no | present |
| desired state of the resource |
tags | no | a comma-separated list of tags to associate with the instance | ||
zone | yes | us-central1-a | the GCE zone to use |
Note
Requires libcloud
Basic provisioning example. Create a single Debian 7 instance in the
us-central1-a Zone of n1-standard-1 machine type.
- local_action:
module: gce
name: test-instance
zone: us-central1-a
machine_type: n1-standard-1
image: debian-7
Example using defaults and with metadata to create a single 'foo' instance
- local_action:
module: gce
name: foo
metadata: '{"db":"postgres", "group":"qa", "id":500}'
Launch instances from a control node, runs some tasks on the new instances,
and then terminate them
- name: Create a sandbox instance
hosts: localhost
vars:
names: foo,bar
machine_type: n1-standard-1
image: debian-6
zone: us-central1-a
service_account_email: unique-email@developer.gserviceaccount.com
pem_file: /path/to/pem_file
project_id: project-id
tasks:
- name: Launch instances
local_action: gce instance_names={{names}} machine_type={{machine_type}}
image={{image}} zone={{zone}} service_account_email={{ service_account_email }}
pem_file={{ pem_file }} project_id={{ project_id }}
register: gce
- name: Wait for SSH to come up
local_action: wait_for host={{item.public_ip}} port=22 delay=10
timeout=60 state=started
with_items: {{gce.instance_data}}
- name: Configure instance(s)
hosts: launched
sudo: True
roles:
- my_awesome_role
- my_awesome_tasks
- name: Terminate instances
hosts: localhost
connection: local
tasks:
- name: Terminate instances that were previously launched
local_action:
module: gce
state: 'absent'
instance_names: {{gce.instance_names}}
Note
Either name or instance_names is required.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
gce_lb - create/destroy GCE load-balancer resources
Author: | Eric Johnson <erjohnso @google.com> |
---|
New in version 1.5.
This module can create and destroy Google Compute Engine loadbalancer and httphealthcheck resources. The primary LB resource is the load_balancer resource and the health check parameters are all prefixed with httphealthcheck. The full documentation for Google Compute Engine load balancing is at https://developers.google.com/compute/docs/load-balancing/. However, the ansible module simplifies the configuration by following the libcloud model. Full install/configuration instructions for the gce* modules can be found in the comments of ansible/test/gce_tests.py.
parameter | required | default | choices | comments |
---|---|---|---|---|
external_ip | no | the external static IPv4 (or auto-assigned) address for the LB | ||
httphealthcheck_healthy_count | no | 2 | number of consecutive successful checks before marking a node healthy | |
httphealthcheck_host | no | host header to pass through on HTTP check requests | ||
httphealthcheck_interval | no | 5 | the duration in seconds between each health check request | |
httphealthcheck_name | no | the name identifier for the HTTP health check | ||
httphealthcheck_path | no | / | the url path to use for HTTP health checking | |
httphealthcheck_port | no | 80 | the TCP port to use for HTTP health checking | |
httphealthcheck_timeout | no | 5 | the timeout in seconds before a request is considered a failed check | |
httphealthcheck_unhealthy_count | no | 2 | number of consecutive failed checks before marking a node unhealthy | |
members | no | a list of zone/nodename pairs, e.g ['us-central1-a/www-a', ...] | ||
name | no | name of the load-balancer resource | ||
pem_file | no | path to the pem file associated with the service account email (added in Ansible 1.6) | ||
port_range | no | the port (range) to forward, e.g. 80 or 8000-8888 defaults to all ports | ||
project_id | no | your GCE project ID (added in Ansible 1.6) | ||
protocol | no | tcp |
| the protocol used for the load-balancer packet forwarding, tcp or udp |
region | no | the GCE region where the load-balancer is defined | ||
service_account_email | no | service account email (added in Ansible 1.6) | ||
state | no | present |
| desired state of the LB |
Note
Requires libcloud
Simple example of creating a new LB, adding members, and a health check
- local_action:
module: gce_lb
name: testlb
region: us-central1
members: ["us-central1-a/www-a", "us-central1-b/www-b"]
httphealthcheck_name: hc
httphealthcheck_port: 80
httphealthcheck_path: "/up"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
gce_net - create/destroy GCE networks and firewall rules
Author: | Eric Johnson <erjohnso @google.com> |
---|
New in version 1.5.
This module can create and destroy Google Compue Engine networks and firewall rules https://developers.google.com/compute/docs/networking. The name parameter is reserved for referencing a network while the fwname parameter is used to reference firewall rules. IPv4 Address ranges must be specified using the CIDR http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing format. Full install/configuration instructions for the gce* modules can be found in the comments of ansible/test/gce_tests.py.
parameter | required | default | choices | comments |
---|---|---|---|---|
allowed | no | the protocol:ports to allow ('tcp:80' or 'tcp:80,443' or 'tcp:80-800') | ||
fwname | no | name of the firewall rule | ||
ipv4_range | no | the IPv4 address range in CIDR notation for the network | ||
name | no | name of the network | ||
pem_file | no | path to the pem file associated with the service account email (added in Ansible 1.6) | ||
project_id | no | your GCE project ID (added in Ansible 1.6) | ||
service_account_email | no | service account email (added in Ansible 1.6) | ||
src_range | no | the source IPv4 address range in CIDR notation | ||
src_tags | no | the source instance tags for creating a firewall rule | ||
state | no | present |
| desired state of the persistent disk |
Note
Requires libcloud
Simple example of creating a new network
- local_action:
module: gce_net
name: privatenet
ipv4_range: '10.240.16.0/24'
Simple example of creating a new firewall rule
- local_action:
module: gce_net
name: privatenet
allowed: tcp:80,8080
src_tags: ["web", "proxy"]
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
gce_pd - utilize GCE persistent disk resources
Author: | Eric Johnson <erjohnso @google.com> |
---|
New in version 1.4.
This module can create and destroy unformatted GCE persistent disks https://developers.google.com/compute/docs/disks#persistentdisks. It also supports attaching and detaching disks from running instances but does not support creating boot disks from images or snapshots. The ‘gce’ module supports creating instances with boot disks. Full install/configuration instructions for the gce* modules can be found in the comments of ansible/test/gce_tests.py.
parameter | required | default | choices | comments |
---|---|---|---|---|
detach_only | no | no |
| do not destroy the disk, merely detach it from an instance |
instance_name | no | instance name if you wish to attach or detach the disk | ||
mode | no | READ_ONLY |
| GCE mount mode of disk, READ_ONLY (default) or READ_WRITE |
name | yes | name of the disk | ||
pem_file | no | path to the pem file associated with the service account email (added in Ansible 1.6) | ||
project_id | no | your GCE project ID (added in Ansible 1.6) | ||
service_account_email | no | service account email (added in Ansible 1.6) | ||
size_gb | no | 10 | whole integer size of disk (in GB) to create, default is 10 GB | |
state | no | present |
| desired state of the persistent disk |
zone | no | us-central1-b | zone in which to create the disk |
Note
Requires libcloud
Simple attachment action to an existing instance
- local_action:
module: gce_pd
instance_name: notlocalhost
size_gb: 5
name: pd
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
gem - Manage Ruby gems
Author: | Johan Wiren |
---|
New in version 1.1.
Manage installation and uninstallation of Ruby gems.
parameter | required | default | choices | comments |
---|---|---|---|---|
executable | no | Override the path to the gem executable (added in Ansible 1.4) | ||
gem_source | no | The path to a local gem used as installation source. | ||
include_dependencies | no | yes |
| Wheter to include dependencies or not. |
name | yes | The name of the gem to be managed. | ||
pre_release | no | no | Allow installation of pre-release versions of the gem. (added in Ansible 1.6) | |
repository | no | The repository from which the gem will be installed | ||
state | no | present |
| The desired state of the gem. latest ensures that the latest version is installed. |
user_install | no | yes | Install gem in user's local gems cache or for all users (added in Ansible 1.3) | |
version | no | Version of the gem to be installed/removed. |
Installs version 1.0 of vagrant.
- gem: name=vagrant version=1.0 state=present
Installs latest available version of rake.
- gem: name=rake state=latest
Installs rake version 1.0 from a local gem on disk.
- gem: name=rake gem_source=/path/to/gems/rake-1.0.gem state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
get_url - Downloads files from HTTP, HTTPS, or FTP to node
Author: | Jan-Piet Mens |
---|
Downloads files from HTTP, HTTPS, or FTP to the remote server. The remote server must have direct access to the remote resource. By default, if an environment variable <protocol>_proxy is set on the target host, requests will be sent through that proxy. This behaviour can be overridden by setting a variable for this task (see setting the environment [http://docs.ansible.com/playbooks_environment.html]), or by using the use_proxy option.
parameter | required | default | choices | comments |
---|---|---|---|---|
dest | yes | absolute path of where to download the file to.If dest is a directory, either the server provided filename or, if none provided, the base name of the URL on the remote server will be used. If a directory, force has no effect. If dest is a directory, the file will always be downloaded (regardless of the force option), but replaced only if the contents changed. | ||
force | no | no |
| If yes and dest is not a directory, will download the file every time and replace the file if the contents change. If no, the file will only be downloaded if the destination does not exist. Generally should be yes only for small local files. Prior to 0.6, this module behaved as if yes was the default. (added in Ansible 0.7) |
others | no | all arguments accepted by the file module also work here | ||
sha256sum | no | If a SHA-256 checksum is passed to this parameter, the digest of the destination file will be calculated after it is downloaded to ensure its integrity and verify that the transfer completed successfully. (added in Ansible 1.3) | ||
url | yes | HTTP, HTTPS, or FTP URL in the form (http|https|ftp)://[user[:pass]]@host.domain[:port]/path | ||
url_password | no | The password for use in HTTP basic authentication. If the url_username parameter is not specified, the url_password parameter will not be used. (added in Ansible 1.6) | ||
url_username | no | The username for use in HTTP basic authentication. This parameter can be used without url_password for sites that allow empty passwords. (added in Ansible 1.6) | ||
use_proxy | no | yes |
| if no, it will not use a proxy, even if one is defined in an environment variable on the target hosts. |
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
Note
Requires urllib2
Note
Requires urlparse
- name: download foo.conf
get_url: url=http://example.com/path/file.conf dest=/etc/foo.conf mode=0440
- name: download file with sha256 check
get_url: url=http://example.com/path/file.conf dest=/etc/foo.conf sha256sum=b5bb9d8014a0f9b1d61e21e796d78dccdf1352f23cd32812f4850b878ae4944c
Note
This module doesn’t yet support configuration for proxies.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
git - Deploy software (or files) from git checkouts
Author: | Michael DeHaan |
---|
Manage git checkouts of repositories to deploy files or software.
parameter | required | default | choices | comments |
---|---|---|---|---|
accept_hostkey | no | no |
| if yes, adds the hostkey for the repo url if not already added. If ssh_args contains "-o StrictHostKeyChecking=no", this parameter is ignored. (added in Ansible 1.5) |
bare | no | no |
| if yes, repository will be created as a bare repo, otherwise it will be a standard repo with a workspace. (added in Ansible 1.4) |
depth | no | Create a shallow clone with a history truncated to the specified number or revisions. The minimum possible value is 1, otherwise ignored. (added in Ansible 1.2) | ||
dest | yes | Absolute path of where the repository should be checked out to. | ||
executable | no | Path to git executable to use. If not supplied, the normal mechanism for resolving binary paths will be used. (added in Ansible 1.4) | ||
force | no | yes |
| If yes, any modified files in the working repository will be discarded. Prior to 0.7, this was always 'yes' and could not be disabled. (added in Ansible 0.7) |
key_file | no | None | Uses the same wrapper method as ssh_opts to pass "-i <key_file>" to the ssh arguments used by git (added in Ansible 1.5) | |
recursive | no | yes |
| if no, repository will be cloned without the --recursive option, skipping sub-modules. (added in Ansible 1.6) |
reference | no | Reference repository (see "git clone --reference ...") (added in Ansible 1.4) | ||
remote | no | origin | Name of the remote. | |
repo | yes | git, SSH, or HTTP protocol address of the git repository. | ||
ssh_opts | no | None | Creates a wrapper script and exports the path as GIT_SSH which git then automatically uses to override ssh arguments. An example value could be "-o StrictHostKeyChecking=no" (added in Ansible 1.5) | |
update | no | yes |
| If no, just returns information about the repository without updating. (added in Ansible 1.2) |
version | no | HEAD | What version of the repository to check out. This can be the full 40-character SHA-1 hash, the literal string HEAD, a branch name, or a tag name. |
Example git checkout from Ansible Playbooks
- git: repo=git://foosball.example.org/path/to/repo.git
dest=/srv/checkout
version=release-0.22
Example read-write git checkout from github
- git: repo=ssh://git@github.com/mylogin/hello.git dest=/home/mylogin/hello
Example just ensuring the repo checkout exists
- git: repo=git://foosball.example.org/path/to/repo.git dest=/srv/checkout update=no
Note
If the task seems to be hanging, first verify remote host is in known_hosts. SSH will prompt user to authorize the first contact with a remote host. To avoid this prompt, one solution is to add the remote host public key in /etc/ssh/ssh_known_hosts before calling the git module, with the following command: ssh-keyscan -H remote_host.com >> /etc/ssh/ssh_known_hosts.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
github_hooks - Manages github service hooks.
Author: | Phillip Gentry, CX Inc |
---|
New in version 1.4.
Adds service hooks and removes service hooks that have an error status.
parameter | required | default | choices | comments |
---|---|---|---|---|
action | yes |
| This tells the githooks module what you want it to do. | |
hookurl | no | When creating a new hook, this is the url that you want github to post to. It is only required when creating a new hook. | ||
oauthkey | yes | The oauth key provided by github. It can be found/generated on github under "Edit Your Profile" >> "Applications" >> "Personal Access Tokens" | ||
repo | yes | This is the API url for the repository you want to manage hooks for. It should be in the form of: https://api.github.com/repos/user:/repo:. Note this is different than the normal repo url. | ||
user | yes | Github username. | ||
validate_certs | no | yes |
| If no, SSL certificates for the target repo will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
Example creating a new service hook. It ignores duplicates.
- github_hooks: action=create hookurl=http://11.111.111.111:2222 user={{ gituser }} oauthkey={{ oauthkey }} repo=https://api.github.com/repos/pcgentry/Github-Auto-Deploy
Cleaning all hooks for this repo that had an error on the last update. Since this works for all hooks in a repo it is probably best that this would be called from a handler.
- local_action: github_hooks action=cleanall user={{ gituser }} oauthkey={{ oauthkey }} repo={{ repo }}
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
glance_image - Add/Delete images from glance
New in version 1.2.
Add or Remove images from the glance repository.
parameter | required | default | choices | comments |
---|---|---|---|---|
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone url for authentication | |
container_format | no | bare | The format of the container | |
copy_from | no | None | A url from where the image can be downloaded, mutually exclusive with file parameter | |
disk_format | no | qcow2 | The format of the disk that is getting uploaded | |
endpoint_type | no | publicURL |
| endpoint URL type |
file | no | None | The path to the file which has to be uploaded, mutually exclusive with copy_from | |
is_public | no | yes | Whether the image can be accessed publicly | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
min_disk | no | None | The minimum disk space required to deploy this image | |
min_ram | no | None | The minimum ram required to deploy this image | |
name | yes | None | Name that has to be given to the image | |
owner | no | None | The owner of the image | |
region_name | no | None | Name of the region | |
state | no | present |
| Indicate desired state of the resource |
timeout | no | 180 | The time to wait for the image process to complete in seconds |
Note
Requires glanceclient
Note
Requires keystoneclient
Upload an image from an HTTP URL
- glance_image: login_username=admin
login_password=passme
login_tenant_name=admin
name=cirros
container_format=bare
disk_format=qcow2
state=present
copy_from=http:launchpad.net/cirros/trunk/0.3.0/+download/cirros-0.3.0-x86_64-disk.img
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
group - Add or remove groups
Author: | Stephen Fromm |
---|
Manage presence of groups on a host.
parameter | required | default | choices | comments |
---|---|---|---|---|
gid | no | Optional GID to set for the group. | ||
name | yes | Name of the group to manage. | ||
state | no | present |
| Whether the group should be present or not on the remote host. |
system | no | no |
| If yes, indicates that the group created is a system group. |
Note
Requires groupadd
Note
Requires groupdel
Note
Requires groupmod
Example group command from Ansible Playbooks
- group: name=somegroup state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
group_by - Create Ansible groups based on facts
Author: | Jeroen Hoekx |
---|
Use facts to create ad-hoc groups that can be used later in a playbook.
parameter | required | default | choices | comments |
---|---|---|---|---|
key | yes | The variables whose values will be used as groups |
Create groups based on the machine architecture
- group_by: key=machine_{{ ansible_machine }}
Create groups like 'kvm-host'
- group_by: key=virt_{{ ansible_virtualization_type }}_{{ ansible_virtualization_role }}
Note
Spaces in group names are converted to dashes ‘-‘.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
grove - Sends a notification to a grove.io channel
Author: | Jonas Pfenniger <zimbatm @zimbatm.com> |
---|
New in version 1.4.
The grove module sends a message for a service to a Grove.io channel.
parameter | required | default | choices | comments |
---|---|---|---|---|
channel_token | yes | Token of the channel to post to. | ||
icon_url | no | Icon for the service | ||
message | yes | Message content | ||
service | no | ansible | Name of the service (displayed as the "user" in the message) | |
url | no | Service URL for the web client | ||
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
- grove: >
channel_token=6Ph62VBBJOccmtTPZbubiPzdrhipZXtg
service=my-app
message=deployed {{ target }}
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
hg - Manages Mercurial (hg) repositories.
Author: | Yeukhon Wong |
---|
New in version 1.0.
Manages Mercurial (hg) repositories. Supports SSH, HTTP/S and local address.
parameter | required | default | choices | comments |
---|---|---|---|---|
dest | yes | Absolute path of where the repository should be cloned to. | ||
executable | no | Path to hg executable to use. If not supplied, the normal mechanism for resolving binary paths will be used. (added in Ansible 1.4) | ||
force | no | yes |
| Discards uncommitted changes. Runs hg update -C. |
purge | no | no |
| Deletes untracked files. Runs hg purge. |
repo | yes | The repository address. | ||
revision | no | default | Equivalent -r option in hg command which could be the changeset, revision number, branch name or even tag. |
Ensure the current working copy is inside the stable branch and deletes untracked files if any.
- hg: repo=https://bitbucket.org/user/repo1 dest=/home/user/repo1 revision=stable purge=yes
Note
If the task seems to be hanging, first verify remote host is in known_hosts. SSH will prompt user to authorize the first contact with a remote host. To avoid this prompt, one solution is to add the remote host public key in /etc/ssh/ssh_known_hosts before calling the hg module, with the following command: ssh-keyscan remote_host.com >> /etc/ssh/ssh_known_hosts.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
hipchat - Send a message to hipchat
Author: | WAKAYAMA Shirou |
---|
New in version 1.2.
Send a message to hipchat
parameter | required | default | choices | comments |
---|---|---|---|---|
api | no | https://api.hipchat.com/v1/rooms/message | API url if using a self-hosted hipchat server (added in Ansible 1.6.0) | |
color | no | yellow |
| Background color for the message. Default is yellow. |
from | no | Ansible | Name the message will appear be sent from. max 15 characters. Over 15, will be shorten. | |
msg | yes | The message body. | ||
msg_format | no | text |
| message format. html or text. Default is text. |
notify | no | yes |
| notify or not (change the tab color, play a sound, etc) |
room | yes | ID or name of the room. | ||
token | yes | API token. | ||
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
Note
Requires urllib
Note
Requires urllib2
- hipchat: token=AAAAAA room=notify msg="Ansible task finished"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
homebrew - Package manager for Homebrew
Author: | Andrew Dunham and Daniel Jaouen |
---|
New in version 1.1.
Manages Homebrew packages
parameter | required | default | choices | comments |
---|---|---|---|---|
install_options | no | options flags to install a package (added in Ansible 1.4) | ||
name | yes | name of package to install/remove | ||
state | no | present |
| state of the package |
update_homebrew | no | no |
| update homebrew itself first |
upgrade_all | no |
| upgrade all homebrew packages |
- homebrew: name=foo state=present
- homebrew: name=foo state=present update_homebrew=yes
- homebrew: name=foo state=latest update_homebrew=yes
- homebrew: update_homebrew=yes upgrade_all=yes
- homebrew: name=foo state=head
- homebrew: name=foo state=linked
- homebrew: name=foo state=absent
- homebrew: name=foo,bar state=absent
- homebrew: name=foo state=present install_options=with-baz,enable-debug
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
homebrew_cask - Install/uninstall homebrew casks.
Author: | Daniel Jaouen |
---|
New in version 1.6.
Manages Homebrew casks.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | name of cask to install/remove | ||
state | no | present |
| state of the cask |
- homebrew_cask: name=alfred state=present
- homebrew_cask: name=alfred state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
homebrew_tap - Tap a Homebrew repository.
Author: | Daniel Jaouen |
---|
New in version 1.6.
Tap external Homebrew repositories.
parameter | required | default | choices | comments |
---|---|---|---|---|
state | no | present |
| state of the repository. |
tap | yes | The repository to tap. |
Note
Requires homebrew
homebrew_tap: tap=homebrew/dupes state=present
homebrew_tap: tap=homebrew/dupes state=absent
homebrew_tap: tap=homebrew/dupes,homebrew/science state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
hostname - Manage hostname
Author: | Hiroaki Nakamura |
---|
New in version 1.4.
Set system’s hostname Currently implemented on only Debian, Ubuntu, RedHat and CentOS.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | Name of the host |
Note
Requires hostname
- hostname: name=web01
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
htpasswd - manage user files for basic authentication
Author: | Lorin Hochstein |
---|
New in version 1.3.
Add and remove username/password entries in a password file using htpasswd. This is used by web servers such as Apache and Nginx for basic authentication.
parameter | required | default | choices | comments |
---|---|---|---|---|
create | no | yes |
| Used with state=present. If specified, the file will be created if it does not already exist. If set to "no", will fail if the file does not exist |
crypt_scheme | no | apr_md5_crypt |
| Encryption scheme to be used. |
name | yes | User name to add or remove | ||
password | no | Password associated with user.Must be specified if user does not exist yet. | ||
path | yes | Path to the file that contains the usernames and passwords | ||
state | no | present |
| Whether the user entry should be present or not |
Add a user to a password file and ensure permissions are set
- htpasswd: path=/etc/nginx/passwdfile name=janedoe password=9s36?;fyNp owner=root group=www-data mode=0640
Remove a user from a password file
- htpasswd: path=/etc/apache2/passwdfile name=foobar state=absent
Note
This module depends on the passlib Python library, which needs to be installed on all target systems.
Note
On Debian, Ubuntu, or Fedora: install python-passlib.
Note
On RHEL or CentOS: Enable EPEL, then install python-passlib.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
include_vars - Load variables from files, dynamically within a task.
Author: | Benno Joy |
---|
New in version 1.4.
Loads variables from a YAML file dynamically during task runtime. It can work with conditionals, or use host specific variables to determine the path name to load from.
parameter | required | default | choices | comments |
---|---|---|---|---|
free-form | yes | The file name from which variables should be loaded, if called from a role it will look for the file in vars/ subdirectory of the role, otherwise the path would be relative to playbook. An absolute path can also be provided. |
Conditionally decide to load in variables when x is 0, otherwise do not.
- include_vars: contingency_plan.yml
when: x == 0
Load a variable file based on the OS type, or a default if not found.
- include_vars: "{{ item }}"
with_first_found:
- "{{ ansible_distribution }}.yml"
- "{{ ansible_os_family }}.yml"
- "default.yml"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ini_file - Tweak settings in INI files
Author: | Jan-Piet Mens |
---|
Manage (add, remove, change) individual settings in an INI-style file without having to manage the file as a whole with, say, template or assemble. Adds missing sections if they don’t exist. Comments are discarded when the source file is read, and therefore will not show up in the destination file.
parameter | required | default | choices | comments |
---|---|---|---|---|
backup | no | no |
| Create a backup file including the timestamp information so you can get the original file back if you somehow clobbered it incorrectly. |
dest | yes | Path to the INI-style file; this file is created if required | ||
option | no | if set (required for changing a value), this is the name of the option.May be omitted if adding/removing a whole section. | ||
others | no | all arguments accepted by the file module also work here | ||
section | yes | Section name in INI file. This is added if state=present automatically when a single value is being set. | ||
value | no | the string value to be associated with an option. May be omitted when removing an option. |
Note
Requires ConfigParser
Ensure "fav=lemonade is in section "[drinks]" in specified file
- ini_file: dest=/etc/conf section=drinks option=fav value=lemonade mode=0600 backup=yes
- ini_file: dest=/etc/anotherconf
section=drinks
option=temperature
value=cold
backup=yes
Note
While it is possible to add an option without specifying a value, this makes no sense.
Note
A section named default cannot be added by the module, but if it exists, individual options within the section can be updated. (This is a limitation of Python’s ConfigParser.) Either use template to create a base INI file with a [default] section, or use lineinfile to add the missing line.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
irc - Send a message to an IRC channel
Author: | Jan-Piet Mens, Matt Martz |
---|
New in version 1.2.
Send a message to an IRC channel. This is a very simplistic implementation.
parameter | required | default | choices | comments |
---|---|---|---|---|
channel | yes | Channel name | ||
color | no | none |
| Text color for the message. ("none" is a valid option in 1.6 or later, in 1.6 and prior, the default color is black, not "none"). |
msg | yes | The message body. | ||
nick | no | ansible | Nickname. May be shortened, depending on server's NICKLEN setting. | |
passwd | no | Server password | ||
port | no | 6667 | IRC server port number | |
server | no | localhost | IRC server name/address | |
timeout | no | 30 | Timeout to use while waiting for successful registration and join messages, this is to prevent an endless loop (added in Ansible 1.5) |
Note
Requires socket
- irc: server=irc.example.net channel="#t1" msg="Hello world"
- local_action: irc port=6669
channel="#t1"
msg="All finished at {{ ansible_date_time.iso8601 }}"
color=red
nick=ansibleIRC
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
jabber - Send a message to jabber user or chat room
Author: | Brian Coca |
---|
New in version 1.2.
Send a message to jabber
parameter | required | default | choices | comments |
---|---|---|---|---|
encoding | no | message encoding | ||
host | no | host to connect, overrides user info | ||
msg | yes | The message body. | ||
password | yes | password for user to connect | ||
port | no | 5222 | port to connect to, overrides default | |
to | yes | user ID or name of the room, when using room use a slash to indicate your nick. | ||
user | yes | User as which to connect |
Note
Requires xmpp
send a message to a user
- jabber: user=mybot@example.net
password=secret
to=friend@example.net
msg="Ansible task finished"
send a message to a room
- jabber: user=mybot@example.net
password=secret
to=mychaps@conference.example.net/ansiblebot
msg="Ansible task finished"
send a message, specifying the host and port
- jabber user=mybot@example.net
host=talk.example.net
port=5223
password=secret
to=mychaps@example.net
msg="Ansible task finished"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
jboss - deploy applications to JBoss
Author: | Jeroen Hoekx |
---|
New in version 1.4.
Deploy applications to JBoss standalone using the filesystem
parameter | required | default | choices | comments |
---|---|---|---|---|
deploy_path | no | /var/lib/jbossas/standalone/deployments | The location in the filesystem where the deployment scanner listens | |
deployment | yes | The name of the deployment | ||
src | no | The remote path of the application ear or war to deploy | ||
state | no | present |
| Whether the application should be deployed or undeployed |
Deploy a hello world application
- jboss: src=/tmp/hello-1.0-SNAPSHOT.war deployment=hello.war state=present
Update the hello world application
- jboss: src=/tmp/hello-1.1-SNAPSHOT.war deployment=hello.war state=present
Undeploy the hello world application
- jboss: deployment=hello.war state=absent
Note
The JBoss standalone deployment-scanner has to be enabled in standalone.xml
Note
Ensure no identically named application is deployed through the JBoss CLI
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
jira - create and modify issues in a JIRA instance
Author: | Steve Smith |
---|
New in version 1.6.
Create and modify issues in a JIRA instance.
parameter | required | default | choices | comments |
---|---|---|---|---|
assignee | no | Sets the assignee on create or transition operations. Note not all transitions will allow this. | ||
comment | no | The comment text to add. | ||
description | no | The issue description, where appropriate. | ||
fields | no | This is a free-form data structure that can contain arbitrary data. This is passed directly to the JIRA REST API (possibly after merging with other required data, as when passed to create). See examples for more information, and the JIRA REST API for the structure required for various fields. | ||
issue | no | An existing issue key to operate on. | ||
issuetype | no | The issue type, for issue creation. | ||
operation | yes |
| The operation to perform. | |
password | yes | The password to log-in with. | ||
project | no | The project for this operation. Required for issue creation. | ||
status | no | The desired status; only relevant for the transition operation. | ||
summary | no | The issue summary, where appropriate. | ||
uri | yes | Base URI for the JIRA instance | ||
username | yes | The username to log-in with. |
Create a new issue and add a comment to it:
- name: Create an issue
jira: uri={{server}} username={{user}} password={{pass}}
project=ANS operation=create
summary="Example Issue" description="Created using Ansible" issuetype=Task
register: issue
- name: Comment on issue
jira: uri={{server}} username={{user}} password={{pass}}
issue={{issue.meta.key}} operation=comment
comment="A comment added by Ansible"
Assign an existing issue using edit
- name: Assign an issue using free-form fields
jira: uri={{server}} username={{user}} password={{pass}}
issue={{issue.meta.key}} operation=edit
assignee=ssmith
Create an issue with an existing assignee
- name: Create an assigned issue
jira: uri={{server}} username={{user}} password={{pass}}
project=ANS operation=create
summary="Assigned issue" description="Created and assigned using Ansible"
issuetype=Task assignee=ssmith
Edit an issue using free-form fields
- name: Set the labels on an issue using free-form fields
jira: uri={{server}} username={{user}} password={{pass}}
issue={{issue.meta.key}} operation=edit
args: { fields: {labels: ["autocreated", "ansible"]}}
- name: Set the labels on an issue, YAML version
jira: uri={{server}} username={{user}} password={{pass}}
issue={{issue.meta.key}} operation=edit
args:
fields:
labels:
- "autocreated"
- "ansible"
- "yaml"
Retrieve metadata for an issue and use it to create an account
- name: Get an issue
jira: uri={{server}} username={{user}} password={{pass}}
project=ANS operation=fetch issue="ANS-63"
register: issue
- name: Create a unix account for the reporter
sudo: true
user: name="{{issue.meta.fields.creator.name}}" comment="{{issue.meta.fields.creator.displayName}}"
Transition an issue by target status
- name: Close the issue
jira: uri={{server}} username={{user}} password={{pass}}
issue={{issue.meta.key}} operation=transition status="Done"
Note
Currently this only works with basic-auth.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
kernel_blacklist - Blacklist kernel modules
Author: | Matthias Vogelgesang |
---|
New in version 1.4.
Add or remove kernel modules from blacklist.
parameter | required | default | choices | comments |
---|---|---|---|---|
blacklist_file | no | If specified, use this blacklist file instead of /etc/modprobe.d/blacklist-ansible.conf. | ||
name | yes | Name of kernel module to black- or whitelist. | ||
state | no | present |
| Whether the module should be present in the blacklist or absent. |
Blacklist the nouveau driver module
- kernel_blacklist: name=nouveau state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
keystone_user - Manage OpenStack Identity (keystone) users, tenants and roles
Author: | Lorin Hochstein |
---|
New in version 1.2.
Manage users,tenants, roles from OpenStack.
parameter | required | default | choices | comments |
---|---|---|---|---|
description | no | None | A description for the tenant | |
no | None | An email address for the user | ||
endpoint | no | http://127.0.0.1:35357/v2.0/ | The keystone url for authentication | |
login_password | no | yes | Password of login user | |
login_tenant_name | no | None | The tenant login_user belongs to (added in Ansible 1.3) | |
login_user | no | admin | login username to authenticate to keystone | |
password | no | None | The password to be assigned to the user | |
role | no | None | The name of the role to be assigned or created | |
state | no | present |
| Indicate desired state of the resource |
tenant | no | None | The tenant name that has be added/removed | |
token | no | None | The token to be uses in case the password is not specified | |
user | no | None | The name of the user that has to added/removed from OpenStack |
Note
Requires python-keystoneclient
Create a tenant
- keystone_user: tenant=demo tenant_description="Default Tenant"
Create a user
- keystone_user: user=john tenant=demo password=secrete
Apply the admin role to the john user in the demo tenant
- keystone_user: role=admin user=john tenant=demo
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
layman - Manage Gentoo overlays
Author: | Jakub Jirutka <jakub @jirutka.cz> |
---|
New in version 1.6.
Uses Layman to manage an additional repositories for the Portage package manager on Gentoo Linux. Please note that Layman must be installed on a managed node prior using this module.
parameter | required | default | choices | comments |
---|---|---|---|---|
list_url | no | An URL of the alternative overlays list that defines the overlay to install. This list will be fetched and saved under ${overlay_defs}/${name}.xml), where overlay_defs is readed from the Layman's configuration. | ||
name | yes | The overlay id to install, synchronize, or uninstall. Use 'ALL' to sync all of the installed overlays (can be used only when state=updated). | ||
state | no | present |
| Whether to install (present), sync (updated), or uninstall (absent) the overlay. |
Install the overlay 'mozilla' which is on the central overlays list.
- layman: name=mozilla
Install the overlay 'cvut' from the specified alternative list.
- layman: name=cvut list_url=http://raw.github.com/cvut/gentoo-overlay/master/overlay.xml
Update (sync) the overlay 'cvut', or install if not installed yet.
- layman: name=cvut list_url=http://raw.github.com/cvut/gentoo-overlay/master/overlay.xml state=updated
Update (sync) all of the installed overlays.
- layman: name=ALL state=updated
Uninstall the overlay 'cvut'.
- layman: name=cvut state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
librato_annotation - create an annotation in librato
Author: | Seth Edwards |
---|
New in version 1.6.
Create an annotation event on the given annotation stream :name. If the annotation stream does not exist, it will be created automatically
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | yes | Librato account api key | ||
description | no | The description contains extra meta-data about a particular annotationThe description should contain specifics on the individual annotation e.g. Deployed 9b562b2 shipped new feature foo! | ||
end_time | no | The unix timestamp indicating the the time at which the event referenced by this annotation endedFor events that have a duration, this is a useful way to annotate the duration of the event | ||
links | yes | See examples | ||
name | no | The annotation stream nameIf the annotation stream does not exist, it will be created automatically | ||
source | no | A string which describes the originating source of an annotation when that annotation is tracked across multiple members of a population | ||
start_time | no | The unix timestamp indicating the the time at which the event referenced by this annotation started | ||
title | yes | The title of an annotation is a string and may contain spacesThe title should be a short, high-level summary of the annotation e.g. v45 Deployment | ||
user | yes | Librato account username |
Note
Requires urllib2
Note
Requires base64
Create a simple annotation event with a source
- librato_annotation:
user: user@example.com
api_key: XXXXXXXXXXXXXXXXX
title: 'App Config Change'
source: 'foo.bar'
description: 'This is a detailed description of the config change'
Create an annotation that includes a link
- librato_annotation:
user: user@example.com
api_key: XXXXXXXXXXXXXXXXXX
name: 'code.deploy'
title: 'app code deploy'
description: 'this is a detailed description of a deployment'
links:
- { rel: 'example', href: 'http://www.example.com/deploy' }
Create an annotation with a start_time and end_time
- librato_annotation:
user: user@example.com
api_key: XXXXXXXXXXXXXXXXXX
name: 'maintenance'
title: 'Maintenance window'
description: 'This is a detailed description of maintenance'
start_time: 1395940006
end_time: 1395954406
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
lineinfile - Ensure a particular line is in a file, or replace an existing line using a back-referenced regular expression.
Author: | Daniel Hokka Zakrisson, Ahti Kitsik |
---|
This module will search a file for a line, and ensure that it is present or absent. This is primarily useful when you want to change a single line in a file only. For other cases, see the copy or template modules.
parameter | required | default | choices | comments |
---|---|---|---|---|
backrefs | no | no |
| Used with state=present. If set, line can contain backreferences (both positional and named) that will get populated if the regexp matches. This flag changes the operation of the module slightly; insertbefore and insertafter will be ignored, and if the regexp doesn't match anywhere in the file, the file will be left unchanged. If the regexp does match, the last matching line will be replaced by the expanded line parameter. (added in Ansible 1.1) |
backup | no | no |
| Create a backup file including the timestamp information so you can get the original file back if you somehow clobbered it incorrectly. |
create | no | no |
| Used with state=present. If specified, the file will be created if it does not already exist. By default it will fail if the file is missing. |
dest | yes | The file to modify. | ||
insertafter | no | EOF |
| Used with state=present. If specified, the line will be inserted after the specified regular expression. A special value is available; EOF for inserting the line at the end of the file. May not be used with backrefs. |
insertbefore | no |
| Used with state=present. If specified, the line will be inserted before the specified regular expression. A value is available; BOF for inserting the line at the beginning of the file. May not be used with backrefs. (added in Ansible 1.1) | |
line | no | Required for state=present. The line to insert/replace into the file. If backrefs is set, may contain backreferences that will get expanded with the regexp capture groups if the regexp matches. The backreferences should be double escaped (see examples). | ||
others | no | All arguments accepted by the file module also work here. | ||
regexp | no | The regular expression to look for in every line of the file. For state=present, the pattern to replace if found; only the last line found will be replaced. For state=absent, the pattern of the line to remove. Uses Python regular expressions; see http://docs.python.org/2/library/re.html. | ||
state | no | present |
| Whether the line should be there or not. |
validate | no | None | validation to run before copying into place. The command is passed securely so shell features like expansion and pipes won't work. (added in Ansible 1.4) |
- lineinfile: dest=/etc/selinux/config regexp=^SELINUX= line=SELINUX=disabled
- lineinfile: dest=/etc/sudoers state=absent regexp="^%wheel"
- lineinfile: dest=/etc/hosts regexp='^127\.0\.0\.1' line='127.0.0.1 localhost' owner=root group=root mode=0644
- lineinfile: dest=/etc/httpd/conf/httpd.conf regexp="^Listen " insertafter="^#Listen " line="Listen 8080"
- lineinfile: dest=/etc/services regexp="^# port for http" insertbefore="^www.*80/tcp" line="# port for http by default"
Add a line to a file if it does not exist, without passing regexp
- lineinfile: dest=/tmp/testfile line="192.168.1.99 foo.lab.net foo"
Fully quoted because of the ': ' on the line. See the Gotchas in the YAML docs.
- lineinfile: "dest=/etc/sudoers state=present regexp='^%wheel' line='%wheel ALL=(ALL) NOPASSWD: ALL'"
- lineinfile: dest=/opt/jboss-as/bin/standalone.conf regexp='^(.*)Xms(\d+)m(.*)$' line='\1Xms${xms}m\3' backrefs=yes
Validate a the sudoers file before saving
- lineinfile: dest=/etc/sudoers state=present regexp='^%ADMIN ALL\=' line='%ADMIN ALL=(ALL) NOPASSWD:ALL' validate='visudo -cf %s'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
linode - create / delete / stop / restart an instance in Linode Public Cloud
Author: | Vincent Viallet |
---|
New in version 1.3.
creates / deletes a Linode Public Cloud instance and optionally waits for it to be ‘running’.
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Linode API key | ||
datacenter | no | datacenter to create an instance in (Linode Datacenter) | ||
distribution | no | distribution to use for the instance (Linode Distribution) | ||
linode_id | no | Unique ID of a linode server | ||
name | no | Name to give the instance (alphanumeric, dashes, underscore)To keep sanity on the Linode Web Console, name is prepended with LinodeID_ | ||
password | no | root password to apply to a new server (auto generated if missing) | ||
payment_term | no | 1 |
| payment term to use for the instance (payment term in months) |
plan | no | plan to use for the instance (Linode plan) | ||
ssh_pub_key | no | SSH public key applied to root user | ||
state | no | present |
| Indicate desired state of the resource |
swap | no | 512 | swap size in MB | |
wait | no | no |
| wait for the instance to be in state 'running' before returning |
wait_timeout | no | 300 | how long before wait gives up, in seconds |
Note
Requires linode-python
Note
Requires pycurl
Create a server
- local_action:
module: linode
api_key: 'longStringFromLinodeApi'
name: linode-test1
plan: 1
datacenter: 2
distribution: 99
password: 'superSecureRootPassword'
ssh_pub_key: 'ssh-rsa qwerty'
swap: 768
wait: yes
wait_timeout: 600
state: present
Ensure a running server (create if missing)
- local_action:
module: linode
api_key: 'longStringFromLinodeApi'
name: linode-test1
linode_id: 12345678
plan: 1
datacenter: 2
distribution: 99
password: 'superSecureRootPassword'
ssh_pub_key: 'ssh-rsa qwerty'
swap: 768
wait: yes
wait_timeout: 600
state: present
Delete a server
- local_action:
module: linode
api_key: 'longStringFromLinodeApi'
name: linode-test1
linode_id: 12345678
state: absent
Stop a server
- local_action:
module: linode
api_key: 'longStringFromLinodeApi'
name: linode-test1
linode_id: 12345678
state: stopped
Reboot a server
- local_action:
module: linode
api_key: 'longStringFromLinodeApi'
name: linode-test1
linode_id: 12345678
state: restarted
Note
LINODE_API_KEY env variable can be used instead
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
lldp - get details reported by lldp
Author: | Andy Hill |
---|
New in version 1.6.
Reads data out of lldpctl
Retrieve switch/port information
- name: Gather information from lldp
lldp:
- name: Print each switch/port
debug: msg="{{ lldp[item]['chassis']['name'] }} / {{ lldp[item]['port']['ifalias'] }}
with_items: lldp.keys()
TASK: [Print each switch/port] ***
ok: [10.13.0.22] => (item=eth2) => {"item": "eth2", "msg": "switch1.example.com / Gi0/24"}
ok: [10.13.0.22] => (item=eth1) => {"item": "eth1", "msg": "switch2.example.com / Gi0/3"}
ok: [10.13.0.22] => (item=eth0) => {"item": "eth0", "msg": "switch3.example.com / Gi0/3"}
Note
Requires lldpd running and lldp enabled on switches
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
locale_gen - Creates of removes locales.
New in version 1.6.
Manages locales by editing /etc/locale.gen and invoking locale-gen.
parameter	required	default	choices	comments
name	yes	Name and encoding of the locale, such as "en_GB.UTF-8".		
state	no	present		
Whether the locale shall be present.				
Ensure a locale exists.
- locale_gen: name=de_CH.UTF-8 state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
logentries - Module for tracking logs via logentries.com
Author: | Ivan Vanderbyl |
---|
New in version 1.6.
Sends logs to LogEntries in realtime
parameter | required | default | choices | comments |
---|---|---|---|---|
path | yes | path to a log file | ||
state | no | present |
| following state of the log |
- logentries: path=/var/log/nginx/access.log state=present
- logentries: path=/var/log/nginx/error.log state=absent
Note
Requires the LogEntries agent which can be installed following the instructions at logentries.com
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
lvg - Configure LVM volume groups
Author: | Alexander Bulimov |
---|
New in version 1.1.
This module creates, removes or resizes volume groups.
parameter | required | default | choices | comments |
---|---|---|---|---|
force | no | no |
| If yes, allows to remove volume group with logical volumes. |
pesize | no | 4 | The size of the physical extent in megabytes. Must be a power of 2. | |
pvs | no | List of comma-separated devices to use as physical devices in this volume group. Required when creating or resizing volume group. | ||
state | no | present |
| Control if the volume group exists. |
vg | yes | The name of the volume group. | ||
vg_options | no | Additional options to pass to vgcreate when creating the volume group. (added in Ansible 1.6) |
Create a volume group on top of /dev/sda1 with physical extent size = 32MB.
- lvg: vg=vg.services pvs=/dev/sda1 pesize=32
Create or resize a volume group on top of /dev/sdb1 and /dev/sdc5.
If, for example, we already have VG vg.services on top of /dev/sdb1,
this VG will be extended by /dev/sdc5. Or if vg.services was created on
top of /dev/sda5, we first extend it with /dev/sdb1 and /dev/sdc5,
and then reduce by /dev/sda5.
- lvg: vg=vg.services pvs=/dev/sdb1,/dev/sdc5
Remove a volume group with name vg.services.
- lvg: vg=vg.services state=absent
Note
module does not modify PE size for already present volume group
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
lvol - Configure LVM logical volumes
Author: | Jeroen Hoekx |
---|
New in version 1.1.
This module creates, removes or resizes logical volumes.
parameter | required | default | choices | comments |
---|---|---|---|---|
force | no | no |
| Shrink or remove operations of volumes requires this switch. Ensures that that filesystems get never corrupted/destroyed by mistake. (added in Ansible 1.5) |
lv | yes | The name of the logical volume. | ||
size | no | The size of the logical volume, according to lvcreate(8) --size, by default in megabytes or optionally with one of [bBsSkKmMgGtTpPeE] units; or according to lvcreate(8) --extents as a percentage of [VG|PVS|FREE]; resizing is not supported with percentages. | ||
state | no | present |
| Control if the logical volume exists. |
vg | yes | The volume group this logical volume is part of. |
Create a logical volume of 512m.
- lvol: vg=firefly lv=test size=512
Create a logical volume of 512g.
- lvol: vg=firefly lv=test size=512g
Create a logical volume the size of all remaining space in the volume group
- lvol: vg=firefly lv=test size=100%FREE
Extend the logical volume to 1024m.
- lvol: vg=firefly lv=test size=1024
Reduce the logical volume to 512m
- lvol: vg=firefly lv=test size=512 force=yes
Remove the logical volume.
- lvol: vg=firefly lv=test state=absent force=yes
Note
Filesystems on top of the volume are not resized.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
macports - Package manager for MacPorts
Author: | Jimmy Tang |
---|
New in version 1.1.
Manages MacPorts packages
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | name of package to install/remove | ||
state | no | present |
| state of the package |
update_cache | no | no |
| update the package db first |
- macports: name=foo state=present
- macports: name=foo state=present update_cache=yes
- macports: name=foo state=absent
- macports: name=foo state=active
- macports: name=foo state=inactive
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mail - Send an email
Author: | Dag Wieers |
---|
This module is useful for sending emails from playbooks. One may wonder why automate sending emails? In complex environments there are from time to time processes that cannot be automated, either because you lack the authority to make it so, or because not everyone agrees to a common approach. If you cannot automate a specific step, but the step is non-blocking, sending out an email to the responsible party to make him perform his part of the bargain is an elegant way to put the responsibility in someone else’s lap. Of course sending out a mail can be equally useful as a way to notify one or more people in a team that a specific action has been (successfully) taken.
parameter | required | default | choices | comments |
---|---|---|---|---|
attach | no | A space-separated list of pathnames of files to attach to the message. Attached files will have their content-type set to application/octet-stream. (added in Ansible 1.0) | ||
bcc | no | The email-address(es) the mail is being 'blind' copied to. This is a comma-separated list, which may contain address and phrase portions. | ||
body | no | $subject | The body of the email being sent. | |
cc | no | The email-address(es) the mail is being copied to. This is a comma-separated list, which may contain address and phrase portions. | ||
charset | no | us-ascii | The character set of email being sent | |
from | no | root | The email-address the mail is sent from. May contain address and phrase. | |
headers | no | A vertical-bar-separated list of headers which should be added to the message. Each individual header is specified as header=value (see example below). (added in Ansible 1.0) | ||
host | no | localhost | The mail server | |
port | no | 25 | The mail server port (added in Ansible 1.0) | |
subject | yes | The subject of the email being sent. | ||
to | no | root | The email-address(es) the mail is being sent to. This is a comma-separated list, which may contain address and phrase portions. |
Example playbook sending mail to root
- local_action: mail msg='System {{ ansible_hostname }} has been successfully provisioned.'
Send e-mail to a bunch of users, attaching files
- local_action: mail
host='127.0.0.1'
port=2025
subject="Ansible-report"
body="Hello, this is an e-mail. I hope you like it ;-)"
from="jane@example.net (Jane Jolie)"
to="John Doe <j.d@example.org>, Suzie Something <sue@example.com>"
cc="Charlie Root <root@localhost>"
attach="/etc/group /tmp/pavatar2.png"
headers=Reply-To=john@example.com|X-Special="Something or other"
charset=utf8
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
modprobe - Add or remove kernel modules
Author: | David Stygstra, Julien Dauphant, Matt Jeffery |
---|
New in version 1.4.
Add or remove kernel modules.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | Name of kernel module to manage. | ||
params | no | Modules parameters. (added in Ansible 1.6) | ||
state | no | present |
| Whether the module should be present or absent. |
Add the 802.1q module
- modprobe: name=8021q state=present
Add the dummy module
- modprobe: name=dummy state=present params="numdummies=2"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mongodb_user - Adds or removes a user from a MongoDB database.
Author: | Elliott Foster |
---|
New in version 1.1.
Adds or removes a user from a MongoDB database.
parameter | required | default | choices | comments |
---|---|---|---|---|
database | yes | The name of the database to add/remove the user from | ||
login_host | no | localhost | The host running the database | |
login_password | no | The password used to authenticate with | ||
login_port | no | 27017 | The port to connect to | |
login_user | no | The username used to authenticate with | ||
password | no | The password to use for the user | ||
replica_set | no | Replica set to connect to (automatically connects to primary for writes) (added in Ansible 1.6) | ||
roles | no | readWrite | The database user roles valid values are one or more of the following: read, 'readWrite', 'dbAdmin', 'userAdmin', 'clusterAdmin', 'readAnyDatabase', 'readWriteAnyDatabase', 'userAdminAnyDatabase', 'dbAdminAnyDatabase'This param requires mongodb 2.4+ and pymongo 2.5+ (added in Ansible 1.3) | |
state | no | present |
| The database user state |
user | yes | The name of the user to add or remove |
Note
Requires pymongo
Create 'burgers' database user with name 'bob' and password '12345'.
- mongodb_user: database=burgers name=bob password=12345 state=present
Delete 'burgers' database user with name 'bob'.
- mongodb_user: database=burgers name=bob state=absent
Define more users with various specific roles (if not defined, no roles is assigned, and the user will be added via pre mongo 2.2 style)
- mongodb_user: database=burgers name=ben password=12345 roles='read' state=present
- mongodb_user: database=burgers name=jim password=12345 roles='readWrite,dbAdmin,userAdmin' state=present
- mongodb_user: database=burgers name=joe password=12345 roles='readWriteAnyDatabase' state=present
add a user to database in a replica set, the primary server is automatically discovered and written to
- mongodb_user: database=burgers name=bob replica_set=blecher password=12345 roles='readWriteAnyDatabase' state=present
Note
Requires the pymongo Python package on the remote host, version 2.4.2+. This can be installed using pip or the OS package manager. @see http://api.mongodb.org/python/current/installation.html
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
monit - Manage the state of a program monitored via Monit
Author: | Darryl Stoflet |
---|
New in version 1.2.
Manage the state of a program monitored via Monit
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | The name of the monit program/process to manage | ||
state | yes |
| The state of service |
Manage the state of program "httpd" to be in "started" state.
- monit: name=httpd state=started
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mount - Control active and configured mount points
Author: | Seth Vidal |
---|
This module controls active and configured mount points in /etc/fstab.
parameter | required | default | choices | comments |
---|---|---|---|---|
dump | no | dump (see fstab(8)) | ||
fstype | yes | file-system type | ||
name | yes | path to the mount point, eg: /mnt/files | ||
opts | no | mount options (see fstab(8)) | ||
passno | no | passno (see fstab(8)) | ||
src | yes | device to be mounted on name. | ||
state | yes |
| If mounted or unmounted, the device will be actively mounted or unmounted as well as just configured in fstab. absent and present only deal with fstab. mounted will also automatically create the mount point directory if it doesn't exist. If absent changes anything, it will remove the mount point directory. |
Mount DVD read-only
- mount: name=/mnt/dvd src=/dev/sr0 fstype=iso9660 opts=ro state=present
Mount up device by label
- mount: name=/srv/disk src='LABEL=SOME_LABEL' state=present
Mount up device by UUID
- mount: name=/home src='UUID=b3e48f45-f933-4c8e-a700-22a159ec9077' opts=noatime state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mqtt - Publish a message on an MQTT topic for the IoT
Author: | Jan-Piet Mens |
---|
New in version 1.2.
Publish a message on an MQTT topic.
parameter | required | default | choices | comments |
---|---|---|---|---|
client_id | no | hostname + pid | MQTT client identifier | |
password | no | Password for username to authenticate against the broker. | ||
payload | yes | Payload. The special string "None" may be used to send a NULL (i.e. empty) payload which is useful to simply notify with the topic or to clear previously retained messages. | ||
port | no | 1883 | MQTT broker port number | |
qos | no |
| QoS (Quality of Service) | |
retain | no | Setting this flag causes the broker to retain (i.e. keep) the message so that applications that subsequently subscribe to the topic can received the last retained message immediately. | ||
server | no | localhost | MQTT broker address/name | |
topic | yes | MQTT topic name | ||
username | no | Username to authenticate against the broker. |
Note
Requires mosquitto
- local_action: mqtt
topic=service/ansible/{{ ansible_hostname }}
payload="Hello at {{ ansible_date_time.iso8601 }}"
qos=0
retain=false
client_id=ans001
Note
This module requires a connection to an MQTT broker such as Mosquitto http://mosquitto.org and the Paho mqtt Python client (https://pypi.python.org/pypi/paho-mqtt).
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mysql_db - Add or remove MySQL databases from a remote host.
Author: | Mark Theunissen |
---|
Add or remove MySQL databases from a remote host.
parameter | required | default | choices | comments |
---|---|---|---|---|
collation | no | Collation mode | ||
encoding | no | Encoding mode | ||
login_host | no | localhost | Host running the database | |
login_password | no | The password used to authenticate with | ||
login_port | no | 3306 | Port of the MySQL server. Requires login_host be defined as other then localhost if login_port is used | |
login_unix_socket | no | The path to a Unix domain socket for local connections | ||
login_user | no | The username used to authenticate with | ||
name | yes | name of the database to add or remove | ||
state | no | present |
| The database state |
target | no | Location, on the remote host, of the dump file to read from or write to. Uncompressed SQL files (.sql) as well as bzip2 (.bz2) and gzip (.gz) compressed files are supported. |
Note
Requires ConfigParser
Create a new database with name 'bobdata'
- mysql_db: name=bobdata state=present
Copy database dump file to remote host and restore it to database 'my_db'
- copy: src=dump.sql.bz2 dest=/tmp
- mysql_db: name=my_db state=import target=/tmp/dump.sql.bz2
Note
Requires the MySQLdb Python package on the remote host. For Ubuntu, this is as easy as apt-get install python-mysqldb. (See apt.)
Note
Both login_password and login_user are required when you are passing credentials. If none are present, the module will attempt to read the credentials from ~/.my.cnf, and finally fall back to using the MySQL default login of root with no password.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mysql_replication - Manage MySQL replication
New in version 1.3.
Manages MySQL server replication, slave, master status get and change master host.
parameter | required | default | choices | comments |
---|---|---|---|---|
login_host | no | mysql host to connect | ||
login_password | no | password to connect mysql host, if defined login_user also needed. | ||
login_unix_socket | no | unix socket to connect mysql server | ||
login_user | no | username to connect mysql host, if defined login_password also needed. | ||
master_connect_retry | no | same as mysql variable | ||
master_host | no | same as mysql variable | ||
master_log_file | no | same as mysql variable | ||
master_log_pos | no | same as mysql variable | ||
master_password | no | same as mysql variable | ||
master_port | no | same as mysql variable | ||
master_ssl | no | same as mysql variable | ||
master_ssl_ca | no | same as mysql variable | ||
master_ssl_capath | no | same as mysql variable | ||
master_ssl_cert | no | same as mysql variable | ||
master_ssl_cipher | no | same as mysql variable | ||
master_ssl_key | no | same as mysql variable | ||
master_user | no | same as mysql variable | ||
mode | no | getslave |
| module operating mode. Could be getslave (SHOW SLAVE STATUS), getmaster (SHOW MASTER STATUS), changemaster (CHANGE MASTER TO), startslave (START SLAVE), stopslave (STOP SLAVE) |
relay_log_file | no | same as mysql variable | ||
relay_log_pos | no | same as mysql variable |
Stop mysql slave thread
- mysql_replication: mode=stopslave
Get master binlog file name and binlog position
- mysql_replication: mode=getmaster
Change master to master server 192.168.1.1 and use binary log 'mysql-bin.000009' with position 4578
- mysql_replication: mode=changemaster master_host=192.168.1.1 master_log_file=mysql-bin.000009 master_log_pos=4578
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mysql_user - Adds or removes a user from a MySQL database.
Author: | Mark Theunissen |
---|
Adds or removes a user from a MySQL database.
parameter | required | default | choices | comments |
---|---|---|---|---|
append_privs | no | no |
| Append the privileges defined by priv to the existing ones for this user instead of overwriting existing ones. (added in Ansible 1.4) |
check_implicit_admin | no | Check if mysql allows login as root/nopassword before trying supplied credentials. (added in Ansible 1.3) | ||
host | no | localhost | the 'host' part of the MySQL username | |
login_host | no | localhost | Host running the database | |
login_password | no | The password used to authenticate with | ||
login_port | no | 3306 | Port of the MySQL server (added in Ansible 1.4) | |
login_unix_socket | no | The path to a Unix domain socket for local connections | ||
login_user | no | The username used to authenticate with | ||
name | yes | name of the user (role) to add or remove | ||
password | no | set the user's password | ||
priv | no | MySQL privileges string in the format: db.table:priv1,priv2 | ||
state | no | present |
| Whether the user should exist. When absent, removes the user. |
Note
Requires ConfigParser
Note
Requires MySQLdb
Create database user with name 'bob' and password '12345' with all database privileges
- mysql_user: name=bob password=12345 priv=*.*:ALL state=present
Creates database user 'bob' and password '12345' with all database privileges and 'WITH GRANT OPTION'
- mysql_user: name=bob password=12345 priv=*.*:ALL,GRANT state=present
Ensure no user named 'sally' exists, also passing in the auth credentials.
- mysql_user: login_user=root login_password=123456 name=sally state=absent
Specify grants composed of more than one word
- mysql_user: name=replication password=12345 priv=*.*:"REPLICATION CLIENT" state=present
Example privileges string format
mydb.*:INSERT,UPDATE/anotherdb.*:SELECT/yetanotherdb.*:ALL
Example using login_unix_socket to connect to server
- mysql_user: name=root password=abc123 login_unix_socket=/var/run/mysqld/mysqld.sock
Example .my.cnf file for setting the root password
Note: don't use quotes around the password, because the mysql_user module
will include them in the password but the mysql client will not
[client]
user=root
password=n<_665{vS43y
Note
Requires the MySQLdb Python package on the remote host. For Ubuntu, this is as easy as apt-get install python-mysqldb.
Note
Both login_password and login_username are required when you are passing credentials. If none are present, the module will attempt to read the credentials from ~/.my.cnf, and finally fall back to using the MySQL default login of ‘root’ with no password.
Note
MySQL server installs with default login_user of ‘root’ and no password. To secure this user as part of an idempotent playbook, you must create at least two tasks: the first must change the root user’s password, without providing any login_user/login_password details. The second must drop a ~/.my.cnf file containing the new root credentials. Subsequent runs of the playbook will then succeed by reading the new credentials from the file.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
mysql_variables - Manage MySQL global variables
New in version 1.3.
Query / Set MySQL variables
parameter	required	default	choices	comments
login_host | no | mysql host to connect | ||
login_password | no | password to connect mysql host, if defined login_user also needed. | ||
login_unix_socket | no | unix socket to connect mysql server | ||
login_user | no | username to connect mysql host, if defined login_password also needed. | ||
value | no | If set, then sets variable value to this | ||
variable | yes | Variable name to operate |
Check for sync_binlog setting
- mysql_variables: variable=sync_binlog
Set read_only variable to 1
- mysql_variables: variable=read_only value=1
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
nagios - Perform common tasks in Nagios related to downtime and notifications.
Author: | Tim Bielawa |
---|
The nagios module has two basic functions: scheduling downtime and toggling alerts for services or hosts. All actions require the host parameter to be given explicitly. In playbooks you can use the {{inventory_hostname}} variable to refer to the host the playbook is currently running on. You can specify multiple services at once by separating them with commas, .e.g., services=httpd,nfs,puppet. When specifying what service to handle there is a special service value, host, which will handle alerts/downtime for the host itself, e.g., service=host. This keyword may not be given with other services at the same time. Setting alerts/downtime for a host does not affect alerts/downtime for any of the services running on it. To schedule downtime for all services on particular host use keyword “all”, e.g., service=all. When using the nagios module you will need to specify your Nagios server using the delegate_to parameter.
parameter | required | default | choices | comments |
---|---|---|---|---|
action | yes |
| Action to take. | |
author | no | Ansible | Author to leave downtime comments as. Only usable with the downtime action. | |
cmdfile | no | auto-detected | Path to the nagios command file (FIFO pipe). Only required if auto-detection fails. | |
command | yes | The raw command to send to nagios, which should not include the submitted time header or the line-feed Required option when using the command action. | ||
host | no | Host to operate on in Nagios. | ||
minutes | no | 30 | Minutes to schedule downtime for.Only usable with the downtime action. | |
services | yes | What to manage downtime/alerts for. Separate multiple services with commas. service is an alias for services. Required option when using the downtime, enable_alerts, and disable_alerts actions. |
Note
Requires Nagios
set 30 minutes of apache downtime
- nagios: action=downtime minutes=30 service=httpd host={{ inventory_hostname }}
schedule an hour of HOST downtime
- nagios: action=downtime minutes=60 service=host host={{ inventory_hostname }}
schedule downtime for ALL services on HOST
- nagios: action=downtime minutes=45 service=all host={{ inventory_hostname }}
schedule downtime for a few services
- nagios: action=downtime services=frob,foobar,qeuz host={{ inventory_hostname }}
enable SMART disk alerts
- nagios: action=enable_alerts service=smart host={{ inventory_hostname }}
"two services at once: disable httpd and nfs alerts"
- nagios: action=disable_alerts service=httpd,nfs host={{ inventory_hostname }}
disable HOST alerts
- nagios: action=disable_alerts service=host host={{ inventory_hostname }}
silence ALL alerts
- nagios: action=silence host={{ inventory_hostname }}
unsilence all alerts
- nagios: action=unsilence host={{ inventory_hostname }}
SHUT UP NAGIOS
- nagios: action=silence_nagios
ANNOY ME NAGIOS
- nagios: action=unsilence_nagios
command something
- nagios: action=command command='DISABLE_FAILURE_PREDICTION'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
netscaler - Manages Citrix NetScaler entities
Author: | Nandor Sivok |
---|
New in version 1.1.
Manages Citrix NetScaler server and service entities.
parameter | required | default | choices | comments |
---|---|---|---|---|
action | no | disable |
| the action you want to perform on the entity |
name | yes | hostname | name of the entity | |
nsc_host | yes | hostname or ip of your netscaler | ||
nsc_protocol | no | https | protocol used to access netscaler | |
password | yes | password | ||
type | no | server |
| type of the entity |
user | yes | username | ||
validate_certs | no | yes |
| If no, SSL certificates for the target url will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
Note
Requires urllib
Note
Requires urllib2
Disable the server
ansible host -m netscaler -a "nsc_host=nsc.example.com user=apiuser password=apipass"
Enable the server
ansible host -m netscaler -a "nsc_host=nsc.example.com user=apiuser password=apipass action=enable"
Disable the service local:8080
ansible host -m netscaler -a "nsc_host=nsc.example.com user=apiuser password=apipass name=local:8080 type=service action=disable"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
newrelic_deployment - Notify newrelic about app deployments
Author: | Matt Coddington |
---|
New in version 1.2.
Notify newrelic about app deployments (see http://newrelic.github.io/newrelic_api/NewRelicApi/Deployment.html)
parameter	required	default	choices	comments
app_name	no	(one of app_name or application_id are required) The value of app_name in the newrelic.yml file used by the application		
application_id	no	(one of app_name or application_id are required) The application id, found in the URL when viewing the application in RPM		
appname	no	Name of the application		
changelog	no	A list of changes for this deployment		
description	no	Text annotation for the deployment - notes for you		
environment	no	The environment for this deployment		
revision	no	A revision number (e.g., git commit SHA)		
token	yes	API token.		
user	no	The name of the user/process that triggered this deployment		
validate_certs	no	yes		
If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1)				
Note
Requires urllib
Note
Requires urllib2
- newrelic_deployment: token=AAAAAA
app_name=myapp
user='ansible deployment'
revision=1.0
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
nexmo - Send a SMS via nexmo
Author: | Matt Martz |
---|
New in version 1.6.
Send a SMS message via nexmo
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | yes | Nexmo API Key | ||
api_secret | yes | Nexmo API Secret | ||
dest | yes | Phone number(s) to send SMS message to | ||
msg | yes | Message to text to send. Messages longer than 160 characters will be split into multiple messages | ||
src | yes | Nexmo Number to send from | ||
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
- name: Send notification message via Nexmo
local_action:
module: nexmo
api_key: 640c8a53
api_secret: 0ce239a6
src: 12345678901
dest:
- 10987654321
- 16789012345
msg: "{{ inventory_hostname }} completed"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
nova_compute - Create/Delete VMs from OpenStack
New in version 1.2.
Create or Remove virtual machines from Openstack.
parameter | required | default | choices | comments |
---|---|---|---|---|
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone url for authentication | |
flavor_id | no | 1 | The id of the flavor in which the new VM has to be created | |
image_id | yes | None | The id of the image that has to be cloned | |
key_name | no | None | The key pair name to be used when creating a VM | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
meta | no | None | A list of key value pairs that should be provided as a metadata to the new VM | |
name | yes | None | Name that has to be given to the instance | |
nics | no | None | A list of network id's to which the VM's interface should be attached | |
region_name | no | None | Name of the region | |
security_groups | no | None | The name of the security group to which the VM should be added | |
state | no | present |
| Indicate desired state of the resource |
user_data | no | None | Opaque blob of data which is made available to the instance (added in Ansible 1.6) | |
wait | no | yes | If the module should wait for the VM to be created. | |
wait_for | no | 180 | The amount of time the module should wait for the VM to get into active state |
Note
Requires novaclient
Creates a new VM and attaches to a network and passes metadata to the instance
- nova_compute:
state: present
login_username: admin
login_password: admin
login_tenant_name: admin
name: vm1
image_id: 4f905f38-e52a-43d2-b6ec-754a13ffb529
key_name: ansible_key
wait_for: 200
flavor_id: 4
nics:
- net-id: 34605f38-e52a-25d2-b6ec-754a13ffb723
meta:
hostname: test1
group: uge_master
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
nova_keypair - Add/Delete key pair from nova
New in version 1.2.
Add or Remove key pair from nova .
parameter | required | default | choices | comments |
---|---|---|---|---|
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone url for authentication | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
name | yes | None | Name that has to be given to the key pair | |
public_key | no | None | The public key that would be uploaded to nova and injected to vm's upon creation | |
region_name | no | None | Name of the region | |
state | no | present |
| Indicate desired state of the resource |
Note
Requires novaclient
Creates a key pair with the running users public key
- nova_keypair: state=present login_username=admin
login_password=admin login_tenant_name=admin name=ansible_key
public_key={{ lookup('file','~/.ssh/id_rsa.pub') }}
Creates a new key pair and the private key returned after the run.
- nova_keypair: state=present login_username=admin login_password=admin
login_tenant_name=admin name=ansible_key
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
npm - Manage node.js packages with npm
Author: | Chris Hoffman |
---|
New in version 1.2.
Manage node.js packages with Node Package Manager (npm)
parameter | required | default | choices | comments |
---|---|---|---|---|
executable | no | The executable location for npm.This is useful if you are using a version manager, such as nvm | ||
global | no |
| Install the node.js library globally | |
name | no | The name of a node.js library to install | ||
path | no | The base path where to install the node.js libraries | ||
production | no |
| Install dependencies in production mode, excluding devDependencies | |
registry | no | The registry to install modules from. (added in Ansible 1.6) | ||
state | no | present |
| The state of the node.js library |
version | no | The version to be installed |
description: Install "coffee-script" node.js package.
- npm: name=coffee-script path=/app/location
description: Install "coffee-script" node.js package on version 1.6.1.
- npm: name=coffee-script version=1.6.1 path=/app/location
description: Install "coffee-script" node.js package globally.
- npm: name=coffee-script global=yes
description: Remove the globally package "coffee-script".
- npm: name=coffee-script global=yes state=absent
description: Install "coffee-script" node.js package from custom registry.
- npm: name=coffee-script registry=http://registry.mysite.com
description: Install packages based on package.json.
- npm: path=/app/location
description: Update packages based on package.json to their latest version.
- npm: path=/app/location state=latest
description: Install packages based on package.json using the npm installed with nvm v0.10.1.
- npm: path=/app/location executable=/opt/nvm/v0.10.1/bin/npm state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ohai - Returns inventory data from Ohai
Author: | Michael DeHaan |
---|
Similar to the facter module, this runs the Ohai discovery program (http://wiki.opscode.com/display/chef/Ohai) on the remote host and returns JSON inventory data. Ohai data is a bit more verbose and nested than facter.
Note
Requires ohai
Retrieve (ohai) data from all Web servers and store in one-file per host
ansible webservers -m ohai --tree=/tmp/ohaidata
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
open_iscsi - Manage iscsi targets with open-iscsi
Author: | Serge van Ginderachter |
---|
New in version 1.4.
Discover targets on given portal, (dis)connect targets, mark targets to manually or auto start, return device nodes of connected targets.
parameter	required	default	choices	comments
auto_node_startup	no			
whether the target node should be automatically connected at startup				
discover	no			
whether the list of target nodes on the portal should be (re)discovered and added to the persistent iscsi database. Keep in mind that iscsiadm discovery resets configurtion, like node.startup to manual, hence combined with auto_node_startup=yes will allways return a changed state.				
login	no			
whether the target node should be connected				
node_auth	no	CHAP	discovery.sendtargets.auth.authmethod	
node_pass	no	discovery.sendtargets.auth.password		
node_user	no	discovery.sendtargets.auth.username		
port	no	3260	the port on which the iscsi target process listens	
portal	no	the ip address of the iscsi target		
show_nodes	no			
whether the list of nodes in the persistent iscsi database should be returned by the module				
target	no	the iscsi target name		
Note				
Requires open_iscsi library and tools (iscsiadm)				
perform a discovery on 10.1.2.3 and show available target nodes				
open_iscsi: show_nodes=yes discover=yes portal=10.1.2.3				
discover targets on portal and login to the one available (only works if exactly one target is exported to the initiator)				
open_iscsi: portal={{iscsi_target}} login=yes discover=yes				
connect to the named target, after updating the local persistent database (cache)				
open_iscsi: login=yes target=iqn.1986-03.com.sun:02:f8c1f9e0-c3ec-ec84-c9c9-8bfb0cd5de3d				
discconnect from the cached named target				
open_iscsi: login=no target=iqn.1986-03.com.sun:02:f8c1f9e0-c3ec-ec84-c9c9-8bfb0cd5de3d"				
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.				
openbsd_pkg - Manage packages on OpenBSD.				
Author:	Patrik Lundin			

New in version 1.1.				
Manage packages on OpenBSD using the pkg tools.				
parameter	required	default	choices	comments
---	---	---	---	---
name	yes	Name of the package.		
state	yes			
present will make sure the package is installed. latest will make sure the latest version of the package is installed. absent will make sure the specified package is not installed.				
Make sure nmap is installed
- openbsd_pkg: name=nmap state=present
Make sure nmap is the latest version
- openbsd_pkg: name=nmap state=latest
Make sure nmap is not installed
- openbsd_pkg: name=nmap state=absent
Specify a pkg flavour with '--'
- openbsd_pkg: name=vim--nox11 state=present
Specify the default flavour to avoid ambiguity errors
- openbsd_pkg: name=vim-- state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
openvswitch_bridge - Manage Open vSwitch bridges
Author: | David Stygstra |
---|
New in version 1.4.
Manage Open vSwitch bridges
parameter | required | default | choices | comments |
---|---|---|---|---|
bridge | yes | Name of bridge to manage | ||
state | no | present |
| Whether the bridge should exist |
timeout | no | 5 | How long to wait for ovs-vswitchd to respond |
Note
Requires ovs-vsctl
Create a bridge named br-int
- openvswitch_bridge: bridge=br-int state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
openvswitch_port - Manage Open vSwitch ports
Author: | David Stygstra |
---|
New in version 1.4.
Manage Open vSwitch ports
parameter | required | default | choices | comments |
---|---|---|---|---|
bridge | yes | Name of bridge to manage | ||
port | yes | Name of port to manage on the bridge | ||
state | no | present |
| Whether the port should exist |
timeout | no | 5 | How long to wait for ovs-vswitchd to respond |
Note
Requires ovs-vsctl
Creates port eth2 on bridge br-ex
- openvswitch_port: bridge=br-ex port=eth2 state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
opkg - Package manager for OpenWrt
Author: | Patrick Pelletier |
---|
New in version 1.1.
Manages OpenWrt packages
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | name of package to install/remove | ||
state | no | present |
| state of the package |
update_cache | no | no |
| update the package db first |
- opkg: name=foo state=present
- opkg: name=foo state=present update_cache=yes
- opkg: name=foo state=absent
- opkg: name=foo,bar state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
osx_say - Makes an OSX computer to speak.
Author: | Michael DeHaan |
---|
New in version 1.2.
makes an OS computer speak! Amuse your friends, annoy your coworkers!
parameter | required | default | choices | comments |
---|---|---|---|---|
msg | yes | What to say | ||
voice | no | What voice to use |
Note
Requires say
- local_action: osx_say msg="{{inventory_hostname}} is all done" voice=Zarvox
Note
If you like this module, you may also be interested in the osx_say callback in the plugins/ directory of the source checkout.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ovirt - oVirt/RHEV platform management
Author: | Vincent Van der Kussen |
---|
New in version 1.4.
allows you to create new instances, either from scratch or an image, in addition to deleting or stopping instances on the oVirt/RHEV platform
parameter | required | default | choices | comments |
---|---|---|---|---|
disk_alloc | no | thin |
| define if disk is thin or preallocated |
disk_int | no | virtio |
| interface type of the disk |
image | no | template to use for the instance | ||
instance_cores | no | 1 | define the instance's number of cores | |
instance_cpus | no | 1 | the instance's number of cpu's | |
instance_disksize | no | size of the instance's disk in GB | ||
instance_mem | no | the instance's amount of memory in MB | ||
instance_name | yes | the name of the instance to use | ||
instance_network | no | rhevm | the logical network the machine should belong to | |
instance_nic | no | name of the network interface in oVirt/RHEV | ||
instance_os | no | type of Operating System | ||
instance_type | no | server |
| define if the instance is a server or desktop |
password | yes | password of the user to authenticate with | ||
region | no | the oVirt/RHEV datacenter where you want to deploy to | ||
resource_type | no |
| whether you want to deploy an image or create an instance from scratch. | |
sdomain | no | the Storage Domain where you want to create the instance's disk on. | ||
state | no | present |
| create, terminate or remove instances |
url | yes | the url of the oVirt instance | ||
user | yes | the user to authenticate with | ||
zone | no | deploy the image to this oVirt cluster |
Note
Requires ovirt-engine-sdk
Basic example provisioning from image.
action: ovirt >
user=admin@internal
url=https://ovirt.example.com
instance_name=ansiblevm04
password=secret
image=centos_64
zone=cluster01
resource_type=template"
Full example to create new instance from scratch
action: ovirt >
instance_name=testansible
resource_type=new
instance_type=server
user=admin@internal
password=secret
url=https://ovirt.example.com
instance_disksize=10
zone=cluster01
region=datacenter1
instance_cpus=1
instance_nic=nic1
instance_network=rhevm
instance_mem=1000
disk_alloc=thin
sdomain=FIBER01
instance_cores=1
instance_os=rhel_6x64
disk_int=virtio"
stopping an instance
action: ovirt >
instance_name=testansible
state=stopped
user=admin@internal
password=secret
url=https://ovirt.example.com
starting an instance
action: ovirt >
instance_name=testansible
state=started
user=admin@internal
password=secret
url=https://ovirt.example.com
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pacman - Manage packages with pacman
Author: | Afterburn |
---|
New in version 1.0.
Manage packages with the pacman package manager, which is used by Arch Linux and its variants.
parameter	required	default	choices	comments
name	no	Name of the package to install, upgrade, or remove.		
recurse	no	no		
When removing a package, also remove its dependencies, provided that they are not required by other packages and were not explicitly installed by a user. (added in Ansible 1.3)				
state	no	present		
Desired state of the package.				
update_cache	no	no		
Whether or not to refresh the master package lists. This can be run as part of a package installation or as a separate step.				
Install package foo
- pacman: name=foo state=present
Remove packages foo and bar
- pacman: name=foo,bar state=absent
Recursively remove package baz
- pacman: name=baz state=absent recurse=yes
Run the equivalent of "pacman -Syy" as a separate step
- pacman: update_cache=yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pagerduty - Create PagerDuty maintenance windows
Author: | Justin Johns |
---|
New in version 1.2.
This module will let you create PagerDuty maintenance windows
parameter | required | default | choices | comments |
---|---|---|---|---|
desc | no | Created by Ansible | Short description of maintenance window. | |
hours | no | 1 | Length of maintenance window in hours. | |
name | yes | PagerDuty unique subdomain. | ||
passwd | yes | PagerDuty user password. | ||
service | no | PagerDuty service ID. | ||
state | yes |
| Create a maintenance window or get a list of ongoing windows. | |
user | yes | PagerDuty user ID. | ||
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
Note
Requires PagerDuty API access
List ongoing maintenance windows.
- pagerduty: name=companyabc user=example@example.com passwd=password123 state=ongoing
Create a 1 hour maintenance window for service FOO123.
- pagerduty: name=companyabc
user=example@example.com
passwd=password123
state=running
service=FOO123
Create a 4 hour maintenance window for service FOO123 with the description "deployment".
- pagerduty: name=companyabc
user=example@example.com
passwd=password123
state=running
service=FOO123
hours=4
desc=deployment
Note
This module does not yet have support to end maintenance windows.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pause - Pause playbook execution
Author: | Tim Bielawa |
---|
Pauses playbook execution for a set amount of time, or until a prompt is acknowledged. All parameters are optional. The default behavior is to pause with a prompt. You can use ctrl+c if you wish to advance a pause earlier than it is set to expire or if you need to abort a playbook run entirely. To continue early: press ctrl+c and then c. To abort a playbook: press ctrl+c and then a. The pause module integrates into async/parallelized playbooks without any special considerations (see also: Rolling Updates). When using pauses with the serial playbook parameter (as in rolling updates) you are only prompted once for the current group of hosts.
parameter | required | default | choices | comments |
---|---|---|---|---|
minutes | no | Number of minutes to pause for. | ||
prompt | no | Optional text to use for the prompt message. | ||
seconds | no | Number of seconds to pause for. |
Pause for 5 minutes to build app cache.
- pause: minutes=5
Pause until you can verify updates to an application were successful.
- pause:
A helpful reminder of what to look out for post-update.
- pause: prompt="Make sure org.foo.FooOverload exception is not present"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ping - Try to connect to host and return pong on success.
Author: | Michael DeHaan |
---|
A trivial test module, this module always returns pong on successful contact. It does not make sense in playbooks, but it is useful from /usr/bin/ansible
Test 'webservers' status
ansible webservers -m ping
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pingdom - Pause/unpause Pingdom alerts
Author: | Justin Johns |
---|
New in version 1.2.
This module will let you pause/unpause Pingdom alerts
parameter	required	default	choices	comments
checkid	yes	Pingdom ID of the check.		
key	yes	Pingdom API key.		
passwd	yes	Pingdom user password.		
state	yes			
Define whether or not the check should be running or paused.				
uid | yes | Pingdom user ID. |
Note
Requires This pingdom python library: https://github.com/mbabineau/pingdom-python
Pause the check with the ID of 12345.
- pingdom: uid=example@example.com
passwd=password123
key=apipassword123
checkid=12345
state=paused
Unpause the check with the ID of 12345.
- pingdom: uid=example@example.com
passwd=password123
key=apipassword123
checkid=12345
state=running
Note
This module does not yet have support to add/remove checks.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pip - Manages Python library dependencies.
Author: | Matt Wright |
---|
Manage Python library dependencies. To use this module, one of the following keys is required: name or requirements.
parameter | required | default | choices | comments |
---|---|---|---|---|
chdir | no | cd into this directory before running the command (added in Ansible 1.3) | ||
executable | no | The explicit executable or a pathname to the executable to be used to run pip for a specific version of Python installed in the system. For example pip-3.3, if there are both Python 2.7 and 3.3 installations in the system and you want to run pip for the Python 3.3 installation. (added in Ansible 1.3) | ||
extra_args | no | Extra arguments passed to pip. (added in Ansible 1.0) | ||
name | no | The name of a Python library to install or the url of the remote package. | ||
requirements | no | The path to a pip requirements file | ||
state | no | present |
| The state of module |
version | no | The version number to install of the Python library specified in the name parameter | ||
virtualenv | no | An optional path to a virtualenv directory to install into | ||
virtualenv_command | no | virtualenv | The command or a pathname to the command to create the virtual environment with. For example pyvenv, virtualenv, virtualenv2, ~/bin/virtualenv, /usr/local/bin/virtualenv. | |
virtualenv_site_packages | no | no |
| Whether the virtual environment will inherit packages from the global site-packages directory. Note that if this setting is changed on an already existing virtual environment it will not have any effect, the environment must be deleted and newly created. (added in Ansible 1.0) |
Note
Requires virtualenv
Note
Requires pip
Install (Bottle) python package.
- pip: name=bottle
Install (Bottle) python package on version 0.11.
- pip: name=bottle version=0.11
Install (MyApp) using one of the remote protocols (bzr+,hg+,git+,svn+). You do not have to supply '-e' option in extra_args.
- pip: name='svn+http://myrepo/svn/MyApp#egg=MyApp'
Install (Bottle) into the specified (virtualenv), inheriting none of the globally installed modules
- pip: name=bottle virtualenv=/my_app/venv
Install (Bottle) into the specified (virtualenv), inheriting globally installed modules
- pip: name=bottle virtualenv=/my_app/venv virtualenv_site_packages=yes
Install (Bottle) into the specified (virtualenv), using Python 2.7
- pip: name=bottle virtualenv=/my_app/venv virtualenv_command=virtualenv-2.7
Install specified python requirements.
- pip: requirements=/my_app/requirements.txt
Install specified python requirements in indicated (virtualenv).
- pip: requirements=/my_app/requirements.txt virtualenv=/my_app/venv
Install specified python requirements and custom Index URL.
- pip: requirements=/my_app/requirements.txt extra_args='-i https://example.com/pypi/simple'
Install (Bottle) for Python 3.3 specifically,using the 'pip-3.3' executable.
- pip: name=bottle executable=pip-3.3
Note
Please note that virtualenv (http://www.virtualenv.org/) must be installed on the remote host if the virtualenv parameter is specified.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pkgin - Package manager for SmartOS
Author: | Shaun Zinck |
---|
New in version 1.0.
Manages SmartOS packages
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | name of package to install/remove | ||
state | no | present |
| state of the package |
install package foo"
- pkgin: name=foo state=present
remove package foo
- pkgin: name=foo state=absent
remove packages foo and bar
- pkgin: name=foo,bar state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pkgng - Package manager for FreeBSD >= 9.0
Author: | bleader |
---|
New in version 1.2.
Manage binary packages for FreeBSD using ‘pkgng’ which is available in versions after 9.0.
parameter | required | default | choices | comments |
---|---|---|---|---|
annotation | no | a comma-separated list of keyvalue-pairs of the form <+/-/:><key>[=<value>]. A '+' denotes adding an annotation, a '-' denotes removing an annotation, and ':' denotes modifying an annotation. If setting or modifying annotations, a value must be provided. (added in Ansible 1.6) | ||
cached | no |
| use local package base or try to fetch an updated one | |
name | yes | name of package to install/remove | ||
pkgsite | no | for pkgng versions before 1.1.4, specify packagesite to use for downloading packages, if not specified, use settings from /usr/local/etc/pkg.conf for newer pkgng versions, specify a the name of a repository configured in /usr/local/etc/pkg/repos | ||
state | no | present |
| state of the package |
Install package foo
- pkgng: name=foo state=present
Annotate package foo and bar
- pkgng: name=foo,bar annotation=+test1=baz,-test2,:test3=foobar
Remove packages foo and bar
- pkgng: name=foo,bar state=absent
Note
When using pkgsite, be careful that already in cache packages won’t be downloaded again.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
pkgutil - Manage CSW-Packages on Solaris
Author: | Alexander Winkler |
---|
New in version 1.3.
Manages CSW packages (SVR4 format) on Solaris 10 and 11. These were the native packages on Solaris <= 10 and are available as a legacy feature in Solaris 11. Pkgutil is an advanced packaging system, which resolves dependency on installation. It is designed for CSW packages.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | Package name, e.g. (CSWnrpe) | ||
site | no | Specifies the repository path to install the package from.Its global definition is done in /etc/opt/csw/pkgutil.conf. | ||
state | yes |
| Whether to install (present), or remove (absent) a package.The upgrade (latest) operation will update/install the package to the latest version available.Note: The module has a limitation that (latest) only works for one package, not lists of them. |
Install a package
pkgutil: name=CSWcommon state=present
Install a package from a specific repository
pkgutil: name=CSWnrpe site='ftp://myinternal.repo/opencsw/kiel state=latest'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
portage - Package manager for Gentoo
Author: | Yap Sok Ann |
---|
New in version 1.6.
Manages Gentoo packages
parameter	required	default	choices	comments
deep	no			
Consider the entire dependency tree of packages (--deep)				
depclean	no			
Remove packages not needed by explicitly merged packages (--depclean)If no package is specified, clean up the world's dependenciesOtherwise, --depclean serves as a dependency aware version of --unmerge				
newuse	no			
Include installed packages where USE flags have changed (--newuse)				
nodeps	no			
Only merge packages but not their dependencies (--nodeps)				
noreplace	no			
Do not re-emerge installed packages (--noreplace)				
oneshot	no			
Do not add the packages to the world file (--oneshot)				
onlydeps	no			
Only merge packages' dependencies but not the packages (--onlydeps)				
package	no	Package atom or set, e.g. sys-apps/foo or >foo-2.13 or @world		
quiet	no			
Run emerge in quiet mode (--quiet)				
state	no	present		
State of the package atom				
sync	no			
Sync package repositories firstIf yes, perform "emerge --sync"If web, perform "emerge-webrsync"				
update	no			
Update packages to the best version available (--update)				
verbose	no			
Run emerge in verbose mode (--verbose)				
Note
Requires gentoolkit
Make sure package foo is installed
- portage: package=foo state=present
Make sure package foo is not installed
- portage: package=foo state=absent
Update package foo to the "best" version
- portage: package=foo update=yes
Sync repositories and update world
- portage: package=@world update=yes deep=yes sync=yes
Remove unneeded packages
- portage: depclean=yes
Remove package foo if it is not explicitly needed
- portage: package=foo state=absent depclean=yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
portinstall - Installing packages from FreeBSD’s ports system
Author: | berenddeboer |
---|
New in version 1.3.
Manage packages for FreeBSD using ‘portinstall’.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | name of package to install/remove | ||
state | no | present |
| state of the package |
use_packages | no | True |
| use packages instead of ports whenever available |
Install package foo
- portinstall: name=foo state=present
Install package security/cyrus-sasl2-saslauthd
- portinstall: name=security/cyrus-sasl2-saslauthd state=present
Remove packages foo and bar
- portinstall: name=foo,bar state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
postgresql_db - Add or remove PostgreSQL databases from a remote host.
Author: | Lorin Hochstein |
---|
Add or remove PostgreSQL databases from a remote host.
parameter | required | default | choices | comments |
---|---|---|---|---|
encoding | no | Encoding of the database | ||
lc_collate | no | Collation order (LC_COLLATE) to use in the database. Must match collation order of template database unless template0 is used as template. | ||
lc_ctype | no | Character classification (LC_CTYPE) to use in the database (e.g. lower, upper, ...) Must match LC_CTYPE of template database unless template0 is used as template. | ||
login_host | no | localhost | Host running the database | |
login_password | no | The password used to authenticate with | ||
login_user | no | The username used to authenticate with | ||
name | yes | name of the database to add or remove | ||
owner | no | Name of the role to set as owner of the database | ||
port | no | 5432 | Database port to connect to. | |
state | no | present |
| The database state |
template | no | Template used to create the database |
Note
Requires psycopg2
Create a new database with name "acme"
- postgresql_db: name=acme
Create a new database with name "acme" and specific encoding and locale
settings. If a template different from "template0" is specified, encoding
and locale settings must match those of the template.
- postgresql_db: name=acme
encoding='UTF-8'
lc_collate='de_DE.UTF-8'
lc_ctype='de_DE.UTF-8'
template='template0'
Note
The default authentication assumes that you are either logging in as or sudo’ing to the postgres account on the host.
Note
This module uses psycopg2, a Python PostgreSQL database adapter. You must ensure that psycopg2 is installed on the host before using this module. If the remote host is the PostgreSQL server (which is the default case), then PostgreSQL must also be installed on the remote host. For Ubuntu-based systems, install the postgresql, libpq-dev, and python-psycopg2 packages on the remote host before using this module.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
postgresql_privs - Grant or revoke privileges on PostgreSQL database objects.
Author: | Bernhard Weitzhofer |
---|
New in version 1.2.
Grant or revoke privileges on PostgreSQL database objects. This module is basically a wrapper around most of the functionality of PostgreSQL’s GRANT and REVOKE statements with detection of changes (GRANT/REVOKE privs ON type objs TO/FROM roles)
parameter | required | default | choices | comments |
---|---|---|---|---|
database | yes | Name of database to connect to.Alias: db | ||
grant_option | no |
| Whether role may grant/revoke the specified privileges/group memberships to others.Set to no to revoke GRANT OPTION, leave unspecified to make no changes.grant_option only has an effect if state is present.Alias: admin_option | |
host | no | Database host address. If unspecified, connect via Unix socket.Alias: login_host | ||
login | no | postgres | The username to authenticate with.Alias: login_user | |
objs | no | Comma separated list of database objects to set privileges on.If type is table or sequence, the special value ALL_IN_SCHEMA can be provided instead to specify all database objects of type type in the schema specified via schema. (This also works with PostgreSQL < 9.0.)If type is database, this parameter can be omitted, in which case privileges are set for the database specified via database.If type is function, colons (":") in object names will be replaced with commas (needed to specify function signatures, see examples)Alias: obj | ||
password | no | The password to authenticate with.Alias: login_password) | ||
port | no | 5432 | Database port to connect to. | |
privs | no | Comma separated list of privileges to grant/revoke.Alias: priv | ||
roles | yes | Comma separated list of role (user/group) names to set permissions for.The special value PUBLIC can be provided instead to set permissions for the implicitly defined PUBLIC group.Alias: role | ||
schema | no | Schema that contains the database objects specified via objs.May only be provided if type is table, sequence or function. Defaults to public in these cases. | ||
state | no | present |
| If present, the specified privileges are granted, if absent they are revoked. |
type | no | table |
| Type of database object to set privileges on. |
Note
Requires psycopg2
On database "library":
GRANT SELECT, INSERT, UPDATE ON TABLE public.books, public.authors
TO librarian, reader WITH GRANT OPTION
- postgresql_privs: >
database=library
state=present
privs=SELECT,INSERT,UPDATE
type=table
objs=books,authors
schema=public
roles=librarian,reader
grant_option=yes
Same as above leveraging default values:
- postgresql_privs: >
db=library
privs=SELECT,INSERT,UPDATE
objs=books,authors
roles=librarian,reader
grant_option=yes
REVOKE GRANT OPTION FOR INSERT ON TABLE books FROM reader
Note that role "reader" will be *granted* INSERT privilege itself if this
isn't already the case (since state=present).
- postgresql_privs: >
db=library
state=present
priv=INSERT
obj=books
role=reader
grant_option=no
REVOKE INSERT, UPDATE ON ALL TABLES IN SCHEMA public FROM reader
"public" is the default schema. This also works for PostgreSQL 8.x.
- postgresql_privs: >
db=library
state=absent
privs=INSERT,UPDATE
objs=ALL_IN_SCHEMA
role=reader
GRANT ALL PRIVILEGES ON SCHEMA public, math TO librarian
- postgresql_privs: >
db=library
privs=ALL
type=schema
objs=public,math
role=librarian
GRANT ALL PRIVILEGES ON FUNCTION math.add(int, int) TO librarian, reader
Note the separation of arguments with colons.
- postgresql_privs: >
db=library
privs=ALL
type=function
obj=add(int:int)
schema=math
roles=librarian,reader
GRANT librarian, reader TO alice, bob WITH ADMIN OPTION
Note that group role memberships apply cluster-wide and therefore are not
restricted to database "library" here.
- postgresql_privs: >
db=library
type=group
objs=librarian,reader
roles=alice,bob
admin_option=yes
GRANT ALL PRIVILEGES ON DATABASE library TO librarian
Note that here "db=postgres" specifies the database to connect to, not the
database to grant privileges on (which is specified via the "objs" param)
- postgresql_privs: >
db=postgres
privs=ALL
type=database
obj=library
role=librarian
GRANT ALL PRIVILEGES ON DATABASE library TO librarian
If objs is omitted for type "database", it defaults to the database
to which the connection is established
- postgresql_privs: >
db=library
privs=ALL
type=database
role=librarian
Note
Default authentication assumes that postgresql_privs is run by the postgres user on the remote host. (Ansible’s user or sudo-user).
Note
This module requires Python package psycopg2 to be installed on the remote host. In the default case of the remote host also being the PostgreSQL server, PostgreSQL has to be installed there as well, obviously. For Debian/Ubuntu-based systems, install packages postgresql and python-psycopg2.
Note
Parameters that accept comma separated lists (privs, objs, roles) have singular alias names (priv, obj, role).
Note
To revoke only GRANT OPTION for a specific object, set state to present and grant_option to no (see examples).
Note
Note that when revoking privileges from a role R, this role may still have access via privileges granted to any role R is a member of including PUBLIC.
Note
Note that when revoking privileges from a role R, you do so as the user specified via login. If R has been granted the same privileges by another user also, R can still access database objects via these privileges.
Note
When revoking privileges, RESTRICT is assumed (see PostgreSQL docs).
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
postgresql_user - Adds or removes a users (roles) from a PostgreSQL database.
Author: | Lorin Hochstein |
---|
Add or remove PostgreSQL users (roles) from a remote host and, optionally, grant the users access to an existing database or tables. The fundamental function of the module is to create, or delete, roles from a PostgreSQL cluster. Privilege assignment, or removal, is an optional step, which works on one database at a time. This allows for the module to be called several times in the same module to modify the permissions on different databases, or to grant permissions to already existing users. A user cannot be removed until all the privileges have been stripped from the user. In such situation, if the module tries to remove the user it will fail. To avoid this from happening the fail_on_user option signals the module to try to remove the user, but if not possible keep going; the module will report if changes happened and separately if the user was removed or not.
parameter | required | default | choices | comments |
---|---|---|---|---|
db | no | name of database where permissions will be granted | ||
encrypted | no | denotes if the password is already encrypted. boolean. (added in Ansible 1.4) | ||
expires | no | sets the user's password expiration. (added in Ansible 1.4) | ||
fail_on_user | no | yes |
| if yes, fail when user can't be removed. Otherwise just log and continue |
login_host | no | localhost | Host running PostgreSQL. | |
login_password | no | Password used to authenticate with PostgreSQL | ||
login_user | no | postgres | User (role) used to authenticate with PostgreSQL | |
name | yes | name of the user (role) to add or remove | ||
password | no | set the user's password, before 1.4 this was required.When passing an encrypted password, the encrypted parameter must also be true, and it must be generated with the format 'str["md5"] + md5[password + username]', resulting in a total of 35 characters. An easy way to do this is: echo "md5`echo -n "verysecretpasswordJOE" | md5`". | ||
port | no | 5432 | Database port to connect to. | |
priv | no | PostgreSQL privileges string in the format: table:priv1,priv2 | ||
role_attr_flags | no |
| PostgreSQL role attributes string in the format: CREATEDB,CREATEROLE,SUPERUSER | |
state | no | present |
| The user (role) state |
Note
Requires psycopg2
Create django user and grant access to database and products table
- postgresql_user: db=acme name=django password=ceec4eif7ya priv=CONNECT/products:ALL
Create rails user, grant privilege to create other databases and demote rails from super user status
- postgresql_user: name=rails password=secret role_attr_flags=CREATEDB,NOSUPERUSER
Remove test user privileges from acme
- postgresql_user: db=acme name=test priv=ALL/products:ALL state=absent fail_on_user=no
Remove test user from test database and the cluster
- postgresql_user: db=test name=test priv=ALL state=absent
Example privileges string format
INSERT,UPDATE/table:SELECT/anothertable:ALL
Remove an existing user's password
- postgresql_user: db=test user=test password=NULL
Note
The default authentication assumes that you are either logging in as or sudo’ing to the postgres account on the host.
Note
This module uses psycopg2, a Python PostgreSQL database adapter. You must ensure that psycopg2 is installed on the host before using this module. If the remote host is the PostgreSQL server (which is the default case), then PostgreSQL must also be installed on the remote host. For Ubuntu-based systems, install the postgresql, libpq-dev, and python-psycopg2 packages on the remote host before using this module.
Note
If you specify PUBLIC as the user, then the privilege changes will apply to all users. You may not specify password or role_attr_flags when the PUBLIC user is specified.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
quantum_floating_ip - Add/Remove floating IP from an instance
New in version 1.2.
Add or Remove a floating IP to an instance
parameter | required | default | choices | comments |
---|---|---|---|---|
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone url for authentication | |
instance_name | yes | None | The name of the instance to which the IP address should be assigned | |
internal_network_name | no | None | The name of the network of the port to associate with the floating ip. Necessary when VM multiple networks. (added in Ansible 1.5) | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
network_name | yes | None | Name of the network from which IP has to be assigned to VM. Please make sure the network is an external network | |
region_name | no | None | Name of the region | |
state | no | present |
| Indicate desired state of the resource |
Note
Requires novaclient
Note
Requires quantumclient
Note
Requires neutronclient
Note
Requires keystoneclient
Assign a floating ip to the instance from an external network
- quantum_floating_ip: state=present login_username=admin login_password=admin
login_tenant_name=admin network_name=external_network
instance_name=vm1 internal_network_name=internal_network
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
quantum_floating_ip_associate - Associate or disassociate a particular floating IP with an instance
New in version 1.2.
Associates or disassociates a specific floating IP with a particular instance
parameter | required | default | choices | comments |
---|---|---|---|---|
auth_url | no | http://127.0.0.1:35357/v2.0/ | the keystone url for authentication | |
instance_name | yes | None | name of the instance to which the public IP should be assigned | |
ip_address | yes | None | floating ip that should be assigned to the instance | |
login_password | yes | yes | password of login user | |
login_tenant_name | yes | True | the tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
region_name | no | None | name of the region | |
state | no | present |
| indicates the desired state of the resource |
Note
Requires quantumclient
Note
Requires neutronclient
Note
Requires keystoneclient
Associate a specific floating IP with an Instance
- quantum_floating_ip_associate:
state=present
login_username=admin
login_password=admin
login_tenant_name=admin
ip_address=1.1.1.1
instance_name=vm1
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
quantum_network - Creates/Removes networks from OpenStack
New in version 1.4.
Add or Remove network from OpenStack.
parameter | required | default | choices | comments |
---|---|---|---|---|
admin_state_up | no | True | Whether the state should be marked as up or down | |
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone url for authentication | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
name | yes | None | Name to be assigned to the nework | |
provider_network_type | no | None | The type of the network to be created, gre, vlan, local. Available types depend on the plugin. The Quantum service decides if not specified. | |
provider_physical_network | no | None | The physical network which would realize the virtual network for flat and vlan networks. | |
provider_segmentation_id | no | None | The id that has to be assigned to the network, in case of vlan networks that would be vlan id and for gre the tunnel id | |
region_name | no | None | Name of the region | |
router_external | no | If 'yes', specifies that the virtual network is a external network (public). | ||
shared | no | Whether this network is shared or not | ||
state | no | present |
| Indicate desired state of the resource |
tenant_name | no | None | The name of the tenant for whom the network is created |
Note
Requires quantumclient
Note
Requires neutronclient
Note
Requires keystoneclient
Create a GRE backed Quantum network with tunnel id 1 for tenant1
- quantum_network: name=t1network tenant_name=tenant1 state=present
provider_network_type=gre provider_segmentation_id=1
login_username=admin login_password=admin login_tenant_name=admin
Create an external network
- quantum_network: name=external_network state=present
provider_network_type=local router_external=yes
login_username=admin login_password=admin login_tenant_name=admin
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
quantum_router - Create or Remove router from openstack
New in version 1.2.
Create or Delete routers from OpenStack
parameter | required | default | choices | comments |
---|---|---|---|---|
admin_state_up | no | True | desired admin state of the created router . | |
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone url for authentication | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
name | yes | None | Name to be give to the router | |
region_name | no | None | Name of the region | |
state | no | present |
| Indicate desired state of the resource |
tenant_name | no | None | Name of the tenant for which the router has to be created, if none router would be created for the login tenant. |
Note
Requires quantumclient
Note
Requires neutronclient
Note
Requires keystoneclient
Creates a router for tenant admin
- quantum_router: state=present
login_username=admin
login_password=admin
login_tenant_name=admin
name=router1"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
quantum_router_gateway - set/unset a gateway interface for the router with the specified external network
New in version 1.2.
Creates/Removes a gateway interface from the router, used to associate a external network with a router to route external traffic.
parameter | required | default | choices | comments |
---|---|---|---|---|
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone URL for authentication | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
network_name | yes | None | Name of the external network which should be attached to the router. | |
region_name | no | None | Name of the region | |
router_name | yes | None | Name of the router to which the gateway should be attached. | |
state | no | present |
| Indicate desired state of the resource |
Note
Requires quantumclient
Note
Requires neutronclient
Note
Requires keystoneclient
Attach an external network with a router to allow flow of external traffic
- quantum_router_gateway: state=present login_username=admin login_password=admin
login_tenant_name=admin router_name=external_router
network_name=external_network
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
quantum_router_interface - Attach/Dettach a subnet’s interface to a router
New in version 1.2.
Attach/Dettach a subnet interface to a router, to provide a gateway for the subnet.
parameter | required | default | choices | comments |
---|---|---|---|---|
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone URL for authentication | |
login_password | yes | yes | Password of login user | |
login_tenant_name | yes | yes | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
region_name | no | None | Name of the region | |
router_name | yes | None | Name of the router to which the subnet's interface should be attached. | |
state | no | present |
| Indicate desired state of the resource |
subnet_name | yes | None | Name of the subnet to whose interface should be attached to the router. | |
tenant_name | no | None | Name of the tenant whose subnet has to be attached. |
Note
Requires quantumclient
Note
Requires keystoneclient
Attach tenant1's subnet to the external router
- quantum_router_interface: state=present login_username=admin
login_password=admin
login_tenant_name=admin
tenant_name=tenant1
router_name=external_route
subnet_name=t1subnet
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
quantum_subnet - Add/Remove floating IP from an instance
New in version 1.2.
Add or Remove a floating IP to an instance
parameter | required | default | choices | comments |
---|---|---|---|---|
allocation_pool_end | no | None | From the subnet pool the last IP that should be assigned to the virtual machines | |
allocation_pool_start | no | None | From the subnet pool the starting address from which the IP should be allocated | |
auth_url | no | http://127.0.0.1:35357/v2.0/ | The keystone URL for authentication | |
cidr | yes | None | The CIDR representation of the subnet that should be assigned to the subnet | |
dns_nameservers | no | None | DNS nameservers for this subnet, comma-separated (added in Ansible 1.4) | |
enable_dhcp | no | True | Whether DHCP should be enabled for this subnet. | |
gateway_ip | no | None | The ip that would be assigned to the gateway for this subnet | |
ip_version | no | 4 | The IP version of the subnet 4 or 6 | |
login_password | yes | True | Password of login user | |
login_tenant_name | yes | True | The tenant name of the login user | |
login_username | yes | admin | login username to authenticate to keystone | |
name | yes | None | The name of the subnet that should be created | |
network_name | yes | None | Name of the network to which the subnet should be attached | |
region_name | no | None | Name of the region | |
state | no | present |
| Indicate desired state of the resource |
tenant_name | no | None | The name of the tenant for whom the subnet should be created |
Note
Requires quantumclient
Note
Requires neutronclient
Note
Requires keystoneclient
Create a subnet for a tenant with the specified subnet
- quantum_subnet: state=present login_username=admin login_password=admin
login_tenant_name=admin tenant_name=tenant1
network_name=network1 name=net1subnet cidr=192.168.0.0/24"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rabbitmq_parameter - Adds or removes parameters to RabbitMQ
Author: | Chris Hoffman |
---|
New in version 1.1.
Manage dynamic, cluster-wide parameters for RabbitMQ
parameter | required | default | choices | comments |
---|---|---|---|---|
component | yes | Name of the component of which the parameter is being set | ||
name | yes | Name of the parameter being set | ||
node | no | rabbit | erlang node name of the rabbit we wish to configure (added in Ansible 1.2) | |
state | no | present |
| Specify if user is to be added or removed |
value | no | Value of the parameter, as a JSON term | ||
vhost | no | / | vhost to apply access privileges. |
Set the federation parameter 'local_username' to a value of 'guest' (in quotes)
- rabbitmq_parameter: component=federation
name=local-username
value='"guest"'
state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rabbitmq_plugin - Adds or removes plugins to RabbitMQ
Author: | Chris Hoffman |
---|
New in version 1.1.
Enables or disables RabbitMQ plugins
parameter | required | default | choices | comments |
---|---|---|---|---|
names | yes | Comma-separated list of plugin names | ||
new_only | no | no |
| Only enable missing pluginsDoes not disable plugins that are not in the names list |
prefix | no | Specify a custom install prefix to a Rabbit (added in Ansible 1.3) | ||
state | no | enabled |
| Specify if plugins are to be enabled or disabled |
Enables the rabbitmq_management plugin
- rabbitmq_plugin: names=rabbitmq_management state=enabled
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rabbitmq_policy - Manage the state of policies in RabbitMQ.
Author: | John Dewey |
---|
New in version 1.5.
Manage the state of a virtual host in RabbitMQ.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | The name of the policy to manage. | ||
node | no | rabbit | Erlang node name of the rabbit we wish to configure. | |
pattern | yes | A regex of queues to apply the policy to. | ||
priority | no | The priority of the policy. | ||
state | no | present |
| The state of the policy. |
tags | yes | A dict or string describing the policy. | ||
vhost | no | / | The name of the vhost to apply to. |
- name: ensure the default vhost contains the HA policy via a dict
rabbitmq_policy: name=HA pattern='.*'
args:
tags:
"ha-mode": all
- name: ensure the default vhost contains the HA policy
rabbitmq_policy: name=HA pattern='.*' tags="ha-mode=all"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rabbitmq_user - Adds or removes users to RabbitMQ
Author: | Chris Hoffman |
---|
New in version 1.1.
Add or remove users to RabbitMQ and assign permissions
parameter | required | default | choices | comments |
---|---|---|---|---|
configure_priv | no | ^$ | Regular expression to restrict configure actions on a resource for the specified vhost.By default all actions are restricted. | |
force | no | no |
| Deletes and recreates the user. |
node | no | rabbit | erlang node name of the rabbit we wish to configure (added in Ansible 1.2) | |
password | no | Password of user to add.To change the password of an existing user, you must also specify force=yes. | ||
read_priv | no | ^$ | Regular expression to restrict configure actions on a resource for the specified vhost.By default all actions are restricted. | |
state | no | present |
| Specify if user is to be added or removed |
tags | no | User tags specified as comma delimited | ||
user | yes | Name of user to add | ||
vhost | no | / | vhost to apply access privileges. | |
write_priv | no | ^$ | Regular expression to restrict configure actions on a resource for the specified vhost.By default all actions are restricted. |
Add user to server and assign full access control
- rabbitmq_user: user=joe
password=changeme
vhost=/
configure_priv=.*
read_priv=.*
write_priv=.*
state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rabbitmq_vhost - Manage the state of a virtual host in RabbitMQ
Author: | Chris Hoffman |
---|
New in version 1.1.
Manage the state of a virtual host in RabbitMQ
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | The name of the vhost to manage | ||
node | no | rabbit | erlang node name of the rabbit we wish to configure (added in Ansible 1.2) | |
state | no | present |
| The state of vhost |
tracing | no | no |
| Enable/disable tracing for a vhost |
Ensure that the vhost /test exists.
- rabbitmq_vhost: name=/test state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
raw - Executes a low-down and dirty SSH command
Author: | Michael DeHaan |
---|
Executes a low-down and dirty SSH command, not going through the module subsystem. This is useful and should only be done in two cases. The first case is installing python-simplejson on older (Python 2.4 and before) hosts that need it as a dependency to run modules, since nearly all core modules require it. Another is speaking to any devices such as routers that do not have any Python installed. In any other case, using the shell or command module is much more appropriate. Arguments given to raw are run directly through the configured remote shell. Standard output, error output and return code are returned when available. There is no change handler support for this module. This module does not require python on the remote system, much like the script module.
parameter | required | default | choices | comments |
---|---|---|---|---|
executable | no | change the shell used to execute the command. Should be an absolute path to the executable. (added in Ansible 1.0) | ||
free_form | yes | the raw module takes a free form command to run |
Bootstrap a legacy python 2.4 host
- raw: yum -y install python-simplejson
Note
If you want to execute a command securely and predictably, it may be better to use the command module instead. Best practices when writing playbooks will follow the trend of using command unless shell is explicitly required. When running ad-hoc commands, use your best judgement.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax - create / delete an instance in Rackspace Public Cloud
Author: | Jesse Keating, Matt Martz |
---|
New in version 1.2.
creates / deletes a Rackspace Public Cloud instance and optionally waits for it to be ‘running’.
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
auto_increment | no | True | Whether or not to increment a single number with the name of the created servers. Only applicable when used with the group attribute or meta key. (added in Ansible 1.5) | |
count | no | 1 | number of instances to launch (added in Ansible 1.4) | |
count_offset | no | 1 | number count to start at (added in Ansible 1.4) | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
disk_config | no | auto |
| Disk partitioning strategy (added in Ansible 1.4) |
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
exact_count | no | Explicitly ensure an exact count of instances, used with state=active/present (added in Ansible 1.4) | ||
extra_client_args | no | A hash of key/value pairs to be used when creating the cloudservers client. This is considered an advanced option, use it wisely and with caution. (added in Ansible 1.6) | ||
extra_create_args | no | A hash of key/value pairs to be used when creating a new server. This is considered an advanced option, use it wisely and with caution. (added in Ansible 1.6) | ||
files | no | Files to insert into the instance. remotefilename:localcontent | ||
flavor | no | flavor to use for the instance | ||
group | no | host group to assign to server, is also used for idempotent operations to ensure a specific number of instances (added in Ansible 1.4) | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
image | no | image to use for the instance. Can be an id, human_id or name | ||
instance_ids | no | list of instance ids, currently only used when state='absent' to remove instances (added in Ansible 1.4) | ||
key_name | no | key pair to use on the instance | ||
meta | no | A hash of metadata to associate with the instance | ||
name | no | Name to give the instance | ||
networks | no | ['public', 'private'] | The network to attach to the instances. If specified, you must include ALL networks including the public and private interfaces. Can be id or label. (added in Ansible 1.4) | |
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) | ||
wait | no | no |
| wait for the instance to be in state 'running' before returning |
wait_timeout | no | 300 | how long before wait gives up, in seconds |
Note
Requires pyrax
- name: Build a Cloud Server
gather_facts: False
tasks:
- name: Server build request
local_action:
module: rax
credentials: ~/.raxpub
name: rax-test1
flavor: 5
image: b11d9567-e412-4255-96b9-bd63ab23bcfe
files:
/root/.ssh/authorized_keys: /home/localuser/.ssh/id_rsa.pub
/root/test.txt: /home/localuser/test.txt
wait: yes
state: present
networks:
- private
- public
register: rax
- name: Build an exact count of cloud servers with incremented names
hosts: local
gather_facts: False
tasks:
- name: Server build requests
local_action:
module: rax
credentials: ~/.raxpub
name: test%03d.example.org
flavor: performance1-1
image: ubuntu-1204-lts-precise-pangolin
state: present
count: 10
count_offset: 10
exact_count: yes
group: test
wait: yes
register: rax
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_cbs - Manipulate Rackspace Cloud Block Storage Volumes
Author: | Christopher H. Laco, Matt Martz |
---|
New in version 1.6.
Manipulate Rackspace Cloud Block Storage Volumes
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
description | no | Description to give the volume being created | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
meta | no | A hash of metadata to associate with the volume | ||
name | yes | Name to give the volume being created | ||
region | no | DFW | Region to create an instance in | |
size | yes | 100 | Size of the volume to create in Gigabytes | |
snapshot_id | no | The id of the snapshot to create the volume from | ||
state | yes | present |
| Indicate desired state of the resource |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) | ||
volume_type | yes | SATA |
| Type of the volume being created |
wait | no | no |
| wait for the volume to be in state 'available' before returning |
wait_timeout | no | 300 | how long before wait gives up, in seconds |
Note
Requires pyrax
- name: Build a Block Storage Volume
gather_facts: False
hosts: local
connection: local
tasks:
- name: Storage volume create request
local_action:
module: rax_cbs
credentials: ~/.raxpub
name: my-volume
description: My Volume
volume_type: SSD
size: 150
region: DFW
wait: yes
state: present
meta:
app: my-cool-app
register: my_volume
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_cbs_attachments - Manipulate Rackspace Cloud Block Storage Volume Attachments
Author: | Christopher H. Laco, Matt Martz |
---|
New in version 1.6.
Manipulate Rackspace Cloud Block Storage Volume Attachments
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
device | yes | The device path to attach the volume to, e.g. /dev/xvde | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
region | no | DFW | Region to create an instance in | |
server | yes | Name or id of the server to attach/detach | ||
state | yes | present |
| Indicate desired state of the resource |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) | ||
volume | yes | Name or id of the volume to attach/detach | ||
wait | no | no |
| wait for the volume to be in 'in-use'/'available' state before returning |
wait_timeout | no | 300 | how long before wait gives up, in seconds |
Note
Requires pyrax
- name: Attach a Block Storage Volume
gather_facts: False
hosts: local
connection: local
tasks:
- name: Storage volume attach request
local_action:
module: rax_cbs_attachments
credentials: ~/.raxpub
volume: my-volume
server: my-server
device: /dev/xvdd
region: DFW
wait: yes
state: present
register: my_volume
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_clb - create / delete a load balancer in Rackspace Public Cloud
Author: | Christopher H. Laco, Matt Martz |
---|
New in version 1.4.
creates / deletes a Rackspace Public Cloud load balancer.
parameter | required | default | choices | comments |
---|---|---|---|---|
algorithm | no | LEAST_CONNECTIONS |
| algorithm for the balancer being created |
api_key | no | Rackspace API key (overrides credentials) | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
meta | no | A hash of metadata to associate with the instance | ||
name | no | Name to give the load balancer | ||
port | no | 80 | Port for the balancer being created | |
protocol | no | HTTP |
| Protocol for the balancer being created |
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
timeout | no | 30 | timeout for communication between the balancer and the node | |
type | no | PUBLIC |
| type of interface for the balancer being created |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) | ||
vip_id | no | Virtual IP ID to use when creating the load balancer for purposes of sharing an IP with another load balancer of another protocol (added in Ansible 1.5) | ||
wait | no | no |
| wait for the balancer to be in state 'running' before returning |
wait_timeout | no | 300 | how long before wait gives up, in seconds |
Note
Requires pyrax
- name: Build a Load Balancer
gather_facts: False
hosts: local
connection: local
tasks:
- name: Load Balancer create request
local_action:
module: rax_clb
credentials: ~/.raxpub
name: my-lb
port: 8080
protocol: HTTP
type: SERVICENET
timeout: 30
region: DFW
wait: yes
state: present
meta:
app: my-cool-app
register: my_lb
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_clb_nodes - add, modify and remove nodes from a Rackspace Cloud Load Balancer
Author: | Lukasz Kawczynski |
---|
New in version 1.4.
Adds, modifies and removes nodes from a Rackspace Cloud Load Balancer
parameter | required | default | choices | comments |
---|---|---|---|---|
address | no | IP address or domain name of the node | ||
api_key | no | Rackspace API key (overrides credentials) | ||
condition | no |
| Condition for the node, which determines its role within the load balancer | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
load_balancer_id | yes | Load balancer id | ||
node_id | no | Node id | ||
port | no | Port number of the load balanced service on the node | ||
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the node |
type | no |
| Type of node | |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) | ||
wait | no | no |
| Wait for the load balancer to become active before returning |
wait_timeout | no | 30 | How long to wait before giving up and returning an error | |
weight | no | Weight of node |
Note
Requires pyrax
Add a new node to the load balancer
- local_action:
module: rax_clb_nodes
load_balancer_id: 71
address: 10.2.2.3
port: 80
condition: enabled
type: primary
wait: yes
credentials: /path/to/credentials
Drain connections from a node
- local_action:
module: rax_clb_nodes
load_balancer_id: 71
node_id: 410
condition: draining
wait: yes
credentials: /path/to/credentials
Remove a node from the load balancer
- local_action:
module: rax_clb_nodes
load_balancer_id: 71
node_id: 410
state: absent
wait: yes
credentials: /path/to/credentials
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_dns - Manage domains on Rackspace Cloud DNS
Author: | Matt Martz |
---|
New in version 1.5.
Manage domains on Rackspace Cloud DNS
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
comment | no | Brief description of the domain. Maximum length of 160 characters | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
no | ||||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
name | no | Domain name to create | ||
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
ttl | no | 3600 | Time to live of domain in seconds | |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Create domain
hosts: all
gather_facts: False
tasks:
- name: Domain create request
local_action:
module: rax_dns
credentials: ~/.raxpub
name: example.org
email: admin@example.org
register: rax_dns
Note
It is recommended that plays utilizing this module be run with serial: 1 to avoid exceeding the API request limit imposed by the Rackspace CloudDNS API
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_dns_record - Manage DNS records on Rackspace Cloud DNS
Author: | Matt Martz |
---|
New in version 1.5.
Manage DNS records on Rackspace Cloud DNS
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
comment | no | Brief description of the domain. Maximum length of 160 characters | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
data | yes | IP address for A/AAAA record, FQDN for CNAME/MX/NS, or text data for SRV/TXT | ||
domain | yes | Domain name to create the record in | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
name | yes | FQDN record name to create | ||
priority | no | Required for MX and SRV records, but forbidden for other record types. If specified, must be an integer from 0 to 65535. | ||
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
ttl | no | 3600 | Time to live of domain in seconds | |
type | no | A |
| DNS record type |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Create record
hosts: all
gather_facts: False
tasks:
- name: Record create request
local_action:
module: rax_dns_record
credentials: ~/.raxpub
domain: example.org
name: www.example.org
data: 127.0.0.1
type: A
register: rax_dns_record
Note
It is recommended that plays utilizing this module be run with serial: 1 to avoid exceeding the API request limit imposed by the Rackspace CloudDNS API
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_facts - Gather facts for Rackspace Cloud Servers
Author: | Matt Martz |
---|
New in version 1.4.
Gather facts for Rackspace Cloud Servers.
parameter | required | default | choices | comments |
---|---|---|---|---|
address | no | Server IP address to retrieve facts for, will match any IP assigned to the server | ||
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
id | no | Server ID to retrieve facts for | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
name | no | Server name to retrieve facts for | ||
region | no | DFW | Region to create an instance in | |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Gather info about servers
hosts: all
gather_facts: False
tasks:
- name: Get facts about servers
local_action:
module: rax_facts
credentials: ~/.raxpub
name: "{{ inventory_hostname }}"
region: DFW
- name: Map some facts
set_fact:
ansible_ssh_host: "{{ rax_accessipv4 }}"
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_files - Manipulate Rackspace Cloud Files Containers
Author: | Paul Durivage |
---|
New in version 1.5.
Manipulate Rackspace Cloud Files Containers
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
clear_meta | no | no |
| Optionally clear existing metadata when applying metadata to existing containers. Selecting this option is only appropriate when setting type=meta |
container | yes | The container to use for container or metadata operations. | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
meta | no | A hash of items to set as metadata values on a container | ||
private | no | Used to set a container as private, removing it from the CDN. Warning! Private containers, if previously made public, can have live objects available until the TTL on cached objects expires | ||
public | no | Used to set a container as public, available via the Cloud Files CDN | ||
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
ttl | no | In seconds, set a container-wide TTL for all objects cached on CDN edge nodes. Setting a TTL is only appropriate for containers that are public | ||
type | no | file |
| Type of object to do work on, i.e. metadata object or a container object |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) | ||
web_error | no | Sets an object to be presented as the HTTP error page when accessed by the CDN URL | ||
web_index | no | Sets an object to be presented as the HTTP index page when accessed by the CDN URL |
Note
Requires pyrax
- name: "Test Cloud Files Containers"
hosts: local
gather_facts: no
tasks:
- name: "List all containers"
rax_files: state=list
- name: "Create container called 'mycontainer'"
rax_files: container=mycontainer
- name: "Create container 'mycontainer2' with metadata"
rax_files:
container: mycontainer2
meta:
key: value
file_for: someuser@example.com
- name: "Set a container's web index page"
rax_files: container=mycontainer web_index=index.html
- name: "Set a container's web error page"
rax_files: container=mycontainer web_error=error.html
- name: "Make container public"
rax_files: container=mycontainer public=yes
- name: "Make container public with a 24 hour TTL"
rax_files: container=mycontainer public=yes ttl=86400
- name: "Make container private"
rax_files: container=mycontainer private=yes
- name: "Test Cloud Files Containers Metadata Storage"
hosts: local
gather_facts: no
tasks:
- name: "Get mycontainer2 metadata"
rax_files:
container: mycontainer2
type: meta
- name: "Set mycontainer2 metadata"
rax_files:
container: mycontainer2
type: meta
meta:
uploaded_by: someuser@example.com
- name: "Remove mycontainer2 metadata"
rax_files:
container: "mycontainer2"
type: meta
state: absent
meta:
key: ""
file_for: ""
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_files_objects - Upload, download, and delete objects in Rackspace Cloud Files
Author: | Paul Durivage |
---|
New in version 1.5.
Upload, download, and delete objects in Rackspace Cloud Files
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
clear_meta | no | no |
| Optionally clear existing metadata when applying metadata to existing objects. Selecting this option is only appropriate when setting type=meta |
container | yes | The container to use for file object operations. | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
dest | no | The destination of a "get" operation; i.e. a local directory, "/home/user/myfolder". Used to specify the destination of an operation on a remote object; i.e. a file name, "file1", or a comma-separated list of remote objects, "file1,file2,file17" | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
expires | no | Used to set an expiration on a file or folder uploaded to Cloud Files. Requires an integer, specifying expiration in seconds | ||
meta | no | A hash of items to set as metadata values on an uploaded file or folder | ||
method | no | get |
| The method of operation to be performed. For example, put to upload files to Cloud Files, get to download files from Cloud Files or delete to delete remote objects in Cloud Files |
region | no | DFW | Region to create an instance in | |
src | no | Source from which to upload files. Used to specify a remote object as a source for an operation, i.e. a file name, "file1", or a comma-separated list of remote objects, "file1,file2,file17". src and dest are mutually exclusive on remote-only object operations | ||
state | no | present |
| Indicate desired state of the resource |
structure | no | yes |
| Used to specify whether to maintain nested directory structure when downloading objects from Cloud Files. Setting to false downloads the contents of a container to a single, flat directory |
type | no | file |
| Type of object to do work onMetadata object or a file object |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: "Test Cloud Files Objects"
hosts: local
gather_facts: False
tasks:
- name: "Get objects from test container"
rax_files_objects: container=testcont dest=~/Downloads/testcont
- name: "Get single object from test container"
rax_files_objects: container=testcont src=file1 dest=~/Downloads/testcont
- name: "Get several objects from test container"
rax_files_objects: container=testcont src=file1,file2,file3 dest=~/Downloads/testcont
- name: "Delete one object in test container"
rax_files_objects: container=testcont method=delete dest=file1
- name: "Delete several objects in test container"
rax_files_objects: container=testcont method=delete dest=file2,file3,file4
- name: "Delete all objects in test container"
rax_files_objects: container=testcont method=delete
- name: "Upload all files to test container"
rax_files_objects: container=testcont method=put src=~/Downloads/onehundred
- name: "Upload one file to test container"
rax_files_objects: container=testcont method=put src=~/Downloads/testcont/file1
- name: "Upload one file to test container with metadata"
rax_files_objects:
container: testcont
src: ~/Downloads/testcont/file2
method: put
meta:
testkey: testdata
who_uploaded_this: someuser@example.com
- name: "Upload one file to test container with TTL of 60 seconds"
rax_files_objects: container=testcont method=put src=~/Downloads/testcont/file3 expires=60
- name: "Attempt to get remote object that does not exist"
rax_files_objects: container=testcont method=get src=FileThatDoesNotExist.jpg dest=~/Downloads/testcont
ignore_errors: yes
- name: "Attempt to delete remote object that does not exist"
rax_files_objects: container=testcont method=delete dest=FileThatDoesNotExist.jpg
ignore_errors: yes
- name: "Test Cloud Files Objects Metadata"
hosts: local
gather_facts: false
tasks:
- name: "Get metadata on one object"
rax_files_objects: container=testcont type=meta dest=file2
- name: "Get metadata on several objects"
rax_files_objects: container=testcont type=meta src=file2,file1
- name: "Set metadata on an object"
rax_files_objects:
container: testcont
type: meta
dest: file17
method: put
meta:
key1: value1
key2: value2
clear_meta: true
- name: "Verify metadata is set"
rax_files_objects: container=testcont type=meta src=file17
- name: "Delete metadata"
rax_files_objects:
container: testcont
type: meta
dest: file17
method: delete
meta:
key1: ''
key2: ''
- name: "Get metadata on all objects"
rax_files_objects: container=testcont type=meta
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_identity - Load Rackspace Cloud Identity
Author: | Christopher H. Laco, Matt Martz |
---|
New in version 1.5.
Verifies Rackspace Cloud credentials and returns identity information
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Load Rackspace Cloud Identity
gather_facts: False
hosts: local
connection: local
tasks:
- name: Load Identity
local_action:
module: rax_identity
credentials: ~/.raxpub
region: DFW
register: rackspace_identity
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_keypair - Create a keypair for use with Rackspace Cloud Servers
Author: | Matt Martz |
---|
New in version 1.5.
Create a keypair for use with Rackspace Cloud Servers
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
name | yes | Name of keypair | ||
public_key | no | Public Key string to upload | ||
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Create a keypair
hosts: localhost
gather_facts: False
tasks:
- name: keypair request
local_action:
module: rax_keypair
credentials: ~/.raxpub
name: my_keypair
region: DFW
register: keypair
- name: Create local public key
local_action:
module: copy
content: "{{ keypair.keypair.public_key }}"
dest: "{{ inventory_dir }}/{{ keypair.keypair.name }}.pub"
- name: Create local private key
local_action:
module: copy
content: "{{ keypair.keypair.private_key }}"
dest: "{{ inventory_dir }}/{{ keypair.keypair.name }}"
- name: Create a keypair
hosts: localhost
gather_facts: False
tasks:
- name: keypair request
local_action:
module: rax_keypair
credentials: ~/.raxpub
name: my_keypair
public_key: "{{ lookup('file', 'authorized_keys/id_rsa.pub') }}"
region: DFW
register: keypair
Note
Keypairs cannot be manipulated, only created and deleted. To “update” a keypair you must first delete and then recreate.
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_meta - Manipulate metadata for Rackspace Cloud Servers
Author: | Matt Martz |
---|
New in version 1.7.
Manipulate metadata for Rackspace Cloud Servers
parameter | required | default | choices | comments |
---|---|---|---|---|
address | no | Server IP address to modify metadata for, will match any IP assigned to the server | ||
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
id | no | Server ID to modify metadata for | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
meta | no | A hash of metadata to associate with the instance | ||
name | no | Server name to modify metadata for | ||
region | no | DFW | Region to create an instance in | |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Set metadata for a server
hosts: all
gather_facts: False
tasks:
- name: Set metadata
local_action:
module: rax_meta
credentials: ~/.raxpub
name: "{{ inventory_hostname }}"
region: DFW
meta:
group: primary_group
groups:
- group_two
- group_three
app: my_app
- name: Clear metadata
local_action:
module: rax_meta
credentials: ~/.raxpub
name: "{{ inventory_hostname }}"
region: DFW
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_network - create / delete an isolated network in Rackspace Public Cloud
Author: | Christopher H. Laco, Jesse Keating |
---|
New in version 1.4.
creates / deletes a Rackspace Public Cloud isolated network.
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
auth_endpoint | no | https://identity.api.rackspacecloud.com/v2.0/ | The URI of the authentication service (added in Ansible 1.5) | |
cidr | no | cidr of the network being created | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
identity_type | no | rackspace | Authentication machanism to use, such as rackspace or keystone (added in Ansible 1.5) | |
label | no | Label (name) to give the network | ||
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
tenant_id | no | The tenant ID used for authentication (added in Ansible 1.5) | ||
tenant_name | no | The tenant name used for authentication (added in Ansible 1.5) | ||
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Build an Isolated Network
gather_facts: False
tasks:
- name: Network create request
local_action:
module: rax_network
credentials: ~/.raxpub
label: my-net
cidr: 192.168.3.0/24
state: present
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_queue - create / delete a queue in Rackspace Public Cloud
Author: | Christopher H. Laco, Matt Martz |
---|
New in version 1.5.
creates / deletes a Rackspace Public Cloud queue.
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
name | no | Name to give the queue | ||
region | no | DFW | Region to create an instance in | |
state | no | present |
| Indicate desired state of the resource |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax
- name: Build a Queue
gather_facts: False
hosts: local
connection: local
tasks:
- name: Queue create request
local_action:
module: rax_queue
credentials: ~/.raxpub
name: my-queue
region: DFW
state: present
register: my_queue
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_scaling_group - Manipulate Rackspace Cloud Autoscale Groups
Author: | Matt Martz |
---|
New in version 1.7.
Manipulate Rackspace Cloud Autoscale Groups
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
cooldown | no | The period of time, in seconds, that must pass before any scaling can occur after the previous scaling. Must be an integer between 0 and 86400 (24 hrs). | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
disk_config | no | auto |
| Disk partitioning strategy |
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
files | no | Files to insert into the instance. Hash of remotepath: localpath | ||
flavor | yes | flavor to use for the instance | ||
image | yes | image to use for the instance. Can be an id, human_id or name | ||
key_name | no | key pair to use on the instance | ||
loadbalancers | no | List of load balancer id and port hashes | ||
max_entities | yes | The maximum number of entities that are allowed in the scaling group. Must be an integer between 0 and 1000. | ||
meta | no | A hash of metadata to associate with the instance | ||
min_entities | yes | The minimum number of entities that are allowed in the scaling group. Must be an integer between 0 and 1000. | ||
name | yes | Name to give the scaling group | ||
networks | no | ['public', 'private'] | The network to attach to the instances. If specified, you must include ALL networks including the public and private interfaces. Can be id or label. | |
region | no | DFW | Region to create an instance in | |
server_name | yes | The base name for servers created by Autoscale | ||
state | no | present |
| Indicate desired state of the resource |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax

- hosts: localhost
gather_facts: false
connection: local
tasks:
- rax_scaling_group:
credentials: ~/.raxpub
region: ORD
cooldown: 300
flavor: performance1-1
image: bb02b1a3-bc77-4d17-ab5b-421d89850fca
min_entities: 5
max_entities: 10
name: ASG Test
server_name: asgtest
loadbalancers:
- id: 228385
port: 80
register: asg
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rax_scaling_policy - Manipulate Rackspace Cloud Autoscale Scaling Policy
Author: | Matt Martz |
---|
New in version 1.7.
Manipulate Rackspace Cloud Autoscale Scaling Policy
parameter | required | default | choices | comments |
---|---|---|---|---|
api_key | no | Rackspace API key (overrides credentials) | ||
at | no | The UTC time when this policy will be executed. The time must be formatted according to yyyy-MM-dd'T'HH:mm:ss.SSS such as 2013-05-19T08:07:08Z | ||
change | no | The change, either as a number of servers or as a percentage, to make in the scaling group. If this is a percentage, you must set is_percent to true also. | ||
cooldown | no | The period of time, in seconds, that must pass before any scaling can occur after the previous scaling. Must be an integer between 0 and 86400 (24 hrs). | ||
credentials | no | File to find the Rackspace credentials in (ignored if api_key and username are provided) | ||
cron | no | The time when the policy will be executed, as a cron entry. For example, if this is parameter is set to 1 0 * * * | ||
desired_capacity | no | The desired server capacity of the scaling the group; that is, how many servers should be in the scaling group. | ||
env | no | Environment as configured in ~/.pyrax.cfg, see https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#pyrax-configuration (added in Ansible 1.5) | ||
is_percent | no | Whether the value in change is a percent value | ||
name | yes | Name to give the policy | ||
policy_type | yes |
| The type of policy that will be executed for the current release. | |
region | no | DFW | Region to create an instance in | |
scaling_group | yes | Name of the scaling group that this policy will be added to | ||
state | no | present |
| Indicate desired state of the resource |
username | no | Rackspace username (overrides credentials) | ||
verify_ssl | no | Whether or not to require SSL validation of API endpoints (added in Ansible 1.5) |
Note
Requires pyrax

- hosts: localhost
gather_facts: false
connection: local
tasks:
- rax_scaling_policy:
credentials: ~/.raxpub
region: ORD
at: '2013-05-19T08:07:08Z'
change: 25
cooldown: 300
is_percent: true
name: ASG Test Policy - at
policy_type: schedule
scaling_group: ASG Test
register: asps_at
- rax_scaling_policy:
credentials: ~/.raxpub
region: ORD
cron: '1 0 * * *'
change: 25
cooldown: 300
is_percent: true
name: ASG Test Policy - cron
policy_type: schedule
scaling_group: ASG Test
register: asp_cron
- rax_scaling_policy:
credentials: ~/.raxpub
region: ORD
cooldown: 300
desired_capacity: 5
name: ASG Test Policy - webhook
policy_type: webhook
scaling_group: ASG Test
register: asp_webhook
Note
The following environment variables can be used, RAX_USERNAME, RAX_API_KEY, RAX_CREDS_FILE, RAX_CREDENTIALS, RAX_REGION.
Note
RAX_CREDENTIALS and RAX_CREDS_FILE points to a credentials file appropriate for pyrax. See https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Note
RAX_USERNAME and RAX_API_KEY obviate the use of a credentials file
Note
RAX_REGION defines a Rackspace Public Cloud region (DFW, ORD, LON, ...)
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rds - create, delete, or modify an Amazon rds instance
Author: | Bruce Pennypacker |
---|
New in version 1.3.
Creates, deletes, or modifies rds instances. When creating an instance it can be either a new instance or a read-only replica of an existing instance. This module has a dependency on python-boto >= 2.5. The ‘promote’ command requires boto >= 2.18.0.
parameter | required | default | choices | comments |
---|---|---|---|---|
apply_immediately | no |
| Used only when command=modify. If enabled, the modifications will be applied as soon as possible rather than waiting for the next preferred maintenance window. | |
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
backup_retention | no | Number of days backups are retained. Set to 0 to disable backups. Default is 1 day. Valid range: 0-35. Used only when command=create or command=modify. | ||
backup_window | no | Backup window in format of hh24:mi-hh24:mi. If not specified then a random backup window is assigned. Used only when command=create or command=modify. | ||
command | yes |
| Specifies the action to take. | |
db_engine | no |
| The type of database. Used only when command=create. | |
db_name | no | Name of a database to create within the instance. If not specified then no database is created. Used only when command=create. | ||
engine_version | no | Version number of the database engine to use. Used only when command=create. If not specified then the current Amazon RDS default engine version is used. | ||
instance_name | yes | Database instance identifier. | ||
instance_type | no | The instance type of the database. Must be specified when command=create. Optional when command=replicate, command=modify or command=restore. If not specified then the replica inherits the same instance type as the source instance. | ||
iops | no | Specifies the number of IOPS for the instance. Used only when command=create or command=modify. Must be an integer greater than 1000. | ||
license_model | no |
| The license model for this DB instance. Used only when command=create or command=restore. | |
maint_window | no | Maintenance window in format of ddd:hh24:mi-ddd:hh24:mi. (Example: Mon:22:00-Mon:23:15) If not specified then a random maintenance window is assigned. Used only when command=create or command=modify. | ||
multi_zone | no |
| Specifies if this is a Multi-availability-zone deployment. Can not be used in conjunction with zone parameter. Used only when command=create or command=modify. | |
new_instance_name | no | Name to rename an instance to. Used only when command=modify. (added in Ansible 1.5) | ||
option_group | no | The name of the option group to use. If not specified then the default option group is used. Used only when command=create. | ||
parameter_group | no | Name of the DB parameter group to associate with this instance. If omitted then the RDS default DBParameterGroup will be used. Used only when command=create or command=modify. | ||
password | no | Password for the master database username. Used only when command=create or command=modify. | ||
port | no | Port number that the DB instance uses for connections. Defaults to 3306 for mysql. Must be changed to 1521 for Oracle, 1443 for SQL Server, 5432 for PostgreSQL. Used only when command=create or command=replicate. | ||
region | yes | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
security_groups | no | Comma separated list of one or more security groups. Used only when command=create or command=modify. | ||
size | no | Size in gigabytes of the initial storage for the DB instance. Used only when command=create or command=modify. | ||
snapshot | no | Name of snapshot to take. When command=delete, if no snapshot name is provided then no snapshot is taken. Used only when command=delete or command=snapshot. | ||
source_instance | no | Name of the database to replicate. Used only when command=replicate. | ||
subnet | no | VPC subnet group. If specified then a VPC instance is created. Used only when command=create. | ||
upgrade | no |
| Indicates that minor version upgrades should be applied automatically. Used only when command=create or command=replicate. | |
username | no | Master database username. Used only when command=create. | ||
vpc_security_groups | no | Comma separated list of one or more vpc security group ids. Also requires `subnet` to be specified. Used only when command=create or command=modify. | ||
wait | no | no |
| When command=create, replicate, modify or restore then wait for the database to enter the 'available' state. When command=delete wait for the database to be terminated. |
wait_timeout | no | 300 | how long before wait gives up, in seconds | |
zone | no | availability zone in which to launch the instance. Used only when command=create, command=replicate or command=restore. |
Note
Requires boto
Basic mysql provisioning example
- rds: >
command=create
instance_name=new_database
db_engine=MySQL
size=10
instance_type=db.m1.small
username=mysql_admin
password=1nsecure
Create a read-only replica and wait for it to become available
- rds: >
command=replicate
instance_name=new_database_replica
source_instance=new_database
wait=yes
wait_timeout=600
Delete an instance, but create a snapshot before doing so
- rds: >
command=delete
instance_name=new_database
snapshot=new_database_snapshot
Get facts about an instance
- rds: >
command=facts
instance_name=new_database
register: new_database_facts
Rename an instance and wait for the change to take effect
- rds: >
command=modify
instance_name=new_database
new_instance_name=renamed_database
wait=yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rds_param_group - manage RDS parameter groups
Author: | Scott Anderson |
---|
New in version 1.5.
Creates, modifies, and deletes RDS parameter groups. This module has a dependency on python-boto >= 2.5.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
description | no | Database parameter group description. Only set when a new group is added. | ||
engine | no |
| The type of database for this group. Required for state=present. | |
immediate | no | Whether to apply the changes immediately, or after the next reboot of any associated instances. | ||
name | yes | Database parameter group identifier. | ||
params | no |
| Map of parameter names and values. Numeric values may be represented as K for kilo (1024), M for mega (1024^2), G for giga (1024^3), or T for tera (1024^4), and these values will be expanded into the appropriate number before being set in the parameter group. | |
region | yes | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
state | yes | present |
| Specifies whether the group should be present or absent. |
Note
Requires boto
Add or change a parameter group, in this case setting auto_increment_increment to 42 * 1024
- rds_param_group: >
state=present
name=norwegian_blue
description=My Fancy Ex Parrot Group
engine=mysql5.6
params='{"auto_increment_increment": "42K"}'
Remove a parameter group
- rds_param_group: >
state=absent
name=norwegian_blue
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rds_subnet_group - manage RDS database subnet groups
Author: | Scott Anderson |
---|
New in version 1.5.
Creates, modifies, and deletes RDS database subnet groups. This module has a dependency on python-boto >= 2.5.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
description | no | Database subnet group description. Only set when a new group is added. | ||
name | yes | Database subnet group identifier. | ||
region | yes | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
state | yes | present |
| Specifies whether the subnet should be present or absent. |
subnets | no | List of subnet IDs that make up the database subnet group. |
Note
Requires boto
Add or change a subnet group
- local_action:
module: rds_subnet_group
state: present
name: norwegian-blue
description: My Fancy Ex Parrot Subnet Group
subnets:
- subnet-aaaaaaaa
- subnet-bbbbbbbb
Remove a parameter group
- rds_param_group: >
state=absent
name=norwegian-blue
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
redhat_subscription - Manage Red Hat Network registration and subscriptions using the subscription-manager command
Author: | James Laska |
---|
New in version 1.2.
Manage registration and subscription to the Red Hat Network entitlement platform.
parameter | required | default | choices | comments |
---|---|---|---|---|
activationkey | no | supply an activation key for use with registration | ||
autosubscribe | no | Upon successful registration, auto-consume available subscriptions | ||
password | no | Red Hat Network password | ||
pool | no | ^$ | Specify a subscription pool name to consume. Regular expressions accepted. | |
rhsm_baseurl | no | Current value from C(/etc/rhsm/rhsm.conf) is the default | Specify CDN baseurl | |
server_hostname | no | Current value from C(/etc/rhsm/rhsm.conf) is the default | Specify an alternative Red Hat Network server | |
server_insecure | no | Current value from C(/etc/rhsm/rhsm.conf) is the default | Allow traffic over insecure http | |
state | no | present |
| whether to register and subscribe (present), or unregister (absent) a system |
username | no | Red Hat Network username |
Note
Requires subscription-manager
Register as user (joe_user) with password (somepass) and auto-subscribe to available content.
- redhat_subscription: action=register username=joe_user password=somepass autosubscribe=true
Register with activationkey (1-222333444) and consume subscriptions matching
the names (Red hat Enterprise Server) and (Red Hat Virtualization)
- redhat_subscription: action=register
activationkey=1-222333444
pool='^(Red Hat Enterprise Server|Red Hat Virtualization)$'
Note
In order to register a system, subscription-manager requires either a username and password, or an activationkey.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
redis - Various redis commands, slave and flush
Author: | Xabier Larrakoetxea |
---|
New in version 1.3.
Unified utility to interact with redis instances. ‘slave’ sets a redis instance in slave or master mode. ‘flush’ flushes all the instance or a specified db. ‘config’ (new in 1.6), ensures a configuration setting on an instance.
parameter | required | default | choices | comments |
---|---|---|---|---|
command | yes |
| The selected redis command | |
db | no | The database to flush (used in db mode) [flush command] | ||
flush_mode | no | all |
| Type of flush (all the dbs in a redis instance or a specific one) [flush command] |
login_host | no | localhost | The host running the database | |
login_password | no | The password used to authenticate with (usually not used) | ||
login_port | no | 6379 | The port to connect to | |
master_host | no | The host of the master instance [slave command] | ||
master_port | no | The port of the master instance [slave command] | ||
name | no | A redis config key. (added in Ansible 1.6) | ||
slave_mode | no | slave |
| the mode of the redis instance [slave command] |
value | no | A redis config value. (added in Ansible 1.6) |
Note
Requires redis
Set local redis instance to be slave of melee.island on port 6377
- redis: command=slave master_host=melee.island master_port=6377
Deactivate slave mode
- redis: command=slave slave_mode=master
Flush all the redis db
- redis: command=flush flush_mode=all
Flush only one db in a redis instance
- redis: command=flush db=1 flush_mode=db
Configure local redis to have 10000 max clients
- redis: command=config name=maxclients value=10000
Configure local redis to have lua time limit of 100 ms
- redis: command=config name=lua-time-limit value=100
Note
Requires the redis-py Python package on the remote host. You can install it with pip (pip install redis) or with a package manager. https://github.com/andymccurdy/redis-py
Note
If the redis master instance we are making slave of is password protected this needs to be in the redis.conf in the masterauth variable
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
replace - Replace all instances of a particular string in a file using a back-referenced regular expression.
Author: | Evan Kaufman |
---|
New in version 1.6.
This module will replace all instances of a pattern within a file. It is up to the user to maintain idempotence by ensuring that the same pattern would never match any replacements made.
parameter | required | default | choices | comments |
---|---|---|---|---|
backup | no | no |
| Create a backup file including the timestamp information so you can get the original file back if you somehow clobbered it incorrectly. |
dest | yes | The file to modify. | ||
others | no | All arguments accepted by the file module also work here. | ||
regexp | yes | The regular expression to look for in the contents of the file. Uses Python regular expressions; see http://docs.python.org/2/library/re.html. Uses multiline mode, which means ^ and $ match the beginning and end respectively of each line of the file. | ||
replace | no | The string to replace regexp matches. May contain backreferences that will get expanded with the regexp capture groups if the regexp matches. If not set, matches are removed entirely. | ||
validate | no | None | validation to run before copying into place |
- replace: dest=/etc/hosts regexp='(\s+)old\.host\.name(\s+.*)?$' replace='\1new.host.name\2' backup=yes
- replace: dest=/home/jdoe/.ssh/known_hosts regexp='^old\.host\.name[^\n]*\n' owner=jdoe group=jdoe mode=644
- replace: dest=/etc/apache/ports regexp='^(NameVirtualHost|Listen)\s+80\s*$' replace='\1 127.0.0.1:8080' validate='/usr/sbin/apache2ctl -f %s -t'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rhn_channel - Adds or removes Red Hat software channels
Author: | Vincent Van der Kussen |
---|
New in version 1.1.
Adds or removes Red Hat software channels
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | name of the software channel | ||
password | yes | the user's password | ||
state | no | present | whether the channel should be present or not | |
sysname | yes | name of the system as it is known in RHN/Satellite | ||
url | yes | The full url to the RHN/Satellite api | ||
user | yes | RHN/Satellite user |
Note
Requires none
- rhn_channel: name=rhel-x86_64-server-v2vwin-6 sysname=server01 url=https://rhn.redhat.com/rpc/api user=rhnuser password=guessme
Note
this module fetches the system id from RHN.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rhn_register - Manage Red Hat Network registration using the rhnreg_ks command
Author: | James Laska |
---|
New in version 1.2.
Manage registration to the Red Hat Network.
parameter | required | default | choices | comments |
---|---|---|---|---|
activationkey | no | supply an activation key for use with registration | ||
channels | no | Optionally specify a list of comma-separated channels to subscribe to upon successful registration. | ||
password | no | Red Hat Network password | ||
server_url | no | Current value of I(serverURL) from C(/etc/sysconfig/rhn/up2date) is the default | Specify an alternative Red Hat Network server URL | |
state | no | present |
| whether to register (present), or unregister (absent) a system |
username | no | Red Hat Network username |
Note
Requires rhnreg_ks
Unregister system from RHN.
- rhn_register: state=absent username=joe_user password=somepass
Register as user (joe_user) with password (somepass) and auto-subscribe to available content.
- rhn_register: state=present username=joe_user password=somepass
Register with activationkey (1-222333444) and enable extended update support.
- rhn_register: state=present activationkey=1-222333444 enable_eus=true
Register as user (joe_user) with password (somepass) against a satellite
server specified by (server_url).
- rhn_register: >
state=present
username=joe_user
password=somepass
server_url=https://xmlrpc.my.satellite/XMLRPC
Register as user (joe_user) with password (somepass) and enable
channels (rhel-x86_64-server-6-foo-1) and (rhel-x86_64-server-6-bar-1).
- rhn_register: state=present username=joe_user
password=somepass
channels=rhel-x86_64-server-6-foo-1,rhel-x86_64-server-6-bar-1
Note
In order to register a system, rhnreg_ks requires either a username and password, or an activationkey.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
riak - This module handles some common Riak operations
New in version 1.2.
This module can be used to join nodes to a cluster, check the status of the cluster.
parameter | required | default | choices | comments |
---|---|---|---|---|
command | no |
| The command you would like to perform against the cluster. | |
config_dir | no | /etc/riak | The path to the riak configuration directory | |
http_conn | no | 127.0.0.1:8098 | The ip address and port that is listening for Riak HTTP queries | |
target_node | no | riak@127.0.0.1 | The target node for certain operations (join, ping) | |
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. (added in Ansible 1.5.1) |
wait_for_handoffs | no | Number of seconds to wait for handoffs to complete. | ||
wait_for_ring | no | Number of seconds to wait for all nodes to agree on the ring. | ||
wait_for_service | no | None |
| Waits for a riak service to come online before continuing. |
Join's a Riak node to another node
- riak: command=join target_node=riak@10.1.1.1
Wait for handoffs to finish. Use with async and poll.
- riak: wait_for_handoffs=yes
Wait for riak_kv service to startup
- riak: wait_for_service=kv
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rollbar_deployment - Notify Rollbar about app deployments
Author: | Max Riveiro |
---|
New in version 1.6.
Notify Rollbar about app deployments (see https://rollbar.com/docs/deploys_other/)
parameter | required | default | choices | comments |
---|---|---|---|---|
comment | no | Deploy comment (e.g. what is being deployed). | ||
environment | yes | Name of the environment being deployed, e.g. 'production'. | ||
revision | yes | Revision number/sha being deployed. | ||
rollbar_user | no | Rollbar username of the user who deployed. | ||
token | yes | Your project access token. | ||
url | no | https://api.rollbar.com/api/1/deploy/ | Optional URL to submit the notification to. | |
user | no | User who deployed. | ||
validate_certs | no | yes |
| If no, SSL certificates for the target url will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
- rollbar_deployment: token=AAAAAA
environment='staging'
user='ansible'
revision=4.2,
rollbar_user='admin',
comment='Test Deploy'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
route53 - add or delete entries in Amazons Route53 DNS service
Author: | Bruce Pennypacker |
---|
New in version 1.3.
Creates and deletes DNS records in Amazons Route53 service
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. | ||
aws_secret_key | no | AWS secret key. | ||
command | yes |
| Specifies the action to take. | |
overwrite | no | Whether an existing record should be overwritten on create if values do not match | ||
record | yes | The full DNS record to create or delete | ||
ttl | no | 3600 (one hour) | The TTL to give the new record | |
type | yes |
| The type of DNS record to create | |
value | no | The new value when creating a DNS record. Multiple comma-spaced values are allowed. When deleting a record all values for the record must be specified or Route53 will not delete it. | ||
zone | yes | The DNS zone to modify |
Note
Requires boto
Add new.foo.com as an A record with 3 IPs
- route53: >
command=create
zone=foo.com
record=new.foo.com
type=A
ttl=7200
value=1.1.1.1,2.2.2.2,3.3.3.3
Retrieve the details for new.foo.com
- route53: >
command=get
zone=foo.com
record=new.foo.com
type=A
register: rec
Delete new.foo.com A record using the results from the get command
- route53: >
command=delete
zone=foo.com
record={{ rec.set.record }}
type={{ rec.set.type }}
value={{ rec.set.value }}
Add an AAAA record. Note that because there are colons in the value
that the entire parameter list must be quoted:
- route53: >
command=create
zone=foo.com
record=localhost.foo.com
type=AAAA
ttl=7200
value="::1"
Add a TXT record. Note that TXT and SPF records must be surrounded
by quotes when sent to Route 53:
- route53: >
command=create
zone=foo.com
record=localhost.foo.com
type=TXT
ttl=7200
value=""bar""
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
rpm_key - Adds or removes a gpg key from the rpm db
Author: | Hector Acosta <hector .acosta@gazzang.com> |
---|
New in version 1.3.
Adds or removes (rpm –import) a gpg key to your rpm database.
parameter | required | default | choices | comments |
---|---|---|---|---|
key | yes | Key that will be modified. Can be a url, a file, or a keyid if the key already exists in the database. | ||
state | no | present |
| Wheather the key will be imported or removed from the rpm db. |
validate_certs | no | yes |
| If no and the key is a url starting with https, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
Example action to import a key from a url
- rpm_key: state=present key=http://apt.sw.be/RPM-GPG-KEY.dag.txt
Example action to import a key from a file
- rpm_key: state=present key=/path/to/key.gpg
Example action to ensure a key is not present in the db
- rpm_key: state=absent key=DEADB33F
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
s3 - idempotent S3 module putting a file into S3.
Author: | Lester Wade, Ralph Tice |
---|
New in version 1.1.
This module allows the user to dictate the presence of a given file in an S3 bucket. If or once the key (file) exists in the bucket, it returns a time-expired download URL. This module has a dependency on python-boto.
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | ||
aws_secret_key | no | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | ||
bucket | yes | Bucket name. | ||
dest | no | The destination file path when downloading an object/key with a GET operation. (added in Ansible 1.3) | ||
expiration | no | 600 | Time limit (in seconds) for the URL generated and returned by S3/Walrus when performing a mode=put or mode=geturl operation. | |
metadata | no | Metadata for PUT operation, as a dictionary of 'key=value' and 'key=value,key=value'. (added in Ansible 1.6) | ||
mode | yes | Switches the module behaviour between put (upload), get (download), geturl (return download url (Ansible 1.3+), getstr (download object as string (1.3+)), create (bucket) and delete (bucket). | ||
object | no | Keyname of the object inside the bucket. Can be used to create "virtual directories", see examples. (added in Ansible 1.3) | ||
overwrite | no | True | Force overwrite either locally on the filesystem or remotely with the object/key. Used with PUT and GET operations. (added in Ansible 1.2) | |
s3_url | no | S3 URL endpoint. If not specified then the S3_URL environment variable is used, if that variable is defined. Ansible tries to guess if fakes3 (https://github.com/jubos/fake-s3) or Eucalyptus Walrus (https://github.com/eucalyptus/eucalyptus/wiki/Walrus) is used and configure connection accordingly. Current heuristic is: everything with scheme fakes3:// is fakes3, everything else not ending with amazonaws.com is Walrus. | ||
src | no | The source file path when performing a PUT operation. (added in Ansible 1.3) |
Note
Requires boto
Simple PUT operation
- s3: bucket=mybucket object=/my/desired/key.txt src=/usr/local/myfile.txt mode=put
Simple GET operation
- s3: bucket=mybucket object=/my/desired/key.txt dest=/usr/local/myfile.txt mode=get
GET/download and overwrite local file (trust remote)
- s3: bucket=mybucket object=/my/desired/key.txt dest=/usr/local/myfile.txt mode=get
GET/download and do not overwrite local file (trust remote)
- s3: bucket=mybucket object=/my/desired/key.txt dest=/usr/local/myfile.txt mode=get force=false
PUT/upload and overwrite remote file (trust local)
- s3: bucket=mybucket object=/my/desired/key.txt src=/usr/local/myfile.txt mode=put
PUT/upload with metadata
- s3: bucket=mybucket object=/my/desired/key.txt src=/usr/local/myfile.txt mode=put metadata='Content-Encoding=gzip'
PUT/upload with multiple metadata
- s3: bucket=mybucket object=/my/desired/key.txt src=/usr/local/myfile.txt mode=put metadata='Content-Encoding=gzip,Cache-Control=no-cache'
PUT/upload and do not overwrite remote file (trust local)
- s3: bucket=mybucket object=/my/desired/key.txt src=/usr/local/myfile.txt mode=put force=false
Download an object as a string to use else where in your playbook
- s3: bucket=mybucket object=/my/desired/key.txt src=/usr/local/myfile.txt mode=getstr
Create an empty bucket
- s3: bucket=mybucket mode=create
Create a bucket with key as directory
- s3: bucket=mybucket object=/my/directory/path mode=create
Delete a bucket and all contents
- s3: bucket=mybucket mode=delete
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
script - Runs a local script on a remote node after transferring it
Author: | Michael DeHaan |
---|
The script module takes the script name followed by a list of space-delimited arguments. The local script at path will be transfered to the remote node and then executed. The given script will be processed through the shell environment on the remote node. This module does not require python on the remote system, much like the raw module.
parameter | required | default | choices | comments |
---|---|---|---|---|
creates | no | a filename, when it already exists, this step will not be run. (added in Ansible 1.5) | ||
free_form | yes | path to the local script file followed by optional arguments. | ||
removes | no | a filename, when it does not exist, this step will not be run. (added in Ansible 1.5) |
Example from Ansible Playbooks
- script: /some/local/script.sh --some-arguments 1234
Run a script that creates a file, but only if the file is not yet created
- script: /some/local/create_file.sh --some-arguments 1234 creates=/the/created/file.txt
Run a script that removes a file, but only if the file is not yet removed
- script: /some/local/remove_file.sh --some-arguments 1234 removes=/the/removed/file.txt
Note
It is usually preferable to write Ansible modules than pushing scripts. Convert your script to an Ansible module for bonus points!
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
seboolean - Toggles SELinux booleans.
Author: | Stephen Fromm |
---|
Toggles SELinux booleans.
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | Name of the boolean to configure | ||
persistent | no |
| Set to yes if the boolean setting should survive a reboot | |
state | yes |
| Desired boolean value |
Set (httpd_can_network_connect) flag on and keep it persistent across reboots
- seboolean: name=httpd_can_network_connect state=yes persistent=yes
Note
Not tested on any debian based system
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
selinux - Change policy and state of SELinux
Author: | Derek Carter <goozbach @friocorte.com> |
---|
Configures the SELinux mode and policy. A reboot may be required after usage. Ansible will not issue this reboot but will let you know when it is required.
parameter | required | default | choices | comments |
---|---|---|---|---|
conf | no | /etc/selinux/config | path to the SELinux configuration file, if non-standard | |
policy | no | name of the SELinux policy to use (example: targeted) will be required if state is not disabled | ||
state | yes |
| The SELinux mode |
Note
Requires libselinux-python
- selinux: policy=targeted state=enforcing
- selinux: policy=targeted state=permissive
- selinux: state=disabled
Note
Not tested on any debian based system
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
service - Manage services.
Author: | Michael DeHaan |
---|
Controls services on remote hosts.
parameter | required | default | choices | comments |
---|---|---|---|---|
arguments | no | Additional arguments provided on the command line | ||
enabled | no |
| Whether the service should start on boot. At least one of state and enabled are required. | |
name | yes | Name of the service. | ||
pattern | no | If the service does not respond to the status command, name a substring to look for as would be found in the output of the ps command as a stand-in for a status result. If the string is found, the service will be assumed to be running. (added in Ansible 0.7) | ||
runlevel | no | default | For OpenRC init scripts (ex: Gentoo) only. The runlevel that this service belongs to. | |
sleep | no | If the service is being restarted then sleep this many seconds between the stop and start command. This helps to workaround badly behaving init scripts that exit immediately after signaling a process to stop. (added in Ansible 1.3) | ||
state | no |
| started/stopped are idempotent actions that will not run commands unless necessary. restarted will always bounce the service. reloaded will always reload. At least one of state and enabled are required. |
Example action to start service httpd, if not running
- service: name=httpd state=started
Example action to stop service httpd, if running
- service: name=httpd state=stopped
Example action to restart service httpd, in all cases
- service: name=httpd state=restarted
Example action to reload service httpd, in all cases
- service: name=httpd state=reloaded
Example action to enable service httpd, and not touch the running state
- service: name=httpd enabled=yes
Example action to start service foo, based on running process /usr/bin/foo
- service: name=foo pattern=/usr/bin/foo state=started
Example action to restart network service for interface eth0
- service: name=network state=restarted args=eth0
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
set_fact - Set host facts from a task
Author: | Dag Wieers |
---|
New in version 1.2.
This module allows setting new variables. Variables are set on a host-by-host basis just like facts discovered by the setup module. These variables will survive between plays.
parameter | required | default | choices | comments |
---|---|---|---|---|
key_value | yes | The set_fact module takes key=value pairs as variables to set in the playbook scope. Or alternatively, accepts complex arguments using the args: statement. |
Example setting host facts using key=value pairs
- set_fact: one_fact="something" other_fact="{{ local_var * 2 }}"
Example setting host facts using complex arguments
- set_fact:
one_fact: something
other_fact: "{{ local_var * 2 }}"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
setup - Gathers facts about remote hosts
Author: | Michael DeHaan |
---|
This module is automatically called by playbooks to gather useful variables about remote hosts that can be used in playbooks. It can also be executed directly by /usr/bin/ansible to check what variables are available to a host. Ansible provides many facts about the system, automatically.
parameter | required | default | choices | comments |
---|---|---|---|---|
fact_path | no | /etc/ansible/facts.d | path used for local ansible facts (*.fact) - files in this dir will be run (if executable) and their results be added to ansible_local facts if a file is not executable it is read. File/results format can be json or ini-format (added in Ansible 1.3) | |
filter | no | * | if supplied, only return facts that match this shell-style (fnmatch) wildcard. (added in Ansible 1.1) |
Display facts from all hosts and store them indexed by I(hostname) at C(/tmp/facts).
ansible all -m setup --tree /tmp/facts
Display only facts regarding memory found by ansible on all hosts and output them.
ansible all -m setup -a 'filter=ansible_*_mb'
Display only facts returned by facter.
ansible all -m setup -a 'filter=facter_*'
Display only facts about certain interfaces.
ansible all -m setup -a 'filter=ansible_eth[0-2]'
Note
More ansible facts will be added with successive releases. If facter or ohai are installed, variables from these programs will also be snapshotted into the JSON file for usage in templating. These variables are prefixed with facter_ and ohai_ so it’s easy to tell their source. All variables are bubbled up to the caller. Using the ansible facts and choosing to not install facter and ohai means you can avoid Ruby-dependencies on your remote systems. (See also facter and ohai.)
Note
The filter option filters only the first level subkey below ansible_facts.
Note
If the target host is Windows, you will not currently have the ability to use fact_path or filter as this is provided by a simpler implementation of the module. Different facts are returned for Windows hosts.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
shell - Execute commands in nodes.
Author: | Michael DeHaan |
---|
The shell module takes the command name followed by a list of space-delimited arguments. It is almost exactly like the command module but runs the command through a shell (/bin/sh) on the remote node.
parameter	required	default	choices	comments
chdir | no | cd into this directory before running the command (added in Ansible 0.6) | ||
creates | no | a filename, when it already exists, this step will not be run. | ||
executable | no | change the shell used to execute the command. Should be an absolute path to the executable. (added in Ansible 0.9) | ||
free_form | yes | The shell module takes a free form command to run, as a string. There's not an actual option named "free form". See the examples! | ||
removes | no | a filename, when it does not exist, this step will not be run. (added in Ansible 0.8) |
Execute the command in remote shell; stdout goes to the specified
file on the remote.
- shell: somescript.sh >> somelog.txt
Change the working directory to somedir/ before executing the command.
- shell: somescript.sh >> somelog.txt chdir=somedir/
You can also use the 'args' form to provide the options. This command
will change the working directory to somedir/ and will only run when
somedir/somelog.txt doesn't exist.
- shell: somescript.sh >> somelog.txt
args:
chdir: somedir/
creates: somelog.txt
Note
If you want to execute a command securely and predictably, it may be better to use the command module instead. Best practices when writing playbooks will follow the trend of using command unless shell is explicitly required. When running ad-hoc commands, use your best judgement.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
slack - Send Slack notifications
Author: | Ramon de la Fuente <ramon @delafuente.nl> |
---|
New in version 1.6.
The slack module sends notifications to http://slack.com via the Incoming WebHook integration
parameter | required | default | choices | comments |
---|---|---|---|---|
channel | no | Channel to send the message to. If absent, the message goes to the channel selected for the token. | ||
domain | yes | Slack (sub)domain for your environment without protocol. (i.e. future500.slack.com) | ||
icon_emoji | no | Emoji for the message sender. See Slack documentation for options. (if icon_emoji is set, icon_url will not be used) | ||
icon_url | no | Url for the message sender's icon (default http://www.ansible.com/favicon.ico) | ||
link_names | no | 1 |
| Automatically create links for channels and usernames in msg. |
msg | yes | Message to send. | ||
parse | no |
| Setting for the message parser at Slack | |
token | yes | Slack integration token | ||
username | no | ansible | This is the sender of the message. | |
validate_certs | no | yes |
| If no, SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. |
- name: Send notification message via Slack
local_action:
module: slack
domain: future500.slack.com
token: thetokengeneratedbyslack
msg: "{{ inventory_hostname }} completed"
- name: Send notification message via Slack all options
local_action:
module: slack
domain: future500.slack.com
token: thetokengeneratedbyslack
msg: "{{ inventory_hostname }} completed"
channel: "#ansible"
username: "Ansible on {{ inventory_hostname }}"
icon_url: "http://www.example.com/some-image-file.png"
link_names: 0
parse: 'none'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
slurp - Slurps a file from remote nodes
Author: | Michael DeHaan |
---|
This module works like fetch. It is used for fetching a base64- encoded blob containing the data in a remote file.
parameter | required | default | choices | comments |
---|---|---|---|---|
src | yes | The file on the remote system to fetch. This must be a file, not a directory. |
ansible host -m slurp -a 'src=/tmp/xx'
host | success >> {
"content": "aGVsbG8gQW5zaWJsZSB3b3JsZAo=",
"encoding": "base64"
}
Note
See also: fetch
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
sns - Send Amazon Simple Notification Service (SNS) messages
Author: | Michael J. Schultz |
---|
New in version 1.6.
The sns module sends notifications to a topic on your Amazon SNS account
parameter | required | default | choices | comments |
---|---|---|---|---|
aws_access_key | no | None | AWS access key. If not set then the value of the AWS_ACCESS_KEY environment variable is used. | |
aws_secret_key | no | None | AWS secret key. If not set then the value of the AWS_SECRET_KEY environment variable is used. | |
no | Message to send to email-only subscription | |||
http | no | Message to send to HTTP-only subscription | ||
https | no | Message to send to HTTPS-only subscription | ||
msg | yes | Default message to send. | ||
region | no | The AWS region to use. If not specified then the value of the EC2_REGION environment variable, if any, is used. | ||
sms | no | Message to send to SMS-only subscription | ||
sqs | no | Message to send to SQS-only subscription | ||
subject | no | Subject line for email delivery. | ||
topic | yes | The topic you want to publish to. |
Note
Requires boto
- name: Send default notification message via SNS
local_action:
module: sns
msg: "{{ inventory_hostname }} has completed the play."
subject: "Deploy complete!"
topic: "deploy"
- name: Send notification messages via SNS with short message for SMS
local_action:
module: sns
msg: "{{ inventory_hostname }} has completed the play."
sms: "deployed!"
subject: "Deploy complete!"
topic: "deploy"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
stackdriver - Send code deploy and annotation events to stackdriver
Author: | Ben Whaley |
---|
New in version 1.6.
Send code deploy and annotation events to Stackdriver
parameter | required | default | choices | comments |
---|---|---|---|---|
annotated_by | no | Ansible | The person or robot who the annotation should be attributed to. | |
deployed_by | no | Ansible | The person or robot responsible for deploying the code | |
deployed_to | no | The environment code was deployed to. (ie: development, staging, production) | ||
event | no |
| The type of event to send, either annotation or deploy | |
event_epoch | no | Unix timestamp of where the event should appear in the timeline, defaults to now. Be careful with this. | ||
instance_id | no | id of an EC2 instance that this event should be attached to, which will limit the contexts where this event is shown | ||
key | yes | API key. | ||
level | no | INFO |
| one of INFO/WARN/ERROR, defaults to INFO if not supplied. May affect display. |
msg | no | The contents of the annotation message, in plain text. Limited to 256 characters. Required for annotation. | ||
repository | no | The repository (or project) deployed | ||
revision_id | no | The revision of the code that was deployed. Required for deploy events |
- stackdriver: key=AAAAAA event=deploy deployed_to=production deployed_by=leeroyjenkins repository=MyWebApp revision_id=abcd123
- stackdriver: key=AAAAAA event=annotation msg="Greetings from Ansible" annotated_by=leeroyjenkins level=WARN instance_id=i-abcd1234
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
stat - retrieve file or file system status
Author: | Bruce Pennypacker |
---|
New in version 1.3.
Retrieves facts for a file similar to the linux/unix ‘stat’ command.
parameter | required | default | choices | comments |
---|---|---|---|---|
follow | no | Whether to follow symlinks | ||
get_md5 | no | True | Whether to return the md5 sum of the file | |
path | yes | The full path of the file/object to get the facts of |
Obtain the stats of /etc/foo.conf, and check that the file still belongs
to 'root'. Fail otherwise.
- stat: path=/etc/foo.conf
register: st
- fail: msg="Whoops! file ownership has changed"
when: st.stat.pw_name != 'root'
Determine if a path exists and is a directory. Note we need to test
both that p.stat.isdir actually exists, and also that it's set to true.
- stat: path=/path/to/something
register: p
- debug: msg="Path exists and is a directory"
when: p.stat.isdir is defined and p.stat.isdir == true
Don't do md5 checksum
- stat: path=/path/to/myhugefile get_md5=no
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
subversion - Deploys a subversion repository.
Author: | Dane Summers, njharman @gmail.com |
---|
Deploy given repository URL / revision to dest. If dest exists, update to the specified revision, otherwise perform a checkout.
parameter | required | default | choices | comments |
---|---|---|---|---|
dest | yes | Absolute path where the repository should be deployed. | ||
executable | no | Path to svn executable to use. If not supplied, the normal mechanism for resolving binary paths will be used. (added in Ansible 1.4) | ||
export | no | no |
| If yes, do export instead of checkout/update. (added in Ansible 1.6) |
force | no | yes |
| If yes, modified files will be discarded. If no, module will fail if it encounters modified files. |
password | no | --password parameter passed to svn. | ||
repo | yes | The subversion URL to the repository. | ||
revision | no | HEAD | Specific revision to checkout. | |
username | no | --username parameter passed to svn. |
Checkout subversion repository to specified folder.
- subversion: repo=svn+ssh://an.example.org/path/to/repo dest=/src/checkout
Export subversion directory to folder
- subversion: repo=svn+ssh://an.example.org/path/to/repo dest=/src/export export=True
Note
Requires svn to be installed on the client.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
supervisorctl - Manage the state of a program or group of programs running via supervisord
Author: | Matt Wright, Aaron Wang <inetfuture @gmail.com> |
---|
Manage the state of a program or group of programs running via supervisord
parameter | required | default | choices | comments |
---|---|---|---|---|
config | no | The supervisor configuration file path (added in Ansible 1.3) | ||
name | yes | The name of the supervisord program or group to manage.The name will be taken as group name when it ends with a colon :Group support is only available in Ansible version 1.6 or later. | ||
password | no | password to use for authentication (added in Ansible 1.3) | ||
server_url | no | URL on which supervisord server is listening (added in Ansible 1.3) | ||
state | yes |
| The desired state of program/group. | |
supervisorctl_path | no | path to supervisorctl executable (added in Ansible 1.4) | ||
username | no | username to use for authentication (added in Ansible 1.3) |
Note
Requires supervisorctl
Manage the state of program to be in 'started' state.
- supervisorctl: name=my_app state=started
Manage the state of program group to be in 'started' state.
- supervisorctl: name='my_apps:' state=started
Restart my_app, reading supervisorctl configuration from a specified file.
- supervisorctl: name=my_app state=restarted config=/var/opt/my_project/supervisord.conf
Restart my_app, connecting to supervisord with credentials and server URL.
- supervisorctl: name=my_app state=restarted username=test password=testpass server_url=http://localhost:9001
Note
When state = present, the module will call supervisorctl reread then supervisorctl add if the program/group does not exist.
Note
When state = restarted, the module will call supervisorctl update then call supervisorctl restart.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
svr4pkg - Manage Solaris SVR4 packages
Author: | Boyd Adamson |
---|
Manages SVR4 packages on Solaris 10 and 11. These were the native packages on Solaris <= 10 and are available as a legacy feature in Solaris 11. Note that this is a very basic packaging system. It will not enforce dependencies on install or remove.
parameter | required | default | choices | comments |
---|---|---|---|---|
category | no |
| Install/Remove category instead of a single package. (added in Ansible 1.6) | |
name | yes | Package name, e.g. SUNWcsr | ||
proxy | no | HTTP[s] proxy to be used if src is a URL. | ||
response_file | no | Specifies the location of a response file to be used if package expects input on install. (added in Ansible 1.4) | ||
src | no | Specifies the location to install the package from. Required when state=present.Can be any path acceptable to the pkgadd command's -d option. e.g.: somefile.pkg, /dir/with/pkgs, http:/server/mypkgs.pkg.If using a file or directory, they must already be accessible by the host. See the copy module for a way to get them there. | ||
state | yes |
| Whether to install (present), or remove (absent) a package.If the package is to be installed, then src is required.The SVR4 package system doesn't provide an upgrade operation. You need to uninstall the old, then install the new package. | |
zone | no | all |
| Whether to install the package only in the current zone, or install it into all zones.The installation into all zones works only if you are working with the global zone. (added in Ansible 1.6) |
Install a package from an already copied file
- svr4pkg: name=CSWcommon src=/tmp/cswpkgs.pkg state=present
Install a package directly from an http site
- svr4pkg: name=CSWpkgutil src=http://get.opencsw.org/now state=present zone=current
Install a package with a response file
- svr4pkg: name=CSWggrep src=/tmp/third-party.pkg response_file=/tmp/ggrep.response state=present
Ensure that a package is not installed.
- svr4pkg: name=SUNWgnome-sound-recorder state=absent
Ensure that a category is not installed.
- svr4pkg: name=FIREFOX state=absent category=true
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
swdepot - Manage packages with swdepot package manager (HP-UX)
Author: | Raul Melo |
---|
New in version 1.4.
Will install, upgrade and remove packages with swdepot package manager (HP-UX)
parameter | required | default | choices | comments |
---|---|---|---|---|
depot | no | The source repository from which install or upgrade a package. (added in Ansible 1.4) | ||
name | yes | package name. (added in Ansible 1.4) | ||
state | yes |
| whether to install (present, latest), or remove (absent) a package. (added in Ansible 1.4) |
- swdepot: name=unzip-6.0 state=installed depot=repository:/path
- swdepot: name=unzip state=latest depot=repository:/path
- swdepot: name=unzip state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
synchronize - Uses rsync to make synchronizing file paths in your playbooks quick and easy.
Author: | Timothy Appnel |
---|
New in version 1.4.
This is a wrapper around rsync. Of course you could just use the command action to call rsync yourself, but you also have to add a fair number of boilerplate options and host facts. You still may need to call rsync directly via command or shell depending on your use case. The synchronize action is meant to do common things with rsync easily. It does not provide access to the full power of rsync, but does make most invocations easier to follow.
parameter | required | default | choices | comments |
---|---|---|---|---|
archive | no | yes |
| Mirrors the rsync archive flag, enables recursive, links, perms, times, owner, group flags and -D. |
checksum | no | no |
| Skip based on checksum, rather than mod-time & size; Note that that "archive" option is still enabled by default - the "checksum" option will not disable it. (added in Ansible 1.6) |
copy_links | no | no |
| Copy symlinks as the item that they point to (the referent) is copied, rather than the symlink. |
delete | no | no |
| Delete files that don't exist (after transfer, not before) in the src path. This option requires recursive=yes. |
dest | yes | Path on the destination machine that will be synchronized from the source; The path can be absolute or relative. | ||
dest_port | no | 22 | Port number for ssh on the destination host. The ansible_ssh_port inventory var takes precedence over this value. (added in Ansible 1.5) | |
dirs | no | no |
| Transfer directories without recursing |
existing_only | no | no |
| Skip creating new files on receiver. (added in Ansible 1.5) |
group | no | the value of the archive option |
| Preserve group |
links | no | the value of the archive option |
| Copy symlinks as symlinks. |
mode | no | push |
| Specify the direction of the synchroniztion. In push mode the localhost or delegate is the source; In pull mode the remote host in context is the source. |
owner | no | the value of the archive option |
| Preserve owner (super user only) |
perms | no | the value of the archive option |
| Preserve permissions. |
recursive | no | the value of the archive option |
| Recurse into directories. |
rsync_opts | no | Specify additional rsync options by passing in an array. (added in Ansible 1.6) | ||
rsync_path | no | Specify the rsync command to run on the remote machine. See --rsync-path on the rsync man page. | ||
rsync_timeout | no | Specify a --timeout for the rsync command in seconds. | ||
set_remote_user | no | True | put user@ for the remote paths. If you have a custom ssh config to define the remote user for a host that does not match the inventory user, you should set this parameter to "no". | |
src | yes | Path on the source machine that will be synchronized to the destination; The path can be absolute or relative. | ||
times | no | the value of the archive option |
| Preserve modification times |
Synchronization of src on the control machine to dest on the remote hosts
synchronize: src=some/relative/path dest=/some/absolute/path
Synchronization without any --archive options enabled
synchronize: src=some/relative/path dest=/some/absolute/path archive=no
Synchronization with --archive options enabled except for --recursive
synchronize: src=some/relative/path dest=/some/absolute/path recursive=no
Synchronization with --archive options enabled except for --times, with --checksum option enabled
synchronize: src=some/relative/path dest=/some/absolute/path checksum=yes times=no
Synchronization without --archive options enabled except use --links
synchronize: src=some/relative/path dest=/some/absolute/path archive=no links=yes
Synchronization of two paths both on the control machine
local_action: synchronize src=some/relative/path dest=/some/absolute/path
Synchronization of src on the inventory host to the dest on the localhost in
pull mode
synchronize: mode=pull src=some/relative/path dest=/some/absolute/path
Synchronization of src on delegate host to dest on the current inventory host
synchronize: >
src=some/relative/path dest=/some/absolute/path
delegate_to: delegate.host
Synchronize and delete files in dest on the remote host that are not found in src of localhost.
synchronize: src=some/relative/path dest=/some/absolute/path delete=yes
Synchronize using an alternate rsync command
synchronize: src=some/relative/path dest=/some/absolute/path rsync_path="sudo rsync"
Example .rsync-filter file in the source directory
- var # exclude any path whose last part is 'var'
- /var # exclude any path starting with 'var' starting at the source directory
+ /var/conf # include /var/conf even though it was previously excluded
Synchronize passing in extra rsync options
synchronize: src=/tmp/helloworld dest=/var/www/helloword rsync_opts=--no-motd,--exclude=.git
Note
Inspect the verbose output to validate the destination user/host/path are what was expected.
Note
The remote user for the dest path will always be the remote_user, not the sudo_user.
Note
Expect that dest=~/x will be ~<remote_user>/x even if using sudo.
Note
To exclude files and directories from being synchronized, you may add .rsync-filter files to the source directory.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
sysctl - Manage entries in sysctl.conf.
Author: | David “DaviXX” CHANIAL <david .chanial@gmail.com> |
---|
New in version 1.0.
This module manipulates sysctl entries and optionally performs a /sbin/sysctl -p after changing them.
parameter	required	default	choices	comments
ignoreerrors	no			
Use this option to ignore errors about unknown keys.				
name	yes	The dot-separated path (aka key) specifying the sysctl variable.		
reload	no	yes		
If yes, performs a /sbin/sysctl -p if the sysctl_file is updated. If no, does not reload sysctl even if the sysctl_file is updated.				
state	no	present		
Whether the entry should be present or absent in the sysctl file.				
sysctl_file	no	/etc/sysctl.conf	Specifies the absolute path to sysctl.conf, if not /etc/sysctl.conf.	
sysctl_set	no			
Verify token value with the sysctl command and set with -w if necessary (added in Ansible 1.5)				
value | no | Desired value of the sysctl key. |
Set vm.swappiness to 5 in /etc/sysctl.conf
- sysctl: name=vm.swappiness value=5 state=present
Remove kernel.panic entry from /etc/sysctl.conf
- sysctl: name=kernel.panic state=absent sysctl_file=/etc/sysctl.conf
Set kernel.panic to 3 in /tmp/test_sysctl.conf
- sysctl: name=kernel.panic value=3 sysctl_file=/tmp/test_sysctl.conf reload=no
Set ip fowarding on in /proc and do not reload the sysctl file
- sysctl: name="net.ipv4.ip_forward" value=1 sysctl_set=yes
Set ip forwarding on in /proc and in the sysctl file and reload if necessary
- sysctl: name="net.ipv4.ip_forward" value=1 sysctl_set=yes state=present reload=yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
template - Templates a file out to a remote server.
Author: | Michael DeHaan |
---|
Templates are processed by the Jinja2 templating language (http://jinja.pocoo.org/docs/) - documentation on the template formatting can be found in the Template Designer Documentation (http://jinja.pocoo.org/docs/templates/). Six additional variables can be used in templates: ansible_managed (configurable via the defaults section of ansible.cfg) contains a string which can be used to describe the template name, host, modification time of the template file and the owner uid, template_host contains the node name of the template’s machine, template_uid the owner, template_path the absolute path of the template, template_fullpath is the absolute path of the template, and template_run_date is the date that the template was rendered. Note that including a string that uses a date in the template will result in the template being marked ‘changed’ each time.
parameter | required | default | choices | comments |
---|---|---|---|---|
backup | no | no |
| Create a backup file including the timestamp information so you can get the original file back if you somehow clobbered it incorrectly. |
dest | yes | Location to render the template to on the remote machine. | ||
src | yes | Path of a Jinja2 formatted template on the local server. This can be a relative or absolute path. | ||
validate | no | The validation command to run before copying into place.The path to the file to validate is passed in via '%s' which must be present as in the visudo example below.validation to run before copying into place. The command is passed securely so shell features like expansion and pipes won't work. (added in Ansible 1.2) |
Example from Ansible Playbooks
- template: src=/mytemplates/foo.j2 dest=/etc/file.conf owner=bin group=wheel mode=0644
Copy a new "sudoers" file into place, after passing validation with visudo
- template: src=/mine/sudoers dest=/etc/sudoers validate='visudo -cf %s'
Note
Since Ansible version 0.9, templates are loaded with trim_blocks=True.
Note
Also, you can override jinja2 settings by adding a special header to template file. i.e. #jinja2:variable_start_string:'[%' , variable_end_string:'%]' which changes the variable interpolation markers to [% var %] instead of {{ var }}. This is the best way to prevent evaluation of things that look like, but should not be Jinja2. raw/endraw in Jinja2 will not work as you expect because templates in Ansible are recursively evaluated.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
twilio - Sends a text message to a mobile phone through Twilio.
Author: | Matt Makai |
---|
New in version 1.6.
Sends a text message to a phone number through an the Twilio SMS service.
parameter | required | default | choices | comments |
---|---|---|---|---|
account_sid | yes | user's account id for Twilio found on the account page | ||
auth_token | yes | user's authentication token for Twilio found on the account page | ||
from_number | yes | what phone number to send the text message from, format +15551112222 | ||
msg | yes | the body of the text message | ||
to_number | yes | what phone number to send the text message to, format +15551112222 |
Note
Requires urllib
Note
Requires urllib2
send a text message from the local server about the build status to (555) 303 5681
note: you have to have purchased the 'from_number' on your Twilio account
- local_action: text msg="All servers with webserver role are now configured."
account_sid={{ twilio_account_sid }}
auth_token={{ twilio_auth_token }}
from_number=+15552014545 to_number=+15553035681
send a text message from a server to (555) 111 3232
note: you have to have purchased the 'from_number' on your Twilio account
- text: msg="This server's configuration is now complete."
account_sid={{ twilio_account_sid }}
auth_token={{ twilio_auth_token }}
from_number=+15553258899 to_number=+15551113232
Note
Like the other notification modules, this one requires an external dependency to work. In this case, you’ll need a Twilio account with a purchased or verified phone number to send the text message.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
typetalk - Send a message to typetalk
Author: | Takashi Someda <someda @isenshi.com> |
---|
New in version 1.6.
Send a message to typetalk using typetalk API (http://developers.typetalk.in/)
parameter | required | default | choices | comments |
---|---|---|---|---|
client_id | yes | OAuth2 client ID | ||
client_secret | yes | OAuth2 client secret | ||
msg | yes | message body | ||
topic | yes | topic id to post message |
Note
Requires urllib
Note
Requires urllib2
Note
Requires json
- typetalk: client_id=12345 client_secret=12345 topic=1 msg="install completed"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
ufw - Manage firewall with UFW
Author: | Aleksey Ovcharenko, Jarno Keskikangas, Ahti Kitsik |
---|
New in version 1.6.
Manage firewall with UFW.
parameter | required | default | choices | comments |
---|---|---|---|---|
delete | no |
| Delete rule. | |
direction | no |
| Select direction for a rule or default policy command. | |
from_ip | no | any | Source IP address. | |
from_port | no | Source port. | ||
insert | no | Insert the corresponding rule as rule number NUM | ||
log | no |
| Log new connections matched to this rule | |
logging | no |
| Toggles logging. Logged packets use the LOG_KERN syslog facility. | |
name | no | Use profile located in /etc/ufw/applications.d | ||
policy | no |
| Change the default policy for incoming or outgoing traffic. | |
proto | no |
| TCP/IP protocol. | |
rule | no |
| Add firewall rule | |
state | no |
| enabled reloads firewall and enables firewall on boot.disabled unloads firewall and disables firewall on boot.reloaded reloads firewall.reset disables and resets firewall to installation defaults. | |
to_ip | no | any | Destination IP address. | |
to_port | no | Destination port. |
Note
Requires ufw package
Allow everything and enable UFW
ufw: state=enabled policy=allow
Set logging
ufw: logging=on
Sometimes it is desirable to let the sender know when traffic is
being denied, rather than simply ignoring it. In these cases, use
reject instead of deny. In addition, log rejected connections:
ufw: rule=reject port=auth log=yes
ufw supports connection rate limiting, which is useful for protecting
against brute-force login attacks. ufw will deny connections if an IP
address has attempted to initiate 6 or more connections in the last
30 seconds. See http://www.debian-administration.org/articles/187
for details. Typical usage is:
ufw: rule=limit port=ssh proto=tcp
Allow OpenSSH
ufw: rule=allow name=OpenSSH
Delete OpenSSH rule
ufw: rule=allow name=OpenSSH delete=yes
Deny all access to port 53:
ufw: rule=deny port=53
Allow all access to tcp port 80:
ufw: rule=allow port=80 proto=tcp
Allow all access from RFC1918 networks to this host:
ufw: rule=allow src={{ item }}
with_items:
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
Deny access to udp port 514 from host 1.2.3.4:
ufw: rule=deny proto=udp src=1.2.3.4 port=514
Allow incoming access to eth0 from 1.2.3.5 port 5469 to 1.2.3.4 port 5469
ufw: rule=allow interface=eth0 direction=in proto=udp src=1.2.3.5 from_port=5469 dest=1.2.3.4 to_port=5469
Deny all traffic from the IPv6 2001:db8::/32 to tcp port 25 on this host.
Note that IPv6 must be enabled in /etc/default/ufw for IPv6 firewalling to work.
ufw: rule=deny proto=tcp src=2001:db8::/32 port=25
Note
See man ufw for more examples.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
unarchive - Copies an archive to a remote location and unpack it
Author: | Dylan Martin |
---|
New in version 1.4.
The unarchive module copies an archive file from the local machine to a remote and unpacks it.
parameter	required	default	choices	comments
copy	no	yes		
Should the file be copied from the local to the remote machine?				
creates | no | a filename, when it already exists, this step will not be run. (added in Ansible 1.6) | ||
dest | yes | Remote absolute path where the archive should be unpacked | ||
src | yes | Local path to archive file to copy to the remote server; can be absolute or relative. |
Example from Ansible Playbooks
- unarchive: src=foo.tgz dest=/var/lib/foo
Note
requires tar/unzip command on target host
Note
can handle gzip, bzip2 and xz compressed as well as uncompressed tar files
Note
detects type of archive automatically
Note
uses tar’s --diff arg to calculate if changed or not. If this arg is not supported, it will always unpack the archive
Note
does not detect if a .zip file is different from destination - always unzips
Note
existing files/directories in the destination which are not in the archive are not touched. This is the same behavior as a normal archive extraction
Note
existing files/directories in the destination which are not in the archive are ignored for purposes of deciding if the archive should be unpacked or not
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
uri - Interacts with webservices
Author: | Romeo Theriault |
---|
New in version 1.1.
Interacts with HTTP and HTTPS web services and supports Digest, Basic and WSSE HTTP authentication mechanisms.
parameter | required | default | choices | comments |
---|---|---|---|---|
HEADER_ | no | Any parameter starting with "HEADER_" is a sent with your request as a header. For example, HEADER_Content-Type="application/json" would send the header "Content-Type" along with your request with a value of "application/json". | ||
body | no | The body of the http request/response to the web service. | ||
creates | no | a filename, when it already exists, this step will not be run. | ||
dest | no | path of where to download the file to (if desired). If dest is a directory, the basename of the file on the remote server will be used. | ||
follow_redirects | no | safe |
| Whether or not the URI module should follow redirects. all will follow all redirects. safe will follow only "safe" redirects, where "safe" means that the client is only doing a GET or HEAD on the URI to which it is being redirected. none will not follow any redirects. Note that yes and no choices are accepted for backwards compatibility, where yes is the equivalent of all and no is the equivalent of safe. yes and no are deprecated and will be removed in some future version of Ansible. |
force_basic_auth | no | no |
| httplib2, the library used by the uri module only sends authentication information when a webservice responds to an initial request with a 401 status. Since some basic auth services do not properly send a 401, logins will fail. This option forces the sending of the Basic authentication header upon initial request. |
method | no | GET |
| The HTTP method of the request or response. |
others | no | all arguments accepted by the file module also work here | ||
password | no | password for the module to use for Digest, Basic or WSSE authentication. | ||
removes | no | a filename, when it does not exist, this step will not be run. | ||
return_content | no | no |
| Whether or not to return the body of the request as a "content" key in the dictionary result. If the reported Content-type is "application/json", then the JSON is additionally loaded into a key called json in the dictionary results. |
status_code | no | 200 | A valid, numeric, HTTP status code that signifies success of the request. Can also be comma separated list of status codes. | |
timeout | no | 30 | The socket level timeout in seconds | |
url | yes | HTTP or HTTPS URL in the form (http|https)://host.domain[:port]/path | ||
user | no | username for the module to use for Digest, Basic or WSSE authentication. |
Note
Requires urlparse
Note
Requires httplib2
Check that you can connect (GET) to a page and it returns a status 200
- uri: url=http://www.example.com
Check that a page returns a status 200 and fail if the word AWESOME is not in the page contents.
- action: uri url=http://www.example.com return_content=yes
register: webpage
- action: fail
when: 'AWESOME' not in "{{ webpage.content }}"
Create a JIRA issue
- uri: url=https://your.jira.example.com/rest/api/2/issue/
method=POST user=your_username password=your_pass
body="{{ lookup('file','issue.json') }}" force_basic_auth=yes
status_code=201 HEADER_Content-Type="application/json"
Login to a form based webpage, then use the returned cookie to
access the app in later tasks
- uri: url=https://your.form.based.auth.examle.com/index.php
method=POST body="name=your_username&password=your_password&enter=Sign%20in"
status_code=302 HEADER_Content-Type="application/x-www-form-urlencoded"
register: login
- uri: url=https://your.form.based.auth.example.com/dashboard.php
method=GET return_content=yes HEADER_Cookie="{{login.set_cookie}}"
Queue build of a project in Jenkins:
- uri: url=http://{{jenkins.host}}/job/{{jenkins.job}}/build?token={{jenkins.token}}
method=GET user={{jenkins.user}} password={{jenkins.password}} force_basic_auth=yes status_code=201
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
urpmi - Urpmi manager
Author: | Philippe Makowski |
---|
New in version 1.3.4.
Manages packages with urpmi (such as for Mageia or Mandriva)
parameter | required | default | choices | comments |
---|---|---|---|---|
force | no | True |
| Corresponds to the --force option for urpmi. |
no-suggests | no | True |
| Corresponds to the --no-suggests option for urpmi. |
pkg | yes | name of package to install, upgrade or remove. | ||
state | no | present |
| Indicates the desired package state |
update_cache | no |
| update the package database first urpmi.update -a. |
install package foo
- urpmi: pkg=foo state=present
remove package foo
- urpmi: pkg=foo state=absent
description: remove packages foo and bar
- urpmi: pkg=foo,bar state=absent
description: update the package database (urpmi.update -a -q) and install bar (bar will be the updated if a newer version exists)
- urpmi: name=bar, state=present, update_cache=yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
user - Manage user accounts
Author: | Stephen Fromm |
---|
Manage user accounts and user attributes.
parameter | required | default | choices | comments |
---|---|---|---|---|
append | no | no |
| If yes, will only add groups, not set them to just the list in groups. |
comment | no | Optionally sets the description (aka GECOS) of user account. | ||
createhome | no | yes |
| Unless set to no, a home directory will be made for the user when the account is created or if the home directory does not exist. |
force | no | no |
| When used with state=absent, behavior is as with userdel --force. |
generate_ssh_key | no | no |
| Whether to generate a SSH key for the user in question. This will not overwrite an existing SSH key. (added in Ansible 0.9) |
group | no | Optionally sets the user's primary group (takes a group name). | ||
groups | no | Puts the user in this comma-delimited list of groups. When set to the empty string ('groups='), the user is removed from all groups except the primary group. | ||
home | no | Optionally set the user's home directory. | ||
login_class | no | Optionally sets the user's login class for FreeBSD, OpenBSD and NetBSD systems. | ||
move_home | no | no |
| If set to yes when used with home=, attempt to move the user's home directory to the specified directory if it isn't there already. |
name | yes | Name of the user to create, remove or modify. | ||
non_unique | no | no |
| Optionally when used with the -u option, this option allows to change the user ID to a non-unique value. (added in Ansible 1.1) |
password | no | Optionally set the user's password to this crypted value. See the user example in the github examples directory for what this looks like in a playbook. The `FAQ <http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module>`_ contains details on various ways to generate these password values. | ||
remove | no | no |
| When used with state=absent, behavior is as with userdel --remove. |
shell | no | Optionally set the user's shell. | ||
ssh_key_bits | no | 2048 | Optionally specify number of bits in SSH key to create. (added in Ansible 0.9) | |
ssh_key_comment | no | ansible-generated | Optionally define the comment for the SSH key. (added in Ansible 0.9) | |
ssh_key_file | no | $HOME/.ssh/id_rsa | Optionally specify the SSH key filename. (added in Ansible 0.9) | |
ssh_key_passphrase | no | Set a passphrase for the SSH key. If no passphrase is provided, the SSH key will default to having no passphrase. (added in Ansible 0.9) | ||
ssh_key_type | no | rsa | Optionally specify the type of SSH key to generate. Available SSH key types will depend on implementation present on target host. (added in Ansible 0.9) | |
state | no | present |
| Whether the account should exist. When absent, removes the user account. |
system | no | no |
| When creating an account, setting this to yes makes the user a system account. This setting cannot be changed on existing users. |
uid | no | Optionally sets the UID of the user. | ||
update_password | no | always |
| always will update passwords if they differ. on_create will only set the password for newly created users. (added in Ansible 1.3) |
Note
Requires useradd
Note
Requires userdel
Note
Requires usermod
Add the user 'johnd' with a specific uid and a primary group of 'admin'
- user: name=johnd comment="John Doe" uid=1040 group=admin
Add the user 'james' with a bash shell, appending the group 'admins' and 'developers' to the user's groups
- user: name=james shell=/bin/bash groups=admins,developers append=yes
Remove the user 'johnd'
- user: name=johnd state=absent remove=yes
Create a 2048-bit SSH key for user jsmith
- user: name=jsmith generate_ssh_key=yes ssh_key_bits=2048
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
virt - Manages virtual machines supported by libvirt
Author: | Michael DeHaan, Seth Vidal |
---|
Manages virtual machines supported by libvirt.
parameter | required | default | choices | comments |
---|---|---|---|---|
command | no |
| in addition to state management, various non-idempotent commands are available. See examples | |
name | yes | name of the guest VM being managed. Note that VM must be previously defined with xml. | ||
state | no | no |
| Note that there may be some lag for state requests like shutdown since these refer only to VM states. After starting a guest, it may not be immediately accessible. |
uri | no | libvirt connection uri | ||
xml | no | XML document used with the define command |
Note
Requires libvirt
a playbook task line:
- virt: name=alpha state=running
/usr/bin/ansible invocations
ansible host -m virt -a "name=alpha command=status"
ansible host -m virt -a "name=alpha command=get_xml"
ansible host -m virt -a "name=alpha command=create uri=lxc:///"
a playbook example of defining and launching an LXC guest
tasks:
- name: define vm
virt: name=foo
command=define
xml="{{ lookup('template', 'container-template.xml.j2') }}"
uri=lxc:///
- name: start vm
virt: name=foo state=running uri=lxc:///
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
vsphere_guest - Create/delete/manage a guest VM through VMware vSphere.
Author: | Richard Hoop <wrhoop @gmail.com> |
---|
New in version 1.6.
Create/delete/reconfigure a guest VM through VMware vSphere. This module has a dependency on pysphere >= 1.7
parameter | required | default | choices | comments |
---|---|---|---|---|
cluster | no | None | The name of the cluster to create the VM in. By default this is derived from the host you tell the module to build the guest on. | |
esxi | no | Dictionary which includes datacenter and hostname on which the VM should be created. | ||
force | no | no |
| Boolean. Allows you to run commands which may alter the running state of a guest. Also used to reconfigure and destroy. |
guest | yes | The virtual server name you wish to manage. | ||
password | yes | Password of the user to connect to vcenter as. | ||
resource_pool | no | None | The name of the resource_pool to create the VM in. | |
state | no | present |
| Indicate desired state of the vm. |
user | yes | Username to connect to vcenter as. | ||
vcenter_hostname | yes | The hostname of the vcenter server the module will connect to, to create the guest. | ||
vm_disk | no | A key, value list of disks and their sizes and which datastore to keep it in. | ||
vm_extra_config | no | A key, value pair of any extra values you want set or changed in the vmx file of the VM. Useful to set advanced options on the VM. | ||
vm_hardware | no | A key, value list of VM config settings. Must include ['memory_mb', 'num_cpus', 'osid', 'scsi']. | ||
vm_hw_version | no | Desired hardware version identifier (for example, "vmx-08" for vms that needs to be managed with vSphere Client). Note that changing hardware version of existing vm is not supported. (added in Ansible 1.7) | ||
vm_nic | no | A key, value list of nics, their types and what network to put them on. | ||
vmware_guest_facts | no | Gather facts from vCenter on a particular VM |
Note
Requires pysphere
Create a new VM on an ESX server
Returns changed = False when the VM already exists
Returns changed = True and a adds ansible_facts from the new VM
State will set the power status of a guest upon creation. Use powered_on to create and boot.
Options ['state', 'vm_extra_config', 'vm_disk', 'vm_nic', 'vm_hardware', 'esxi'] are required together
- vsphere_guest:
vcenter_hostname: vcenter.mydomain.local
username: myuser
password: mypass
guest: newvm001
state: powered_on
vm_extra_config:
vcpu.hotadd: yes
mem.hotadd: yes
notes: This is a test VM
vm_disk:
disk1:
size_gb: 10
type: thin
datastore: storage001
vm_nic:
nic1:
type: vmxnet3
network: VM Network
network_type: standard
vm_hardware:
memory_mb: 2048
num_cpus: 2
osid: centos64Guest
scsi: paravirtual
esxi:
datacenter: MyDatacenter
hostname: esx001.mydomain.local
Reconfigure the CPU and Memory on the newly created VM
Will return the changes made
- vsphere_guest:
vcenter_hostname: vcenter.mydomain.local
username: myuser
password: mypass
guest: newvm001
state: reconfigured
vm_extra_config:
vcpu.hotadd: yes
mem.hotadd: yes
notes: This is a test VM
vm_disk:
disk1:
size_gb: 10
type: thin
datastore: storage001
vm_nic:
nic1:
type: vmxnet3
network: VM Network
network_type: standard
vm_hardware:
memory_mb: 4096
num_cpus: 4
osid: centos64Guest
scsi: paravirtual
esxi:
datacenter: MyDatacenter
hostname: esx001.mydomain.local
Task to gather facts from a vSphere cluster only if the system is a VMWare guest
- vsphere_guest:
vcenter_hostname: vcenter.mydomain.local
username: myuser
password: mypass
guest: newvm001
vmware_guest_facts: yes
Typical output of a vsphere_facts run on a guest
- hw_eth0:
- addresstype: "assigned"
label: "Network adapter 1"
macaddress: "00:22:33:33:44:55"
macaddress_dash: "00-22-33-33-44-55"
summary: "VM Network"
hw_guest_full_name: "newvm001"
hw_guest_id: "rhel6_64Guest"
hw_memtotal_mb: 2048
hw_name: "centos64Guest"
hw_processor_count: 2
hw_product_uuid: "ef50bac8-2845-40ff-81d9-675315501dac"
Remove a vm from vSphere
The VM must be powered_off of you need to use force to force a shutdown
- vsphere_guest:
vcenter_hostname: vcenter.mydomain.local
username: myuser
password: mypass
guest: newvm001
state: absent
force: yes
Note
This module should run from a system that can access vSphere directly. Either by using local_action, or using delegate_to.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
wait_for - Waits for a condition before continuing.
Author: | Jeroen Hoekx, John Jarvis, Andrii Radyk |
---|
Waiting for a port to become available is useful for when services are not immediately available after their init scripts return - which is true of certain Java application servers. It is also useful when starting guests with the virt module and needing to pause until they are ready. This module can also be used to wait for a regex match a string to be present in a file. In 1.6 and later, this module can also be used to wait for a file to be available or absent on the filesystem.
parameter | required | default | choices | comments |
---|---|---|---|---|
delay | no | number of seconds to wait before starting to poll | ||
host | no | 127.0.0.1 | hostname or IP address to wait for | |
path | no | path to a file on the filesytem that must exist before continuing (added in Ansible 1.4) | ||
port | no | port number to poll | ||
search_regex | no | with the path option can be used match a string in the file that must match before continuing. Defaults to a multiline regex. (added in Ansible 1.4) | ||
state | no | started |
| either present, started, or stopped, absentWhen checking a port started will ensure the port is open, stopped will check that it is closedWhen checking for a file or a search string present or started will ensure that the file or string is present before continuing, absent will check that file is absent or removed |
timeout | no | 300 | maximum number of seconds to wait for |
wait 300 seconds for port 8000 to become open on the host, don't start checking for 10 seconds
- wait_for: port=8000 delay=10
wait until the file /tmp/foo is present before continuing
- wait_for: path=/tmp/foo
wait until the string "completed" is in the file /tmp/foo before continuing
- wait_for: path=/tmp/foo search_regex=completed
wait until the lock file is removed
- wait_for: path=/var/lock/file.lock state=absent
wait until the process is finished and pid was destroyed
- wait_for: path=/proc/3466/status state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_feature - Installs and uninstalls Windows Features
Author: | Paul Durivage |
---|
New in version 1.7.
Installs or uninstalls Windows Roles or Features
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | Names of roles or features to install as a single feature or a comma-separated list of features | ||
restart | no |
| Restarts the computer automatically when installation is complete, if restarting is required by the roles or features installed. | |
state | no | present |
| State of the features or roles on the system |
This installs IIS.
The names of features available for install can be run by running the following Powershell Command:
PS C:\Users\Administrator> Import-Module ServerManager; Get-WindowsFeature
$ ansible -i hosts -m win_feature -a "name=Web-Server" all
$ ansible -i hosts -m win_feature -a "name=Web-Server,Web-Common-Http" all
Playbook example

- name: Install IIS
hosts: all
gather_facts: false
tasks:
- name: Install IIS
win_feature:
name: "Web-Server"
state: absent
restart: yes
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_get_url - Fetches a file from a given URL
Author: | Paul Durivage |
---|
New in version 1.7.
Fetches a file from a URL and saves to locally
parameter | required | default | choices | comments |
---|---|---|---|---|
dest | no | True | The absolute path of the location to save the file at the URL. Be sure to include a filename and extension as appropriate. | |
url | yes | The full URL of a file to download |
Downloading a JPEG and saving it to a file with the ansible command.
Note the "dest" is quoted rather instead of escaping the backslashes
$ ansible -i hosts -c winrm -m win_get_url -a "url=http://www.example.com/earthrise.jpg dest='C:\Users\Administrator\earthrise.jpg'" all
Playbook example
- name: Download earthrise.jpg to 'C:\Users\RandomUser\earthrise.jpg'
win_get_url:
url: 'http://www.example.com/earthrise.jpg'
dest: 'C:\Users\RandomUser\earthrise.jpg'
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_group - Add and remove local groups
Author: | Chris Hoffman |
---|
New in version 1.7.
Add and remove local groups
parameter | required | default | choices | comments |
---|---|---|---|---|
description | no | Description of the group | ||
name | yes | Name of the group | ||
state | no | present |
| Create or remove the group |
Create a new group
win_group:
name: deploy
description: Deploy Group
state: present
Remove a group
win_group:
name: deploy
state: absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_msi - Installs and uninstalls Windows MSI files
Author: | Matt Martz |
---|
New in version 1.7.
Installs or uninstalls a Windows MSI file that is already located on the target server
parameter	required	default	choices	comments
creates	no	Path to a file created by installing the MSI to prevent from attempting to reinstall the package on every run		
path	yes	File system path to the MSI file to install		
state	no	present		
Whether the MSI file should be installed or uninstalled				
Install an MSI file
- win_msi: path=C:\\7z920-x64.msi
Uninstall an MSI file
- win_msi: path=C:\\7z920-x64.msi state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_ping - A windows version of the classic ping module.
Author: | Chris Church |
---|
New in version 1.7.
Checks management connectivity of a windows host
parameter | required | default | choices | comments |
---|---|---|---|---|
data | no | pong | Alternate data to return instead of 'pong' |
Test connectivity to a windows host
ansible winserver -m win_ping
Example from an Ansible Playbook
- action: win_ping
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_service - Manages Windows services
Author: | Chris Hoffman |
---|
New in version 1.7.
Manages Windows services
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | Name of the service | ||
start_mode | no |
| Set the startup type for the service | |
state | no |
| started/stopped are idempotent actions that will not run commands unless necessary. restarted will always bounce the service. |
Restart a service
win_service:
name: spooler
state: restarted
Set service startup mode to auto and ensure it is started
win_service:
name: spooler
start_mode: auto
state: started
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_stat - returns information about a Windows file
Author: | Chris Church |
---|
New in version 1.7.
Returns information about a Windows file
parameter	required	default	choices	comments
get_md5 | no | True | Whether to return the md5 sum of the file | |
path | yes | The full path of the file/object to get the facts of; both forward and back slashes are accepted. |
Obtain information about a file
- win_stat: path=C:\foo.ini
register: file_info
- debug: var=file_info
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
win_user - Manages local Windows user accounts
Author: | Paul Durivage |
---|
New in version 1.7.
Manages local Windows user accounts
parameter | required | default | choices | comments |
---|---|---|---|---|
name | yes | Username of the user to manage | ||
password | yes | Password for the user (plain text) | ||
state | no | present |
| Whether to create or delete a user |
Ad-hoc example
$ ansible -i hosts -m win_user -a "name=bob password=Password12345" all
$ ansible -i hosts -m win_user -a "name=bob password=Password12345 state=absent" all
Playbook example

- name: Add a user
hosts: all
gather_facts: false
tasks:
- name: Add User
win_user:
name: ansible
password: "@ns1bl3"
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
xattr - set/retrieve extended attributes
Author: | Brian Coca |
---|
New in version 1.3.
Manages filesystem user defined extended attributes, requires that they are enabled on the target filesystem and that the setfattr/getfattr utilities are present.
parameter | required | default | choices | comments |
---|---|---|---|---|
follow | no | True |
| if yes, dereferences symlinks and sets/gets attributes on symlink target, otherwise acts on symlink itself. |
key | no | None | The name of a specific Extended attribute key to set/retrieve | |
name | yes | None | The full path of the file/object to get the facts of | |
state | no | get |
| defines which state you want to do. read retrieves the current value for a key (default) present sets name to value, default if value is set all dumps all data keys retrieves all keys absent deletes the key |
value | no | None | The value to set the named name/key to, it automatically sets the state to 'set' |
Obtain the extended attributes of /etc/foo.conf
- xattr: name=/etc/foo.conf
Sets the key 'foo' to value 'bar'
- xattr: path=/etc/foo.conf key=user.foo value=bar
Removes the key 'foo'
- xattr: name=/etc/foo.conf key=user.foo state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
yum - Manages packages with the yum package manager
Author: | Seth Vidal |
---|
Installs, upgrade, removes, and lists packages and groups with the yum package manager.
parameter | required | default | choices | comments |
---|---|---|---|---|
conf_file | no | The remote yum configuration file to use for the transaction. (added in Ansible 0.6) | ||
disable_gpg_check | no | no |
| Whether to disable the GPG checking of signatures of packages being installed. Has an effect only if state is present or latest. (added in Ansible 1.2) |
disablerepo | no | Repoid of repositories to disable for the install/update operation. These repos will not persist beyond the transaction. When specifying multiple repos, separate them with a ",". (added in Ansible 0.9) | ||
enablerepo | no | Repoid of repositories to enable for the install/update operation. These repos will not persist beyond the transaction. When specifying multiple repos, separate them with a ",". (added in Ansible 0.9) | ||
list | no | Various (non-idempotent) commands for usage with /usr/bin/ansible and not playbooks. See examples. | ||
name | yes | Package name, or package specifier with version, like name-1.0. When using state=latest, this can be '*' which means run: yum -y update. You can also pass a url or a local path to a rpm file. | ||
state | no | present |
| Whether to install (present, latest), or remove (absent) a package. |
Note
Requires yum
Note
Requires rpm
- name: install the latest version of Apache
yum: name=httpd state=latest
- name: remove the Apache package
yum: name=httpd state=absent
- name: install the latest version of Apache from the testing repo
yum: name=httpd enablerepo=testing state=present
- name: upgrade all packages
yum: name=* state=latest
- name: install the nginx rpm from a remote repo
yum: name=http://nginx.org/packages/centos/6/noarch/RPMS/nginx-release-centos-6-0.el6.ngx.noarch.rpm state=present
- name: install nginx rpm from a local file
yum: name=/usr/local/src/nginx-release-centos-6-0.el6.ngx.noarch.rpm state=present
- name: install the 'Development tools' package group
yum: name="@Development tools" state=present
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
zfs - Manage zfs
Author: | Johan Wiren |
---|
New in version 1.1.
Manages ZFS file systems on Solaris and FreeBSD. Can manage file systems, volumes and snapshots. See zfs(1M) for more information about the properties.
parameter | required | default | choices | comments |
---|---|---|---|---|
aclinherit | no |
| The aclinherit property. | |
aclmode | no |
| The aclmode property. | |
atime | no |
| The atime property. | |
canmount | no |
| The canmount property. | |
casesensitivity | no |
| The casesensitivity property. | |
checksum | no |
| The checksum property. | |
compression | no |
| The compression property. | |
copies | no |
| The copies property. | |
dedup | no |
| The dedup property. | |
devices | no |
| The devices property. | |
exec | no |
| The exec property. | |
jailed | no |
| The jailed property. | |
logbias | no |
| The logbias property. | |
mountpoint | no | The mountpoint property. | ||
name | yes | File system, snapshot or volume name e.g. rpool/myfs | ||
nbmand | no |
| The nbmand property. | |
normalization | no |
| The normalization property. | |
primarycache | no |
| The primarycache property. | |
quota | no | The quota property. | ||
readonly | no |
| The readonly property. | |
recordsize | no | The recordsize property. | ||
refquota | no | The refquota property. | ||
refreservation | no | The refreservation property. | ||
reservation | no | The reservation property. | ||
secondarycache | no |
| The secondarycache property. | |
setuid | no |
| The setuid property. | |
shareiscsi | no |
| The shareiscsi property. | |
sharenfs | no | The sharenfs property. | ||
sharesmb | no | The sharesmb property. | ||
snapdir | no |
| The snapdir property. | |
state | yes |
| Whether to create (present), or remove (absent) a file system, snapshot or volume. | |
sync | no |
| The sync property. | |
utf8only | no |
| The utf8only property. | |
volblocksize | no | The volblocksize property. | ||
volsize | no | The volsize property. | ||
vscan | no |
| The vscan property. | |
xattr | no |
| The xattr property. | |
zoned | no |
| The zoned property. |
Create a new file system called myfs in pool rpool
- zfs: name=rpool/myfs state=present
Create a new volume called myvol in pool rpool.
- zfs: name=rpool/myvol state=present volsize=10M
Create a snapshot of rpool/myfs file system.
- zfs: name=rpool/myfs@mysnapshot state=present
Create a new file system called myfs2 with snapdir enabled
- zfs: name=rpool/myfs2 state=present snapdir=enabled
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
zypper - Manage packages on SuSE and openSuSE
Author: | Patrick Callahan |
---|
New in version 1.2.
Manage packages on SuSE and openSuSE using the zypper and rpm tools.
parameter | required | default | choices | comments |
---|---|---|---|---|
disable_gpg_check | no | no |
| Whether to disable to GPG signature checking of the package signature being installed. Has an effect only if state is present or latest. |
name | yes | package name or package specifier wth version name or name-1.0. | ||
state | no | present |
| present will make sure the package is installed. latest will make sure the latest version of the package is installed. absent will make sure the specified package is not installed. |
Note
Requires zypper
Note
Requires rpm
Install "nmap"
- zypper: name=nmap state=present
Remove the "nmap" package
- zypper: name=nmap state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
zypper_repository - Add and remove Zypper repositories
Author: | Matthias Vogelgesang |
---|
New in version 1.4.
Add or remove Zypper repositories on SUSE and openSUSE
parameter | required | default | choices | comments |
---|---|---|---|---|
description | no | none | A description of the repository | |
disable_gpg_check | no | no |
| Whether to disable GPG signature checking of all packages. Has an effect only if state is present. |
name | yes | none | A name for the repository. | |
repo | yes | none | URI of the repository or .repo file. | |
state | no | present |
| A source string state. |
Note
Requires zypper
Add NVIDIA repository for graphics drivers
- zypper_repository: name=nvidia-repo repo='ftp://download.nvidia.com/opensuse/12.2' state=present
Remove NVIDIA repository
- zypper_repository: name=nvidia-repo repo='ftp://download.nvidia.com/opensuse/12.2' state=absent
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Cloud Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Commands Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Database Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Files Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Internal Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Inventory Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Messaging Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Monitoring Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Net Infrastructure Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Network Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Notification Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Packaging Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Source Control Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
System Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Utilities Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Web Infrastructure Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Windows Modules
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Detailed Guides
This section is new and evolving. The idea here is explore particular use cases in greater depth and provide a more “top down” explanation of some basic features.
Pending topics may include: Docker, Jenkins, Google Compute Engine, Linode/Digital Ocean, Continuous Deployment, and more.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Amazon Web Services Guide
Introduction
Note
This section of the documentation is under construction. We are in the process of adding more examples about all of the EC2 modules and how they work together. There’s also an ec2 example in the language_features directory of the ansible-examples github repository [http://github.com/ansible/ansible-examples/] that you may wish to consult. Once complete, there will also be new examples of ec2 in ansible-examples.
Ansible contains a number of core modules for interacting with Amazon Web Services (AWS). These also work with Eucalyptus, which is an AWS compatible private cloud solution. There are other supported cloud types, but this documentation chapter is about AWS API clouds. The purpose of this section is to explain how to put Ansible modules together (and use inventory scripts) to use Ansible in AWS context.
Requirements for the AWS modules are minimal. All of the modules require and are tested against boto 2.5 or higher. You’ll need this Python module installed on the execution host. If you are using Red Hat Enterprise Linux or CentOS, install boto from EPEL [http://fedoraproject.org/wiki/EPEL]:
$ yum install python-boto
You can also install it via pip if you want.
The following steps will often execute outside the host loop, so it makes sense to add localhost to inventory. Ansible may not require this step in the future:
[local]
localhost
And in your playbook steps we’ll typically be using the following pattern for provisioning steps:
- hosts: localhost
connection: local
gather_facts: False
Provisioning
The ec2 module provides the ability to provision instances within EC2. Typically the provisioning task will be performed against your Ansible master server in a play that operates on localhost using the local connection type. If you are doing an EC2 operation mid-stream inside a regular play operating on remote hosts, you may want to use the local_action keyword for that particular task. Read Delegation, Rolling Updates, and Local Actions for more about local actions.
Note
Authentication with the AWS-related modules is handled by either specifying your access and secret key as ENV variables or passing them as module arguments.
Note
To talk to specific endpoints, the environmental variable EC2_URL can be set. This is useful if using a private cloud like Eucalyptus, exporting the variable as EC2_URL=https://myhost:8773/services/Eucalyptus. This can be set using the ‘environment’ keyword in Ansible if you like.
Here is an example of provisioning a number of instances in ad-hoc mode:
ansible localhost -m ec2 -a "image=ami-6e649707 instance_type=m1.large keypair=mykey group=webservers wait=yes" -c local
In a play, this might look like (assuming the parameters are held as vars):
tasks:
- name: Provision a set of instances
ec2: >
keypair={{mykeypair}}
group={{security_group}}
instance_type={{instance_type}}
image={{image}}
wait=true
count={{number}}
register: ec2
By registering the return its then possible to dynamically create a host group consisting of these new instances. This facilitates performing configuration actions on the hosts immediately in a subsequent task:
- name: Add all instance public IPs to host group
add_host: hostname={{ item.public_ip }} groupname=ec2hosts
with_items: ec2.instances
With the host group now created, a second play in your provision playbook might now have some configuration steps:
- name: Configuration play
hosts: ec2hosts
user: ec2-user
gather_facts: true
tasks:
- name: Check NTP service
service: name=ntpd state=started
Rather than include configuration inline, you may also choose to just do it as a task include or a role.
The method above ties the configuration of a host with the provisioning step. This isn’t always ideal and leads us onto the next section.
Advanced Usage
Host Inventory
Once your nodes are spun up, you’ll probably want to talk to them again. The best way to handle this is to use the ec2 inventory plugin.
Even for larger environments, you might have nodes spun up from Cloud Formations or other tooling. You don’t have to use Ansible to spin up guests. Once these are created and you wish to configure them, the EC2 API can be used to return system grouping with the help of the EC2 inventory script. This script can be used to group resources by their security group or tags. Tagging is highly recommended in EC2 and can provide an easy way to sort between host groups and roles. The inventory script is documented doc:api section.
You may wish to schedule a regular refresh of the inventory cache to accommodate for frequent changes in resources:
./ec2.py --refresh-cache
Put this into a crontab as appropriate to make calls from your Ansible master server to the EC2 API endpoints and gather host information. The aim is to keep the view of hosts as up-to-date as possible, so schedule accordingly. Playbook calls could then also be scheduled to act on the refreshed hosts inventory after each refresh. This approach means that machine images can remain “raw”, containing no payload and OS-only. Configuration of the workload is handled entirely by Ansible.
Tags
There’s a feature in the ec2 inventory script where hosts tagged with certain keys and values automatically appear in certain groups.
For instance, if a host is given the “class” tag with the value of “webserver”, it will be automatically discoverable via a dynamic group like so:
- hosts: tag_class_webserver
tasks:
- ping
Using this philosophy can be a great way to manage groups dynamically, without having to maintain separate inventory.
Pull Configuration
For some the delay between refreshing host information and acting on that host information (i.e. running Ansible tasks against the hosts) may be too long. This may be the case in such scenarios where EC2 AutoScaling is being used to scale the number of instances as a result of a particular event. Such an event may require that hosts come online and are configured as soon as possible (even a 1 minute delay may be undesirable). Its possible to pre-bake machine images which contain the necessary ansible-pull script and components to pull and run a playbook via git. The machine images could be configured to run ansible-pull upon boot as part of the bootstrapping procedure.
Read Ansible-Pull for more information on pull-mode playbooks.
(Various developments around Ansible are also going to make this easier in the near future. Stay tuned!)
Autoscaling with Ansible Tower
Ansible Tower also contains a very nice feature for auto-scaling use cases. In this mode, a simple curl script can call a defined URL and the server will “dial out” to the requester and configure an instance that is spinning up. This can be a great way to reconfigure ephemeral nodes. See the Tower documentation for more details. Click on the Tower link in the sidebar for details.
A benefit of using the callback in Tower over pull mode is that job results are still centrally recorded and less information has to be shared with remote hosts.
Use Cases
This section covers some usage examples built around a specific use case.
Example 1
Example 1: I’m using CloudFormation to deploy a specific infrastructure stack. I’d like to manage configuration of the instances with Ansible.
Provision instances with your tool of choice and consider using the inventory plugin to group hosts based on particular tags or security group. Consider tagging instances you wish to managed with Ansible with a suitably unique key=value tag.
Note
Ansible also has a cloudformation module you may wish to explore.
Example 2
Example 2: I’m using AutoScaling to dynamically scale up and scale down the number of instances. This means the number of hosts is constantly fluctuating but I’m letting EC2 automatically handle the provisioning of these instances. I don’t want to fully bake a machine image, I’d like to use Ansible to configure the hosts.
There are several approaches to this use case. The first is to use the inventory plugin to regularly refresh host information and then target hosts based on the latest inventory data. The second is to use ansible-pull triggered by a user-data script (specified in the launch configuration) which would then mean that each instance would fetch Ansible and the latest playbook from a git repository and run locally to configure itself. You could also use the Tower callback feature.
Example 3
Example 3: I don’t want to use Ansible to manage my instances but I’d like to consider using Ansible to build my fully-baked machine images.
There’s nothing to stop you doing this. If you like working with Ansible’s playbook format then writing a playbook to create an image; create an image file with dd, give it a filesystem and then install packages and finally chroot into it for further configuration. Ansible has the ‘chroot’ plugin for this purpose, just add the following to your inventory file:
/chroot/path ansible_connection=chroot
And in your playbook:
hosts: /chroot/path
Example 4
How would I create a new ec2 instance, provision it and then destroy it all in the same play?
Use the ec2 module to create a new host and then add
it to a special "ec2hosts" group.
- hosts: localhost
connection: local
gather_facts: False
vars:
ec2_access_key: "--REMOVED--"
ec2_secret_key: "--REMOVED--"
keypair: "mykeyname"
instance_type: "t1.micro"
image: "ami-d03ea1e0"
group: "mysecuritygroup"
region: "us-west-2"
zone: "us-west-2c"
tasks:
- name: make one instance
ec2: image={{ image }}
instance_type={{ instance_type }}
aws_access_key={{ ec2_access_key }}
aws_secret_key={{ ec2_secret_key }}
keypair={{ keypair }}
instance_tags='{"foo":"bar"}'
region={{ region }}
group={{ group }}
wait=true
register: ec2_info
- debug: var=ec2_info
- debug: var=item
with_items: ec2_info.instance_ids
- add_host: hostname={{ item.public_ip }} groupname=ec2hosts
with_items: ec2_info.instances
- name: wait for instances to listen on port:22
wait_for:
state=started
host={{ item.public_dns_name }}
port=22
with_items: ec2_info.instances
Connect to the node and gather facts,
including the instance-id. These facts
are added to inventory hostvars for the
duration of the playbook's execution
Typical "provisioning" tasks would go in
this playbook.
- hosts: ec2hosts
gather_facts: True
user: ec2-user
sudo: True
tasks:
fetch instance data from the metadata servers in ec2
- ec2_facts:
show all known facts for this host
- debug: var=hostvars[inventory_hostname]
just show the instance-id
- debug: msg="{{ hostvars[inventory_hostname]['ansible_ec2_instance_id'] }}"
Using the instanceid, call the ec2 module
locally to remove the instance by declaring
it's state is "absent"
- hosts: ec2hosts
gather_facts: True
connection: local
vars:
ec2_access_key: "--REMOVED--"
ec2_secret_key: "--REMOVED--"
region: "us-west-2"
tasks:
- name: destroy all instances
ec2: state='absent'
aws_access_key={{ ec2_access_key }}
aws_secret_key={{ ec2_secret_key }}
region={{ region }}
instance_ids={{ item }}
wait=true
with_items: hostvars[inventory_hostname]['ansible_ec2_instance_id']
Note
more examples of this are pending. You may also be interested in the ec2_ami module for taking AMIs of running instances.
Pending Information
In the future look here for more topics.
See also
About Modules
All the documentation for Ansible modules
Playbooks
An introduction to playbooks
Delegation, Rolling Updates, and Local Actions
Delegation, useful for working with loud balancers, clouds, and locally executed steps.
User Mailing List [http://groups.google.com/group/ansible-project]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Rackspace Cloud Guide
Introduction
Note
This section of the documentation is under construction. We are in the process of adding more examples about the Rackspace modules and how they work together. Once complete, there will also be examples for Rackspace Cloud in ansible-examples [http://github.com/ansible/ansible-examples/].
Ansible contains a number of core modules for interacting with Rackspace Cloud.
The purpose of this section is to explain how to put Ansible modules together (and use inventory scripts) to use Ansible in a Rackspace Cloud context.
Prerequisites for using the rax modules are minimal. In addition to ansible itself, all of the modules require and are tested against pyrax 1.5 or higher. You’ll need this Python module installed on the execution host.
pyrax is not currently available in many operating system package repositories, so you will likely need to install it via pip:
$ pip install pyrax
The following steps will often execute from the control machine against the Rackspace Cloud API, so it makes sense to add localhost to the inventory file. (Ansible may not require this manual step in the future):
[localhost]
localhost ansible_connection=local
In playbook steps, we’ll typically be using the following pattern:
- hosts: localhost
connection: local
gather_facts: False
tasks:
Credentials File
The rax.py inventory script and all rax modules support a standard pyrax credentials file that looks like:
[rackspace_cloud]
username = myraxusername
api_key = d41d8cd98f00b204e9800998ecf8427e
Setting the environment parameter RAX_CREDS_FILE to the path of this file will help Ansible find how to load this information.
More information about this credentials file can be found at https://github.com/rackspace/pyrax/blob/master/docs/getting_started.md#authenticating
Running from a Python Virtual Environment (Optional)
Most users will not be using virtualenv, but some users, particularly Python developers sometimes like to.
There are special considerations when Ansible is installed to a Python virtualenv, rather than the default of installing at a global scope. Ansible assumes, unless otherwise instructed, that the python binary will live at /usr/bin/python. This is done via the interpreter line in modules, however when instructed by setting the inventory variable ‘ansible_python_interpreter’, Ansible will use this specified path instead to find Python. This can be a cause of confusion as one may assume that modules running on ‘localhost’, or perhaps running via ‘local_action’, are using the virtualenv Python interpreter. By setting this line in the inventory, the modules will execute in the virtualenv interpreter and have available the virtualenv packages, specifically pyrax. If using virtualenv, you may wish to modify your localhost inventory definition to find this location as follows:
[localhost]
localhost ansible_connection=local ansible_python_interpreter=/path/to/ansible_venv/bin/python
Note
pyrax may be installed in the global Python package scope or in a virtual environment. There are no special considerations to keep in mind when installing pyrax.
Provisioning
Now for the fun parts.
The ‘rax’ module provides the ability to provision instances within Rackspace Cloud. Typically the provisioning task will be performed from your Ansible control server (in our example, localhost) against the Rackspace cloud API. This is done for several reasons:
Note
Authentication with the Rackspace-related modules is handled by either specifying your username and API key as environment variables or passing them as module arguments, or by specifying the location of a credentials file.
Here is a basic example of provisioning an instance in ad-hoc mode:
$ ansible localhost -m rax -a "name=awx flavor=4 image=ubuntu-1204-lts-precise-pangolin wait=yes" -c local
Here’s what it would look like in a playbook, assuming the parameters were defined in variables:
tasks:
- name: Provision a set of instances
local_action:
module: rax
name: "{{ rax_name }}"
flavor: "{{ rax_flavor }}"
image: "{{ rax_image }}"
count: "{{ rax_count }}"
group: "{{ group }}"
wait: yes
register: rax
The rax module returns data about the nodes it creates, like IP addresses, hostnames, and login passwords. By registering the return value of the step, it is possible used this data to dynamically add the resulting hosts to inventory (temporarily, in memory). This facilitates performing configuration actions on the hosts in a follow-on task. In the following example, the servers that were successfully created using the above task are dynamically added to a group called “raxhosts”, with each nodes hostname, IP address, and root password being added to the inventory.
- name: Add the instances we created (by public IP) to the group 'raxhosts'
local_action:
module: add_host
hostname: "{{ item.name }}"
ansible_ssh_host: "{{ item.rax_accessipv4 }}"
ansible_ssh_pass: "{{ item.rax_adminpass }}"
groupname: raxhosts
with_items: rax.success
when: rax.action == 'create'
With the host group now created, the next play in this playbook could now configure servers belonging to the raxhosts group.
- name: Configuration play
hosts: raxhosts
user: root
roles:
- ntp
- webserver
The method above ties the configuration of a host with the provisioning step. This isn’t always what you want, and leads us to the next section.
Host Inventory
Once your nodes are spun up, you’ll probably want to talk to them again. The best way to handle his is to use the “rax” inventory plugin, which dynamically queries Rackspace Cloud and tells Ansible what nodes you have to manage. You might want to use this even if you are spinning up Ansible via other tools, including the Rackspace Cloud user interface. The inventory plugin can be used to group resources by metadata, region, OS, etc. Utilizing metadata is highly recommended in “rax” and can provide an easy way to sort between host groups and roles. If you don’t want to use the rax.py dynamic inventory script, you could also still choose to manually manage your INI inventory file, though this is less recommended.
In Ansible it is quite possible to use multiple dynamic inventory plugins along with INI file data. Just put them in a common directory and be sure the scripts are chmod +x, and the INI-based ones are not.
rax.py
To use the rackspace dynamic inventory script, copy rax.py into your inventory directory and make it executable. You can specify a credentails file for rax.py utilizing the RAX_CREDS_FILE environment variable.
Note
Dynamic inventory scripts (like rax.py) are saved in /usr/share/ansible/inventory if Ansible has been installed globally. If installed to a virtualenv, the inventory scripts are installed to $VIRTUALENV/share/inventory.
Note
Users of Ansible Tower will note that dynamic inventory is natively supported by Tower, and all you have to do is associate a group with your Rackspace Cloud credentials, and it will easily synchronize without going through these steps:
$ RAX_CREDS_FILE=~/.raxpub ansible all -i rax.py -m setup
rax.py also accepts a RAX_REGION environment variable, which can contain an individual region, or a comma separated list of regions.
When using rax.py, you will not have a ‘localhost’ defined in the inventory.
As mentioned previously, you will often be running most of these modules outside of the host loop, and will need ‘localhost’ defined. The recommended way to do this, would be to create an inventory directory, and place both the rax.py script and a file containing localhost in it.
Executing ansible or ansible-playbook and specifying the inventory directory instead of an individual file, will cause ansible to evaluate each file in that directory for inventory.
Let’s test our inventory script to see if it can talk to Rackspace Cloud.
$ RAX_CREDS_FILE=~/.raxpub ansible all -i inventory/ -m setup
Assuming things are properly configured, the rax.py inventory script will output information similar to the following information, which will be utilized for inventory and variables.
{
"ORD": [
"test"
],
"_meta": {
"hostvars": {
"test": {
"ansible_ssh_host": "1.1.1.1",
"rax_accessipv4": "1.1.1.1",
"rax_accessipv6": "2607:f0d0:1002:51::4",
"rax_addresses": {
"private": [
{
"addr": "2.2.2.2",
"version": 4
}
],
"public": [
{
"addr": "1.1.1.1",
"version": 4
},
{
"addr": "2607:f0d0:1002:51::4",
"version": 6
}
]
},
"rax_config_drive": "",
"rax_created": "2013-11-14T20:48:22Z",
"rax_flavor": {
"id": "performance1-1",
"links": [
{
"href": "https://ord.servers.api.rackspacecloud.com/111111/flavors/performance1-1",
"rel": "bookmark"
}
]
},
"rax_hostid": "e7b6961a9bd943ee82b13816426f1563bfda6846aad84d52af45a4904660cde0",
"rax_human_id": "test",
"rax_id": "099a447b-a644-471f-87b9-a7f580eb0c2a",
"rax_image": {
"id": "b211c7bf-b5b4-4ede-a8de-a4368750c653",
"links": [
{
"href": "https://ord.servers.api.rackspacecloud.com/111111/images/b211c7bf-b5b4-4ede-a8de-a4368750c653",
"rel": "bookmark"
}
]
},
"rax_key_name": null,
"rax_links": [
{
"href": "https://ord.servers.api.rackspacecloud.com/v2/111111/servers/099a447b-a644-471f-87b9-a7f580eb0c2a",
"rel": "self"
},
{
"href": "https://ord.servers.api.rackspacecloud.com/111111/servers/099a447b-a644-471f-87b9-a7f580eb0c2a",
"rel": "bookmark"
}
],
"rax_metadata": {
"foo": "bar"
},
"rax_name": "test",
"rax_name_attr": "name",
"rax_networks": {
"private": [
"2.2.2.2"
],
"public": [
"1.1.1.1",
"2607:f0d0:1002:51::4"
]
},
"rax_os-dcf_diskconfig": "AUTO",
"rax_os-ext-sts_power_state": 1,
"rax_os-ext-sts_task_state": null,
"rax_os-ext-sts_vm_state": "active",
"rax_progress": 100,
"rax_status": "ACTIVE",
"rax_tenant_id": "111111",
"rax_updated": "2013-11-14T20:49:27Z",
"rax_user_id": "22222"
}
}
}
}
Standard Inventory
When utilizing a standard ini formatted inventory file (as opposed to the inventory plugin), it may still be adventageous to retrieve discoverable hostvar information from the Rackspace API.
This can be achieved with the rax_facts module and an inventory file similar to the following:
[test_servers]
hostname1 rax_region=ORD
hostname2 rax_region=ORD
- name: Gather info about servers
hosts: test_servers
gather_facts: False
tasks:
- name: Get facts about servers
local_action:
module: rax_facts
credentials: ~/.raxpub
name: "{{ inventory_hostname }}"
region: "{{ rax_region }}"
- name: Map some facts
set_fact:
ansible_ssh_host: "{{ rax_accessipv4 }}"
While you don’t need to know how it works, it may be interesting to know what kind of variables are returned.
The rax_facts module provides facts as followings, which match the rax.py inventory script:
{
"ansible_facts": {
"rax_accessipv4": "1.1.1.1",
"rax_accessipv6": "2607:f0d0:1002:51::4",
"rax_addresses": {
"private": [
{
"addr": "2.2.2.2",
"version": 4
}
],
"public": [
{
"addr": "1.1.1.1",
"version": 4
},
{
"addr": "2607:f0d0:1002:51::4",
"version": 6
}
]
},
"rax_config_drive": "",
"rax_created": "2013-11-14T20:48:22Z",
"rax_flavor": {
"id": "performance1-1",
"links": [
{
"href": "https://ord.servers.api.rackspacecloud.com/111111/flavors/performance1-1",
"rel": "bookmark"
}
]
},
"rax_hostid": "e7b6961a9bd943ee82b13816426f1563bfda6846aad84d52af45a4904660cde0",
"rax_human_id": "test",
"rax_id": "099a447b-a644-471f-87b9-a7f580eb0c2a",
"rax_image": {
"id": "b211c7bf-b5b4-4ede-a8de-a4368750c653",
"links": [
{
"href": "https://ord.servers.api.rackspacecloud.com/111111/images/b211c7bf-b5b4-4ede-a8de-a4368750c653",
"rel": "bookmark"
}
]
},
"rax_key_name": null,
"rax_links": [
{
"href": "https://ord.servers.api.rackspacecloud.com/v2/111111/servers/099a447b-a644-471f-87b9-a7f580eb0c2a",
"rel": "self"
},
{
"href": "https://ord.servers.api.rackspacecloud.com/111111/servers/099a447b-a644-471f-87b9-a7f580eb0c2a",
"rel": "bookmark"
}
],
"rax_metadata": {
"foo": "bar"
},
"rax_name": "test",
"rax_name_attr": "name",
"rax_networks": {
"private": [
"2.2.2.2"
],
"public": [
"1.1.1.1",
"2607:f0d0:1002:51::4"
]
},
"rax_os-dcf_diskconfig": "AUTO",
"rax_os-ext-sts_power_state": 1,
"rax_os-ext-sts_task_state": null,
"rax_os-ext-sts_vm_state": "active",
"rax_progress": 100,
"rax_status": "ACTIVE",
"rax_tenant_id": "111111",
"rax_updated": "2013-11-14T20:49:27Z",
"rax_user_id": "22222"
},
"changed": false
}
Use Cases
This section covers some additional usage examples built around a specific use case.
Example 1
Create an isolated cloud network and build a server
- name: Build Servers on an Isolated Network
hosts: localhost
connection: local
gather_facts: False
tasks:
- name: Network create request
local_action:
module: rax_network
credentials: ~/.raxpub
label: my-net
cidr: 192.168.3.0/24
region: IAD
state: present
- name: Server create request
local_action:
module: rax
credentials: ~/.raxpub
name: web%04d.example.org
flavor: 2
image: ubuntu-1204-lts-precise-pangolin
disk_config: manual
networks:
- public
- my-net
region: IAD
state: present
count: 5
exact_count: yes
group: web
wait: yes
wait_timeout: 360
register: rax
Example 2
Build a complete webserver environment with servers, custom networks and load balancers, install nginx and create a custom index.html

- name: Build environment
hosts: localhost
connection: local
gather_facts: False
tasks:
- name: Load Balancer create request
local_action:
module: rax_clb
credentials: ~/.raxpub
name: my-lb
port: 80
protocol: HTTP
algorithm: ROUND_ROBIN
type: PUBLIC
timeout: 30
region: IAD
wait: yes
state: present
meta:
app: my-cool-app
register: clb
- name: Network create request
local_action:
module: rax_network
credentials: ~/.raxpub
label: my-net
cidr: 192.168.3.0/24
state: present
region: IAD
register: network
- name: Server create request
local_action:
module: rax
credentials: ~/.raxpub
name: web%04d.example.org
flavor: performance1-1
image: ubuntu-1204-lts-precise-pangolin
disk_config: manual
networks:
- public
- private
- my-net
region: IAD
state: present
count: 5
exact_count: yes
group: web
wait: yes
register: rax
- name: Add servers to web host group
local_action:
module: add_host
hostname: "{{ item.name }}"
ansible_ssh_host: "{{ item.rax_accessipv4 }}"
ansible_ssh_pass: "{{ item.rax_adminpass }}"
ansible_ssh_user: root
groupname: web
with_items: rax.success
when: rax.action == 'create'
- name: Add servers to Load balancer
local_action:
module: rax_clb_nodes
credentials: ~/.raxpub
load_balancer_id: "{{ clb.balancer.id }}"
address: "{{ item.rax_networks.private|first }}"
port: 80
condition: enabled
type: primary
wait: yes
region: IAD
with_items: rax.success
when: rax.action == 'create'
- name: Configure servers
hosts: web
handlers:
- name: restart nginx
service: name=nginx state=restarted
tasks:
- name: Install nginx
apt: pkg=nginx state=latest update_cache=yes cache_valid_time=86400
notify:
- restart nginx
- name: Ensure nginx starts on boot
service: name=nginx state=started enabled=yes
- name: Create custom index.html
copy: content="{{ inventory_hostname }}" dest=/usr/share/nginx/www/index.html
owner=root group=root mode=0644
Advanced Usage
Autoscaling with Tower
Ansible Tower also contains a very nice feature for auto-scaling use cases. In this mode, a simple curl script can call a defined URL and the server will “dial out” to the requester and configure an instance that is spinning up. This can be a great way to reconfigure ephemeral nodes. See the Tower documentation for more details.
A benefit of using the callback in Tower over pull mode is that job results are still centrally recorded and less information has to be shared with remote hosts.
Orchestration in the Rackspace Cloud
Ansible is a powerful orchestration tool, and rax modules allow you the opportunity to orchestrate complex tasks, deployments, and configurations. The key here is to automate provisioning of infrastructure, like any other pice of software in an environment. Complex deployments might have previously required manual manipulation of load balancers, or manual provisioning of servers. Utilizing the rax modules included with Ansible, one can make the deployment of additional nodes contingent on the current number of running nodes, or the configuration of a clustered application dependent on the number of nodes with common metadata. One could automate the following scenarios, for example:
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Google Cloud Platform Guide
Introduction
Note
This section of the documentation is under construction. We are in the process of adding more examples about all of the GCE modules and how they work together. Upgrades via github pull requests are welcomed!
Ansible contains modules for managing Google Compute Engine resources, including creating instances, controlling network access, working with persistent disks, and managing load balancers. Additionally, there is an inventory plugin that can automatically suck down all of your GCE instances into Ansible dynamic inventory, and create groups by tag and other properties.
The GCE modules all require the apache-libcloud module, which you can install from pip:
$ pip install apache-libcloud
Note
If you’re using Ansible on Mac OS X, libcloud also needs to access a CA cert chain. You’ll need to download one (you can get one for here [http://curl.haxx.se/docs/caextract.html].)
Credentials
To work with the GCE modules, you’ll first need to get some credentials. You can create new one from the console [https://console.developers.google.com/] by going to the “APIs and Auth” section. Once you’ve created a new client ID and downloaded the generated private key (in the pkcs12 format [http://en.wikipedia.org/wiki/PKCS_12]), you’ll need to convert the key by running the following command:
$ openssl pkcs12 -in pkey.pkcs12 -passin pass:notasecret -nodes -nocerts | openssl rsa -out pkey.pem
There are two different ways to provide credentials to Ansible so that it can talk with Google Cloud for provisioning and configuration actions:
Calling Modules By Passing Credentials
For the GCE modules you can specify the credentials as arguments:
For example, to create a new instance using the cloud module, you can use the following configuration:
- name: Create instance(s)
hosts: localhost
connection: local
gather_facts: no
vars:
service_account_email: unique-id@developer.gserviceaccount.com
pem_file: /path/to/project.pem
project_id: project-id
machine_type: n1-standard-1
image: debian-7
tasks:
- name: Launch instances
gce:
instance_names: dev
machine_type: "{{ machine_type }}"
image: "{{ image }}"
service_account_email: "{{ service_account_email }}"
pem_file: "{{ pem_file }}"
project_id: "{{ project_id }}"
Calling Modules with secrets.py
Create a file secrets.py looking like following, and put it in some folder which is in your $PYTHONPATH:
GCE_PARAMS = ('i...@project.googleusercontent.com', '/path/to/project.pem')
GCE_KEYWORD_PARAMS = {'project': 'project-name'}
Now the modules can be used as above, but the account information can be omitted.
GCE Dynamic Inventory
The best way to interact with your hosts is to use the gce inventory plugin, which dynamically queries GCE and tells Ansible what nodes can be managed.
Note that when using the inventory script gce.py, you also need to populate the gce.ini file that you can find in the plugins/inventory directory of the ansible checkout.
To use the GCE dynamic inventory script, copy gce.py from plugins/inventory into your inventory directory and make it executable. You can specify credentials for gce.py using the GCE_INI_PATH environment variable – the default is to look for gce.ini in the same directory as the inventory script.
Let’s see if inventory is working:
$./gce.py --list
You should see output describing the hosts you have, if any, running in Google Compute Engine.
Now let’s see if we can use the inventory script to talk to Google.
$ GCE_INI_PATH=~/.gce.ini ansible all -i gce.py -m setup
hostname | success >> {
"ansible_facts": {
"ansible_all_ipv4_addresses": [
"x.x.x.x"
],
As with all dynamic inventory plugins in Ansible, you can configure the inventory path in ansible.cfg. The recommended way to use the inventory is to create an inventory directory, and place both the gce.py script and a file containing localhost in it. This can allow for cloud inventory to be used alongside local inventory (such as a physical datacenter) or machines running in different providers.
Executing ansible or ansible-playbook and specifying the inventory directory instead of an individual file will cause ansible to evaluate each file in that directory for inventory.
Let’s once again use our inventory script to see if it can talk to Google Cloud:
$ ansible all -i inventory/ -m setup
hostname | success >> {
"ansible_facts": {
"ansible_all_ipv4_addresses": [
"x.x.x.x"
],
The output should be similar to the previous command. If you’re wanting less output and just want to check for SSH connectivity, use “-m” ping instead.
Use Cases
For the following use case, let’s use this small shell script as a wrapper.
#!/bin/bash
PLAYBOOK="$1"
if [-z $PLAYBOOK]; then
echo "You need to pass a playback as argument to this script."
exit 1
fi
export SSL_CERT_FILE=$(pwd)/cacert.cer
export ANSIBLE_HOST_KEY_CHECKING=False
if [! -f "$SSL_CERT_FILE"]; then
curl -O http://curl.haxx.se/ca/cacert.pem
fi
ansible-playbook -v -i inventory/ "$PLAYBOOK"
Create an instance
The GCE module provides the ability to provision instances within Google Compute Engine. The provisioning task is typically performed from your Ansible control server against Google Cloud’s API.
A playbook would looks like this:
- name: Create instance(s)
hosts: localhost
gather_facts: no
connection: local
vars:
machine_type: n1-standard-1 # default
image: debian-7
service_account_email: unique-id@developer.gserviceaccount.com
pem_file: /path/to/project.pem
project_id: project-id
tasks:
- name: Launch instances
gce:
instance_names: dev
machine_type: "{{ machine_type }}"
image: "{{ image }}"
service_account_email: "{{ service_account_email }}"
pem_file: "{{ pem_file }}"
project_id: "{{ project_id }}"
tags: webserver
register: gce
- name: Wait for SSH to come up
wait_for: host={{ item.public_ip }} port=22 delay=10 timeout=60
with_items: gce.instance_data
- name: add_host hostname={{ item.public_ip }} groupname=new_instances
- name: Manage new instances
hosts: new_instances
connection: ssh
roles:
- base_configuration
- production_server
Note that use of the “add_host” module above creates a temporary, in-memory group. This means that a play in the same playbook can then manage machines in the ‘new_instances’ group, if so desired. Any sort of arbitrary configuration is possible at this point.
Configuring instances in a group
All of the created instances in GCE are grouped by tag. Since this is a cloud, it’s probably best to ignore hostnames and just focus on group management.
Normally we’d also use roles here, but the following example is a simple one. Here we will also use the “gce_net” module to open up access to port 80 on these nodes.
The variables in the ‘vars’ section could also be kept in a ‘vars_files’ file or something encrypted with Ansible-vault, if you so choose. This is just a basic example of what is possible:
- name: Setup web servers
hosts: tag_webserver
gather_facts: no
vars:
machine_type: n1-standard-1 # default
image: debian-7
service_account_email: unique-id@developer.gserviceaccount.com
pem_file: /path/to/project.pem
project_id: project-id
roles:
- name: Install lighttpd
apt: pkg=lighttpd state=installed
sudo: True
- name: Allow HTTP
local_action: gce_net
args:
fwname: "all-http"
name: "default"
allowed: "tcp:80"
state: "present"
service_account_email: "{{ service_account_email }}"
pem_file: "{{ pem_file }}"
project_id: "{{ project_id }}"
By pointing your browser to the IP of the server, you should see a page welcoming you.
Upgrades to this documentation are welcome, hit the github link at the top right of this page if you would like to make additions!
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Using Vagrant and Ansible
Introduction
Vagrant is a tool to manage virtual machine environments, and allows you to configure and use reproducible work environments on top of various virtualization and cloud platforms. It also has integration with Ansible as a provisioner for these virtual machines, and the two tools work together well.
This guide will describe how to use Vagrant and Ansible together.
If you’re not familiar with Vagrant, you should visit the documentation [http://docs.vagrantup.com/v2/].
This guide assumes that you already have Ansible installed and working. Running from a Git checkout is fine. Follow the Installation guide for more information.
Vagrant Setup
The first step once you’ve installed Vagrant is to create a Vagrantfile and customize it to suit your needs. This is covered in detail in the Vagrant documentation, but here is a quick example:
$ mkdir vagrant-test
$ cd vagrant-test
$ vagrant init precise32 http://files.vagrantup.com/precise32.box
This will create a file called Vagrantfile that you can edit to suit your needs. The default Vagrantfile has a lot of comments. Here is a simplified example that includes a section to use the Ansible provisioner:
Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.box = "precise32"
config.vm.box_url = "http://files.vagrantup.com/precise32.box"
config.vm.network :public_network
config.vm.provision "ansible" do |ansible|
ansible.playbook = "playbook.yml"
end
end
The Vagrantfile has a lot of options, but these are the most important ones. Notice the config.vm.provision section that refers to an Ansible playbook called playbook.yml in the same directory as the Vagrantfile. Vagrant runs the provisioner once the virtual machine has booted and is ready for SSH access.
$ vagrant up
This will start the VM and run the provisioning playbook.
There are a lot of Ansible options you can configure in your Vagrantfile. Some particularly useful options are ansible.extra_vars, ansible.sudo and ansible.sudo_user, and ansible.host_key_checking which you can disable to avoid SSH connection problems to new virtual machines.
Visit the Ansible Provisioner documentation [http://docs.vagrantup.com/v2/provisioning/ansible.html] for more information.
To re-run a playbook on an existing VM, just run:
$ vagrant provision
This will re-run the playbook.
Running Ansible Manually
Sometimes you may want to run Ansible manually against the machines. This is pretty easy to do.
Vagrant automatically creates an inventory file for each Vagrant machine in the same directory called vagrant_ansible_inventory_machinename. It configures the inventory file according to the SSH tunnel that Vagrant automatically creates, and executes ansible-playbook with the correct username and SSH key options to allow access. A typical automatically-created inventory file may look something like this:
Generated by Vagrant
machine ansible_ssh_host=127.0.0.1 ansible_ssh_port=2222
If you want to run Ansible manually, you will want to make sure to pass ansible or ansible-playbook commands the correct arguments for the username (usually vagrant) and the SSH key (usually ~/.vagrant.d/insecure_private_key), and the autogenerated inventory file.
Here is an example:
$ ansible-playbook -i vagrant_ansible_inventory_machinename --private-key=~/.vagrant.d/insecure_private_key -u vagrant playbook.yml
See also
Vagrant Home [http://www.vagrantup.com/]
The Vagrant homepage with downloads
Vagrant Documentation [http://docs.vagrantup.com/v2/]
Vagrant Documentation
Ansible Provisioner [http://docs.vagrantup.com/v2/provisioning/ansible.html]
The Vagrant documentation for the Ansible provisioner
Playbooks
An introduction to playbooks
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Continuous Delivery and Rolling Upgrades
Introduction
Continuous Delivery is the concept of frequently delivering updates to your software application.
The idea is that by updating more often, you do not have to wait for a specific timed period, and your organization gets better at the process of responding to change.
Some Ansible users are deploying updates to their end users on an hourly or even more frequent basis – sometimes every time there is an approved code change. To achieve this, you need tools to be able to quickly apply those updates in a zero-downtime way.
This document describes in detail how to achieve this goal, using one of Ansible’s most complete example playbooks as a template: lamp_haproxy. This example uses a lot of Ansible features: roles, templates, and group variables, and it also comes with an orchestration playbook that can do zero-downtime rolling upgrades of the web application stack.
Note
Click here for the latest playbooks for this example [https://github.com/ansible/ansible-examples/tree/master/lamp_haproxy].
The playbooks deploy Apache, PHP, MySQL, Nagios, and HAProxy to a CentOS-based set of servers.
We’re not going to cover how to run these playbooks here. Read the included README in the github project along with the example for that information. Instead, we’re going to take a close look at every part of the playbook and describe what it does.
Site Deployment
Let’s start with site.yml. This is our site-wide deployment playbook. It can be used to initially deploy the site, as well as push updates to all of the servers:

This playbook deploys the whole application stack in this site.
Apply common configuration to all hosts
- hosts: all
roles:
- common
Configure and deploy database servers.
- hosts: dbservers
roles:
- db
Configure and deploy the web servers. Note that we include two roles
here, the 'base-apache' role which simply sets up Apache, and 'web'
which includes our example web application.
- hosts: webservers
roles:
- base-apache
- web
Configure and deploy the load balancer(s).
- hosts: lbservers
roles:
- haproxy
Configure and deploy the Nagios monitoring node(s).
- hosts: monitoring
roles:
- base-apache
- nagios
Note
If you’re not familiar with terms like playbooks and plays, you should review Playbooks.
In this playbook we have 5 plays. The first one targets all hosts and applies the common role to all of the hosts. This is for site-wide things like yum repository configuration, firewall configuration, and anything else that needs to apply to all of the servers.
The next four plays run against specific host groups and apply specific roles to those servers. Along with the roles for Nagios monitoring, the database, and the web application, we’ve implemented a base-apache role that installs and configures a basic Apache setup. This is used by both the sample web application and the Nagios hosts.
Reusable Content: Roles
By now you should have a bit of understanding about roles and how they work in Ansible. Roles are a way to organize content: tasks, handlers, templates, and files, into reusable components.
This example has six roles: common, base-apache, db, haproxy, nagios, and web. How you organize your roles is up to you and your application, but most sites will have one or more common roles that are applied to all systems, and then a series of application-specific roles that install and configure particular parts of the site.
Roles can have variables and dependencies, and you can pass in parameters to roles to modify their behavior. You can read more about roles in the Playbook Roles and Include Statements section.
Configuration: Group Variables
Group variables are variables that are applied to groups of servers. They can be used in templates and in playbooks to customize behavior and to provide easily-changed settings and parameters. They are stored in a directory called group_vars in the same location as your inventory. Here is lamp_haproxy’s group_vars/all file. As you might expect, these variables are applied to all of the machines in your inventory:

httpd_port: 80
ntpserver: 192.168.1.2
This is a YAML file, and you can create lists and dictionaries for more complex variable structures. In this case, we are just setting two variables, one for the port for the web server, and one for the NTP server that our machines should use for time synchronization.
Here’s another group variables file. This is group_vars/dbservers which applies to the hosts in the dbservers group:

mysqlservice: mysqld
mysql_port: 3306
dbuser: root
dbname: foodb
upassword: usersecret
If you look in the example, there are group variables for the webservers group and the lbservers group, similarly.
These variables are used in a variety of places. You can use them in playbooks, like this, in roles/db/tasks/main.yml:
- name: Create Application Database
mysql_db: name={{ dbname }} state=present
- name: Create Application DB User
mysql_user: name={{ dbuser }} password={{ upassword }}
priv=*.*:ALL host='%' state=present
You can also use these variables in templates, like this, in roles/common/templates/ntp.conf.j2:
driftfile /var/lib/ntp/drift
restrict 127.0.0.1
restrict -6 ::1
server {{ ntpserver }}
includefile /etc/ntp/crypto/pw
keys /etc/ntp/keys
You can see that the variable substitution syntax of {{ and }} is the same for both templates and variables. The syntax inside the curly braces is Jinja2, and you can do all sorts of operations and apply different filters to the data inside. In templates, you can also use for loops and if statements to handle more complex situations, like this, in roles/common/templates/iptables.j2:
{% if inventory_hostname in groups['dbservers'] %}
-A INPUT -p tcp --dport 3306 -j ACCEPT
{% endif %}
This is testing to see if the inventory name of the machine we’re currently operating on (inventory_hostname) exists in the inventory group dbservers. If so, that machine will get an iptables ACCEPT line for port 3306.
Here’s another example, from the same template:
{% for host in groups['monitoring'] %}
-A INPUT -p tcp -s {{ hostvars[host].ansible_default_ipv4.address }} --dport 5666 -j ACCEPT
{% endfor %}
This loops over all of the hosts in the group called monitoring, and adds an ACCEPT line for each monitoring hosts’ default IPV4 address to the current machine’s iptables configuration, so that Nagios can monitor those hosts.
You can learn a lot more about Jinja2 and its capabilities here [http://jinja.pocoo.org/docs/], and you can read more about Ansible variables in general in the Variables section.
The Rolling Upgrade
Now you have a fully-deployed site with web servers, a load balancer, and monitoring. How do you update it? This is where Ansible’s orchestration features come into play. While some applications use the term ‘orchestration’ to mean basic ordering or command-blasting, Ansible refers to orchestration as ‘conducting machines like an orchestra’, and has a pretty sophisticated engine for it.
Ansible has the capability to do operations on multi-tier applications in a coordinated way, making it easy to orchestrate a sophisticated zero-downtime rolling upgrade of our web application. This is implemented in a separate playbook, called rolling_upgrade.yml.
Looking at the playbook, you can see it is made up of two plays. The first play is very simple and looks like this:
- hosts: monitoring
tasks: []
What’s going on here, and why are there no tasks? You might know that Ansible gathers “facts” from the servers before operating upon them. These facts are useful for all sorts of things: networking information, OS/distribution versions, etc. In our case, we need to know something about all of the monitoring servers in our environment before we perform the update, so this simple play forces a fact-gathering step on our monitoring servers. You will see this pattern sometimes, and it’s a useful trick to know.
The next part is the update play. The first part looks like this:
- hosts: webservers
user: root
serial: 1
This is just a normal play definition, operating on the webservers group. The serial keyword tells Ansible how many servers to operate on at once. If it’s not specified, Ansible will parallelize these operations up to the default “forks” limit specified in the configuration file. But for a zero-downtime rolling upgrade, you may not want to operate on that many hosts at once. If you had just a handful of webservers, you may want to set serial to 1, for one host at a time. If you have 100, maybe you could set serial to 10, for ten at a time.
Here is the next part of the update play:
pre_tasks:
- name: disable nagios alerts for this host webserver service
nagios: action=disable_alerts host={{ ansible_hostname }} services=webserver
delegate_to: "{{ item }}"
with_items: groups.monitoring
- name: disable the server in haproxy
shell: echo "disable server myapplb/{{ ansible_hostname }}" | socat stdio /var/lib/haproxy/stats
delegate_to: "{{ item }}"
with_items: groups.lbservers
The pre_tasks keyword just lets you list tasks to run before the roles are called. This will make more sense in a minute. If you look at the names of these tasks, you can see that we are disabling Nagios alerts and then removing the webserver that we are currently updating from the HAProxy load balancing pool.
The delegate_to and with_items arguments, used together, cause Ansible to loop over each monitoring server and load balancer, and perform that operation (delegate that operation) on the monitoring or load balancing server, “on behalf” of the webserver. In programming terms, the outer loop is the list of web servers, and the inner loop is the list of monitoring servers.
Note that the HAProxy step looks a little complicated. We’re using HAProxy in this example because it’s freely available, though if you have (for instance) an F5 or Netscaler in your infrastructure (or maybe you have an AWS Elastic IP setup?), you can use modules included in core Ansible to communicate with them instead. You might also wish to use other monitoring modules instead of nagios, but this just shows the main goal of the ‘pre tasks’ section – take the server out of monitoring, and take it out of rotation.
The next step simply re-applies the proper roles to the web servers. This will cause any configuration management declarations in web and base-apache roles to be applied to the web servers, including an update of the web application code itself. We don’t have to do it this way–we could instead just purely update the web application, but this is a good example of how roles can be used to reuse tasks:
roles:
- common
- base-apache
- web
Finally, in the post_tasks section, we reverse the changes to the Nagios configuration and put the web server back in the load balancing pool:
post_tasks:
- name: Enable the server in haproxy
shell: echo "enable server myapplb/{{ ansible_hostname }}" | socat stdio /var/lib/haproxy/stats
delegate_to: "{{ item }}"
with_items: groups.lbservers
- name: re-enable nagios alerts
nagios: action=enable_alerts host={{ ansible_hostname }} services=webserver
delegate_to: "{{ item }}"
with_items: groups.monitoring
Again, if you were using a Netscaler or F5 or Elastic Load Balancer, you would just substitute in the appropriate modules instead.
Managing Other Load Balancers
In this example, we use the simple HAProxy load balancer to front-end the web servers. It’s easy to configure and easy to manage. As we have mentioned, Ansible has built-in support for a variety of other load balancers like Citrix NetScaler, F5 BigIP, Amazon Elastic Load Balancers, and more. See the About Modules documentation for more information.
For other load balancers, you may need to send shell commands to them (like we do for HAProxy above), or call an API, if your load balancer exposes one. For the load balancers for which Ansible has modules, you may want to run them as a local_action if they contact an API. You can read more about local actions in the Delegation, Rolling Updates, and Local Actions section. Should you develop anything interesting for some hardware where there is not a core module, it might make for a good module for core inclusion!
Continuous Delivery End-To-End
Now that you have an automated way to deploy updates to your application, how do you tie it all together? A lot of organizations use a continuous integration tool like Jenkins [http://jenkins-ci.org/] or Atlassian Bamboo [https://www.atlassian.com/software/bamboo] to tie the development, test, release, and deploy steps together. You may also want to use a tool like Gerrit [https://code.google.com/p/gerrit/] to add a code review step to commits to either the application code itself, or to your Ansible playbooks, or both.
Depending on your environment, you might be deploying continuously to a test environment, running an integration test battery against that environment, and then deploying automatically into production. Or you could keep it simple and just use the rolling-update for on-demand deployment into test or production specifically. This is all up to you.
For integration with Continuous Integration systems, you can easily trigger playbook runs using the ansible-playbook command line tool, or, if you’re using Ansible Tower, the tower-cli or the built-in REST API. (The tower-cli command ‘joblaunch’ will spawn a remote job over the REST API and is pretty slick).
This should give you a good idea of how to structure a multi-tier application with Ansible, and orchestrate operations upon that app, with the eventual goal of continuous delivery to your customers. You could extend the idea of the rolling upgrade to lots of different parts of the app; maybe add front-end web servers along with application servers, for instance, or replace the SQL database with something like MongoDB or Riak. Ansible gives you the capability to easily manage complicated environments and automate common operations.
See also
lamp_haproxy example [https://github.com/ansible/ansible-examples/tree/master/lamp_haproxy]
The lamp_haproxy example discussed here.
Playbooks
An introduction to playbooks
Playbook Roles and Include Statements
An introduction to playbook roles
Variables
An introduction to Ansible variables
Ansible.com: Continuous Delivery [http://www.ansible.com/ansible-continuous-delivery]
An introduction to Continuous Delivery with Ansible
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Testing Strategies
Integrating Testing With Ansible Playbooks
Many times, people ask, “how can I best integrate testing with Ansible playbooks?” There are many options. Ansible is actually designed to be a “fail-fast” and ordered system, therefore it makes it easy to embed testing directly in Ansible playbooks. In this chapter, we’ll go into some patterns for integrating tests of infrastructure and discuss the right level of testing that may be appropriate.
Note
This is a chapter about testing the application you are deploying, not the chapter on how to test ansible modules during development. For that content, please hop over to the Development section.
By incorporating a degree of testing into your deployment workflow, there will be less surprises when code hits production, and in many cases, tests can be leveraged in production to prevent failed updates from migrating across an entire installation. Since it’s push-based and also makes it very easy to run steps on the localhost or testing servers, Ansible lets you insert as many checks and balances into your upgrade workflow as you would like to insert.
The Right Level of Testing
Ansible resources are models of desired-state. As such, it should not be neccessary to test that services are running, packages are installed, or other such things. Ansible is the system that will ensure these things are declaratively true. Instead, assert these things into your playbooks.
tasks:
- service: name=foo state=running enabled=yes
If you think the service may not be running, the best thing to do is request it to be running. If the service fails to start, Ansible will yell appropriately. (This should not be confused with whether the service is doing something functional, which we’ll show more about how to do later).
Check Mode As A Drift Test
In the above setup, –check mode in Ansible can be used as a layer of testing as well. If running a deployment playbook against an existing system, using the –check flag to the ansible command will report if Ansible thinks it would have had to have made any changes to bring the system into a desired state.
This can let you know up front if there is any need to deploy onto the given system. Ordinarily scripts and commands don’t run in check mode, so if you want certain steps to always execute in check mode, such as calls to the script module, add the ‘always_run’ flag:
roles:
- webserver
tasks:
- script: verify.sh
always_run: True
Modules That Are Useful for Testing
Certain playbook modules are particularly good for testing. Below is an example that ensures a port is open:
tasks:
- wait_for: host={{ inventory_hostname }} port=22
delegate_to: localhost
Here’s an example of using the URI module to make sure a web service returns:
tasks:
- action: uri url=http://www.example.com return_content=yes
register: webpage
- fail: msg='service is not happy'
when: "'AWESOME' not in webpage.content"
It’s easy to push an arbitrary script (in any language) on a remote host and the script will automatically fail if it has a non-zero return code:
tasks:
- script: test_script1
- script: test_script2 --parameter value --parameter2 value
If using roles (you should be, roles are great!), scripts pushed by the script module can live in the ‘files/’ directory of a role.
And the assert module makes it very easily to validate various kinds of truth:
tasks:
- shell: /usr/bin/some-command --parameter value
register: cmd_result
- assert:
that:
- "'not ready' not in cmd_result.stderr"
- "'gizmo enabled' in cmd_result.stdout"
Should you feel the need to test for existance of files that are not declaratively set by your ansible configuration, the ‘stat’ module is a great choice:
tasks:
- stat: path=/path/to/something
register: p
- assert:
that:
- p.stat.exists and p.stat.isdir
As mentioned above, there’s no need to check things like the return codes of commands. Ansible is checking them automatically. Rather than checking for a user to exist, consider using the user module to make it exist.
Ansible is a fail-fast system, so when there is an error creating that user, it will stop the playbook run. You do not have to check up behind it.
Testing Lifecycle
If writing some degree of basic validation of your application into your playbooks, they will run every time you deploy.
As such, deploying into a local development VM and a stage environment will both validate that things are according to plan ahead of your production deploy.
Your workflow may be something like this:
- Use the same playbook all the time with embedded tests in development
- Use the playbook to deploy to a stage environment (with the same playbooks) that simulates production
- Run an integration test battery written by your QA team against stage
- Deploy to production, with the same integrated tests.
Something like an integration test battery should be written by your QA team if you are a production webservice. This would include things like Selenium tests or automated API tests and would usually not be something embedded into your ansible playbooks.
However, it does make sense to include some basic health checks into your playbooks, and in some cases it may be possible to run a subset of the QA battery against remote nodes. This is what the next section covers.
Integrating Testing With Rolling Updates
If you have read into Delegation, Rolling Updates, and Local Actions it may quickly become apparent that the rolling update pattern can be extended, and you can use the success or failure of the playbook run to decide whether to add a machine into a load balancer or not.
This is the great culmination of embedded tests:

- hosts: webservers
serial: 5
pre_tasks:
- name: take out of load balancer pool
command: /usr/bin/take_out_of_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1
roles:
- common
- webserver
- apply_testing_checks
post_tasks:
- name: add back to load balancer pool
command: /usr/bin/add_back_to_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1
Of course in the above, the “take out of the pool” and “add back” steps would be replaced with a call to a Ansible load balancer module or appropriate shell command. You might also have steps that use a monitoring module to start and end an outage window for the machine.
However, what you can see from the above is that tests are used as a gate – if the “apply_testing_checks” step is not performed, the machine will not go back into the pool.
Read the delegation chapter about “max_fail_percentage” and you can also control how many failing tests will stop a rolling update from proceeding.
This above approach can also be modified to run a step from a testing machine remotely against a machine:

- hosts: webservers
serial: 5
pre_tasks:
- name: take out of load balancer pool
command: /usr/bin/take_out_of_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1
roles:
- common
- webserver
tasks:
- script: /srv/qa_team/app_testing_script.sh --server {{ inventory_hostname }}
delegate_to: testing_server
post_tasks:
- name: add back to load balancer pool
command: /usr/bin/add_back_to_pool {{ inventory_hostname }}
delegate_to: 127.0.0.1
In the above example, a script is run from the testing server against a remote node prior to bringing it back into the pool.
In the event of a problem, fix the few servers that fail using Ansible’s automatically generated retry file to repeat the deploy on just those servers.
Achieving Continous Deployment
If desired, the above techniques may be extended to enable continuous deployment practices.
The workflow may look like this:
- Write and use automation to deploy local development VMs
- Have a CI system like Jenkins deploy to a stage environment on every code change
- The deploy job calls testing scripts to pass/fail a build on every deploy
- If the deploy job succeeds, it runs the same deploy playbook against production inventory
Some Ansible users use the above approach to deploy a half-dozen or dozen times an hour without taking all of their infrastructure offline. A culture of automated QA is vital if you wish to get to this level.
If you are still doing a large amount of manual QA, you should still make the decision on whether to deploy manually as well, but it can still help to work in the rolling update patterns of the previous section and encorporate some basic health checks using modules like ‘script’, ‘stat’, ‘uri’, and ‘assert’.
Conclusion
Ansible believes you should not need another framework to validate basic things of your infrastructure is true. This is the case because ansible is an order-based system that will fail immediately on unhandled errors for a host, and prevent further configuration of that host. This forces errors to the top and shows them in a summary at the end of the Ansible run.
However, as Ansible is designed as a multi-tier orchestration system, it makes it very easy to incorporate tests into the end of a playbook run, either using loose tasks or roles. When used with rolling updates, testing steps can decide whether to put a machine back into a load balanced pool or not.
Finally, because Ansible errors propogate all the way up to the return code of the ansible program itself, and Ansible by default runs in an easy push-based mode, ansible is a great step to put into a build environment if you wish to use it to roll out systems as part of a Continous Integration/Continous Delivery pipeline, as is covered in sections above.
The focus should not be on infrastructure testing, but on application testing, so we strongly encourage getting together with your QA team and ask what sort of tests would make sense to run every time you deploy development VMs, and which sort of tests they would like to run against the stage environment on every deploy. Obviously at the development stage, unit tests are great too. But don’t unit test your playbook. Ansible describes states of resources declaratively, so you don’t have to. If there are cases where you want to be sure of something though, that’s great, and things like stat/assert are great go-to modules for that purpose.
In all, testing is a very organizational and site-specific thing. Everybody should be doing it, but what makes the most sense for your environment will vary with what you are deploying and who is using it – but everyone benefits from a more robust and reliable deployment system.
See also
About Modules
All the documentation for Ansible modules
Playbooks
An introduction to playbooks
Delegation, Rolling Updates, and Local Actions
Delegation, useful for working with loud balancers, clouds, and locally executed steps.
User Mailing List [http://groups.google.com/group/ansible-project]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Developer Information
Learn how to build modules of your own in any language, and also how to extend Ansible through several kinds of plugins. Explore Ansible’s Python API and write Python plugins to integrate with other solutions in your environment.
Developers will also likely be interested in the fully-discoverable in Ansible Tower. It’s great for embedding Ansible in all manner of applications.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
There are several interesting ways to use Ansible from an API perspective. You can use the Ansible python API to control nodes, you can extend Ansible to respond to various python events, you can write various plugins, and you can plug in inventory data from external data sources. This document covers the Runner and Playbook API at a basic level.
If you are looking to use Ansible programmatically from something other than Python, trigger events asynchronously, or have access control and logging demands, take a look at Ansible Tower as it has a very nice REST API that provides all of these things at a higher level.
Ansible is written in its own API so you have a considerable amount of power across the board. This chapter discusses the Python API.
The Python API is very powerful, and is how the ansible CLI and ansible-playbook are implemented.
It’s pretty simple:
import ansible.runner
runner = ansible.runner.Runner(
module_name='ping',
module_args='',
pattern='web*',
forks=10
)
datastructure = runner.run()
The run method returns results per host, grouped by whether they could be contacted or not. Return types are module specific, as expressed in the About Modules documentation.:
{
"dark" : {
"web1.example.com" : "failure message"
},
"contacted" : {
"web2.example.com" : 1
}
}
A module can return any type of JSON data it wants, so Ansible can be used as a framework to rapidly build powerful applications and scripts.
The following script prints out the uptime information for all hosts:
#!/usr/bin/python
import ansible.runner
import sys
construct the ansible runner and execute on all hosts
results = ansible.runner.Runner(
pattern='*', forks=10,
module_name='command', module_args='/usr/bin/uptime',
).run()
if results is None:
print "No hosts found"
sys.exit(1)
print "UP ***********"
for (hostname, result) in results['contacted'].items():
if not 'failed' in result:
print "%s >>> %s" % (hostname, result['stdout'])
print "FAILED *******"
for (hostname, result) in results['contacted'].items():
if 'failed' in result:
print "%s >>> %s" % (hostname, result['msg'])
print "DOWN *********"
for (hostname, result) in results['dark'].items():
print "%s >>> %s" % (hostname, result)
Advanced programmers may also wish to read the source to ansible itself, for it uses the Runner() API (with all available options) to implement the command line tools ansible and ansible-playbook.
See also
Developing Dynamic Inventory Sources
Developing dynamic inventory integrations
Developing Modules
How to develop modules
Developing Plugins
How to develop plugins
Development Mailing List [http://groups.google.com/group/ansible-devel]
Mailing list for development topics
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Developing Dynamic Inventory Sources
Topics
As described in Dynamic Inventory, ansible can pull inventory information from dynamic sources, including cloud sources.
How do we write a new one?
Simple! We just create a script or program that can return JSON in the right format when fed the proper arguments. You can do this in any language.
When the external node script is called with the single argument --list, the script must return a JSON hash/dictionary of all the groups to be managed. Each group’s value should be either a hash/dictionary containing a list of each host/IP, potential child groups, and potential group variables, or simply a list of host/IP addresses, like so:
{
"databases" : {
"hosts" : ["host1.example.com", "host2.example.com"],
"vars" : {
"a" : true
}
},
"webservers" : ["host2.example.com", "host3.example.com"],
"atlanta" : {
"hosts" : ["host1.example.com", "host4.example.com", "host5.example.com"],
"vars" : {
"b" : false
},
"children": ["marietta", "5points"]
},
"marietta" : ["host6.example.com"],
"5points" : ["host7.example.com"]
}
New in version 1.0.
Before version 1.0, each group could only have a list of hostnames/IP addresses, like the webservers, marietta, and 5points groups above.
When called with the arguments --host <hostname> (where <hostname> is a host from above), the script must return either an empty JSON hash/dictionary, or a hash/dictionary of variables to make available to templates and playbooks. Returning variables is optional, if the script does not wish to do this, returning an empty hash/dictionary is the way to go:
{
"favcolor" : "red",
"ntpserver" : "wolf.example.com",
"monitoring" : "pack.example.com"
}
Tuning the External Inventory Script
New in version 1.3.
The stock inventory script system detailed above works for all versions of Ansible, but calling --host for every host can be rather expensive, especially if it involves expensive API calls to a remote subsystem. In Ansible 1.3 or later, if the inventory script returns a top level element called “_meta”, it is possible to return all of the host variables in one inventory script call. When this meta element contains a value for “hostvars”, the inventory script will not be invoked with --host for each host. This results in a significant performance increase for large numbers of hosts, and also makes client side caching easier to implement for the inventory script.
The data to be added to the top level JSON dictionary looks like this:
{
results of inventory script as above go here
...
"_meta" : {
"hostvars" : {
"moocow.example.com" : { "asdf" : 1234 },
"llama.example.com" : { "asdf" : 5678 },
}
}
}
See also
Python API
Python API to Playbooks and Ad Hoc Task Execution
Developing Modules
How to develop modules
Developing Plugins
How to develop plugins
Ansible Tower [http://ansible.com/ansible-tower]
REST API endpoint and GUI for Ansible, syncs with dynamic inventory
Development Mailing List [http://groups.google.com/group/ansible-devel]
Mailing list for development topics
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Ansible modules are reusable units of magic that can be used by the Ansible API, or by the ansible or ansible-playbook programs.
See About Modules for a list of various ones developed in core.
Modules can be written in any language and are found in the path specified by ANSIBLE_LIBRARY or the --module-path command line option.
Should you develop an interesting Ansible module, consider sending a pull request to the github project [http://github.com/ansible/ansible] to see about getting your module included in the core project.
Let’s build a very-basic module to get and set the system time. For starters, let’s build a module that just outputs the current time.
We are going to use Python here but any language is possible. Only File I/O and outputting to standard out are required. So, bash, C++, clojure, Python, Ruby, whatever you want is fine.
Now Python Ansible modules contain some extremely powerful shortcuts (that all the core modules use) but first we are going to build a module the very hard way. The reason we do this is because modules written in any language OTHER than Python are going to have to do exactly this. We’ll show the easy way later.
So, here’s an example. You would never really need to build a module to set the system time, the ‘command’ module could already be used to do this. Though we’re going to make one.
Reading the modules that come with ansible (linked above) is a great way to learn how to write modules. Keep in mind, though, that some modules in ansible’s source tree are internalisms, so look at service or yum, and don’t stare too close into things like async_wrapper or you’ll turn to stone. Nobody ever executes async_wrapper directly.
Ok, let’s get going with an example. We’ll use Python. For starters, save this as a file named time:
#!/usr/bin/python
import datetime
import json
date = str(datetime.datetime.now())
print json.dumps({
"time" : date
})
There’s a useful test script in the source checkout for ansible:
git clone git@github.com:ansible/ansible.git
source ansible/hacking/env-setup
chmod +x ansible/hacking/test-module
Let’s run the script you just wrote with that:
ansible/hacking/test-module -m ./time
You should see output that looks something like this:
{u'time': u'2012-03-14 22:13:48.539183'}
If you did not, you might have a typo in your module, so recheck it and try again.
Let’s modify the module to allow setting the current time. We’ll do this by seeing if a key value pair in the form time=<string> is passed in to the module.
Ansible internally saves arguments to an arguments file. So we must read the file and parse it. The arguments file is just a string, so any form of arguments are legal. Here we’ll do some basic parsing to treat the input as key=value.
The example usage we are trying to achieve to set the time is:
time time="March 14 22:10"
If no time parameter is set, we’ll just leave the time as is and return the current time.
Note
This is obviously an unrealistic idea for a module. You’d most likely just use the shell module. However, it probably makes a decent tutorial.
Let’s look at the code. Read the comments as we’ll explain as we go. Note that this is highly verbose because it’s intended as an educational example. You can write modules a lot shorter than this:
#!/usr/bin/python
import some python modules that we'll use. These are all
available in Python's core
import datetime
import sys
import json
import os
import shlex
read the argument string from the arguments file
args_file = sys.argv[1]
args_data = file(args_file).read()
for this module, we're going to do key=value style arguments
this is up to each module to decide what it wants, but all
core modules besides 'command' and 'shell' take key=value
so this is highly recommended
arguments = shlex.split(args_data)
for arg in arguments:
ignore any arguments without an equals in it
if "=" in arg:
(key, value) = arg.split("=")
if setting the time, the key 'time'
will contain the value we want to set the time to
if key == "time":
now we'll affect the change. Many modules
will strive to be 'idempotent', meaning they
will only make changes when the desired state
expressed to the module does not match
the current state. Look at 'service'
or 'yum' in the main git tree for an example
of how that might look.
rc = os.system("date -s \"%s\"" % value)
always handle all possible errors
#
when returning a failure, include 'failed'
in the return data, and explain the failure
in 'msg'. Both of these conventions are
required however additional keys and values
can be added.
if rc != 0:
print json.dumps({
"failed" : True,
"msg" : "failed setting the time"
})
sys.exit(1)
when things do not fail, we do not
have any restrictions on what kinds of
data are returned, but it's always a
good idea to include whether or not
a change was made, as that will allow
notifiers to be used in playbooks.
date = str(datetime.datetime.now())
print json.dumps({
"time" : date,
"changed" : True
})
sys.exit(0)
if no parameters are sent, the module may or
may not error out, this one will just
return the time
date = str(datetime.datetime.now())
print json.dumps({
"time" : date
})
Let’s test that module:
ansible/hacking/test-module -m ./time -a time=\"March 14 12:23\"
This should return something like:
{"changed": true, "time": "2012-03-14 12:23:00.000307"}
The ‘setup’ module that ships with Ansible provides many variables about a system that can be used in playbooks and templates. However, it’s possible to also add your own facts without modifying the system module. To do this, just have the module return a ansible_facts key, like so, along with other return data:
{
"changed" : True,
"rc" : 5,
"ansible_facts" : {
"leptons" : 5000,
"colors" : {
"red" : "FF0000",
"white" : "FFFFFF"
}
}
}
These ‘facts’ will be available to all statements called after that module (but not before) in the playbook. A good idea might be make a module called ‘site_facts’ and always call it at the top of each playbook, though we’re always open to improving the selection of core facts in Ansible as well.
As mentioned, if you are writing a module in Python, there are some very powerful shortcuts you can use. Modules are still transferred as one file, but an arguments file is no longer needed, so these are not only shorter in terms of code, they are actually FASTER in terms of execution time.
Rather than mention these here, the best way to learn is to read some of the source of the modules [https://github.com/ansible/ansible/tree/devel/library] that come with Ansible.
The ‘group’ and ‘user’ modules are reasonably non-trivial and showcase what this looks like.
Key parts include always ending the module file with:
from ansible.module_utils.basic import *
main()
And instantiating the module class like:
module = AnsibleModule(
argument_spec = dict(
state = dict(default='present', choices=['present', 'absent']),
name = dict(required=True),
enabled = dict(required=True, choices=BOOLEANS),
something = dict(aliases=['whatever'])
)
)
The AnsibleModule provides lots of common code for handling returns, parses your arguments for you, and allows you to check inputs.
Successful returns are made like this:
module.exit_json(changed=True, something_else=12345)
And failures are just as simple (where ‘msg’ is a required parameter to explain the error):
module.fail_json(msg="Something fatal happened")
There are also other useful functions in the module class, such as module.md5(path). See lib/ansible/module_common.py in the source checkout for implementation details.
Again, modules developed this way are best tested with the hacking/test-module script in the git source checkout. Because of the magic involved, this is really the only way the scripts can function outside of Ansible.
If submitting a module to ansible’s core code, which we encourage, use of the AnsibleModule class is required.
New in version 1.1.
Modules may optionally support check mode. If the user runs Ansible in check mode, the module should try to predict whether changes will occur.
For your module to support check mode, you must pass supports_check_mode=True when instantiating the AnsibleModule object. The AnsibleModule.check_mode attribute will evaluate to True when check mode is enabled. For example:
module = AnsibleModule(
argument_spec = dict(...),
supports_check_mode=True
)
if module.check_mode:
Check if any changes would be made by don't actually make those changes
module.exit_json(changed=check_if_system_state_would_be_changed())
Remember that, as module developer, you are responsible for ensuring that no system state is altered when the user enables check mode.
If your module does not support check mode, when the user runs Ansible in check mode, your module will simply be skipped.
You should also never do this in a module:
print "some status message"
Because the output is supposed to be valid JSON. Except that’s not quite true, but we’ll get to that later.
Modules must not output anything on standard error, because the system will merge standard out with standard error and prevent the JSON from parsing. Capturing standard error and returning it as a variable in the JSON on standard out is fine, and is, in fact, how the command module is implemented.
If a module returns stderr or otherwise fails to produce valid JSON, the actual output will still be shown in Ansible, but the command will not succeed.
Always use the hacking/test-module script when developing modules and it will warn you about these kind of things.
As a reminder from the example code above, here are some basic conventions and guidelines:
To make it easier to write modules in bash and in cases where a JSON module might not be available, it is acceptable for a module to return key=value output all on one line, like this. The Ansible parser will know what to do:
somekey=1 somevalue=2 rc=3 favcolor=red
If you’re writing a module in Python or Ruby or whatever, though, returning JSON is probably the simplest way to go.
All modules included in the CORE distribution must have a DOCUMENTATION string. This string MUST be a valid YAML document which conforms to the schema defined below. You may find it easier to start writing your DOCUMENTATION string in an editor with YAML syntax highlighting before you include it in your Python file.
See an example documentation string in the checkout under examples/DOCUMENTATION.yml [https://github.com/ansible/ansible/blob/devel/examples/DOCUMENTATION.yml].
Include it in your module file like this:
#!/usr/bin/env python
Copyright header....
DOCUMENTATION = '''

module: modulename
short_description: This is a sentence describing the module
... snip ...
'''
The description, and notes fields support formatting with some special macros.
These formatting functions are U(), M(), I(), and C() for URL, module, italic, and constant-width respectively. It is suggested to use C() for file and option names, and I() when referencing parameters; module names should be specifies as M(module).
Examples (which typically contain colons, quotes, etc.) are difficult to format with YAML, so these must be written in plain text in an EXAMPLES string within the module like this:
EXAMPLES = '''
- action: modulename opt1=arg1 opt2=arg2
'''
The EXAMPLES section, just like the documentation section, is required in all module pull requests for new modules.
Put your completed module file into the ‘library’ directory and then run the command: make webdocs. The new ‘modules.html’ file will be built and appear in the ‘docsite/’ directory.
Tip
If you’re having a problem with the syntax of your YAML you can validate it on the YAML Lint [http://www.yamllint.com/] website.
Tip
You can use ANSIBLE_KEEP_REMOTE_FILES=1 to prevent ansible from deleting the remote files so you can debug your module.
High-quality modules with minimal dependencies can be included in the core, but core modules (just due to the programming preferences of the developers) will need to be implemented in Python and use the AnsibleModule common code, and should generally use consistent arguments with the rest of the program. Stop by the mailing list to inquire about requirements if you like, and submit a github pull request to the main project.
See also
About Modules
Learn about available modules
Developing Plugins
Learn about developing plugins
Python API
Learn about the Python API for playbook and task execution
Github modules directory [https://github.com/ansible/ansible/tree/devel/library]
Browse source of core modules
Mailing List [http://groups.google.com/group/ansible-devel]
Development mailing list
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Topics
Ansible is pluggable in a lot of other ways separate from inventory scripts and callbacks. Many of these features are there to cover fringe use cases and are infrequently needed, and others are pluggable simply because they are there to implement core features in ansible and were most convenient to be made pluggable.
This section will explore these features, though they are generally not common in terms of things people would look to extend quite as often.
By default, ansible ships with a ‘paramiko’ SSH, native ssh (just called ‘ssh’), ‘local’ connection type, and there are also some minor players like ‘chroot’ and ‘jail’. All of these can be used in playbooks and with /usr/bin/ansible to decide how you want to talk to remote machines. The basics of these connection types are covered in the Getting Started section. Should you want to extend Ansible to support other transports (SNMP? Message bus? Carrier Pigeon?) it’s as simple as copying the format of one of the existing modules and dropping it into the connection plugins directory. The value of ‘smart’ for a connection allows selection of paramiko or openssh based on system capabilities, and chooses ‘ssh’ if OpenSSH supports ControlPersist, in Ansible 1.2.1 an later. Previous versions did not support ‘smart’.
More documentation on writing connection plugins is pending, though you can jump into lib/ansible/runner/connection_plugins [https://github.com/ansible/ansible/tree/devel/lib/ansible/runner/connection_plugins] and figure things out pretty easily.
Language constructs like “with_fileglob” and “with_items” are implemented via lookup plugins. Just like other plugin types, you can write your own.
More documentation on writing connection plugins is pending, though you can jump into lib/ansible/runner/lookup_plugins [https://github.com/ansible/ansible/tree/devel/lib/ansible/runner/lookup_plugins] and figure things out pretty easily.
Playbook constructs like ‘host_vars’ and ‘group_vars’ work via ‘vars’ plugins. They inject additional variable data into ansible runs that did not come from an inventory, playbook, or command line. Note that variables can also be returned from inventory, so in most cases, you won’t need to write or understand vars_plugins.
More documentation on writing connection plugins is pending, though you can jump into lib/ansible/inventory/vars_plugins [https://github.com/ansible/ansible/tree/devel/lib/ansible/inventory/vars_plugins] and figure things out pretty easily.
If you find yourself wanting to write a vars_plugin, it’s more likely you should write an inventory script instead.
If you want more Jinja2 filters available in a Jinja2 template (filters like to_yaml and to_json are provided by default), they can be extended by writing a filter plugin. Most of the time, when someone comes up with an idea for a new filter they would like to make available in a playbook, we’ll just include them in ‘core.py’ instead.
Jump into lib/ansible/runner/filter_plugins/ [https://github.com/ansible/ansible/tree/devel/lib/ansible/runner/filter_plugins] for details.
Callbacks are one of the more interesting plugin types. Adding additional callback plugins to Ansible allows for adding new behaviors when responding to events.
Example callbacks are shown in plugins/callbacks [https://github.com/ansible/ansible/tree/devel/plugins/callbacks].
The log_plays [https://github.com/ansible/ansible/blob/devel/plugins/callbacks/log_plays.py] callback is an example of how to intercept playbook events to a log file, and the mail [https://github.com/ansible/ansible/blob/devel/plugins/callbacks/mail.py] callback sends email when playbooks complete.
The osx_say [https://github.com/ansible/ansible/blob/devel/plugins/callbacks/osx_say.py] callback provided is particularly entertaining – it will respond with computer synthesized speech on OS X in relation to playbook events, and is guaranteed to entertain and/or annoy coworkers.
To active a callback drop it in a callback directory as configured in ansible.cfg.
More information will come later, though see the source of any of the existing callbacks and you should be able to get started quickly. They should be reasonably self-explanatory.
Plugins are loaded from both Python’s site_packages (those that ship with ansible) and a configured plugins directory, which defaults to /usr/share/ansible/plugins, in a subfolder for each plugin type:
* action_plugins
* lookup_plugins
* callback_plugins
* connection_plugins
* filter_plugins
* vars_plugins
To change this path, edit the ansible configuration file.
In addition, plugins can be shipped in a subdirectory relative to a top-level playbook, in folders named the same as indicated above.
See also
About Modules
List of built-in modules
Python API
Learn about the Python API for task execution
Developing Dynamic Inventory Sources
Learn about how to develop dynamic inventory sources
Developing Modules
Learn about how to write Ansible modules
Mailing List [http://groups.google.com/group/ansible-devel]
The development mailing list
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Ansible Tower
Ansible Tower [http://ansible.com/tower] (formerly ‘AWX’) is a web-based solution that makes Ansible even more easy to use for IT teams of all kinds. It’s designed to be the hub for all of your automation tasks.
Tower allows you to control access to who can access what, even allowing sharing of SSH credentials without someone being able to transfer those credentials. Inventory can be graphically managed or synced with a wide variety of cloud sources. It logs all of your jobs, integrates well with LDAP, and has an amazing browsable REST API. Command line tools are available for easy integration with Jenkins as well. Provisioning callbacks provide great support for autoscaling topologies.
Find out more about Tower features and how to download it on the Ansible Tower webpage [http://ansible.com/tower]. Tower is free for usage for up to 10 nodes, and comes bundled with amazing support from Ansible, Inc. As you would expect, Tower is installed using Ansible playbooks!
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Community Information
Ansible is an open source project designed to bring together developers and administrators of all kinds to collaborate on building IT automation solutions that work well for them. Should you wish to get more involved – whether in terms of just asking a question, helping other users, introducing new people to Ansible, or helping with the software or documentation, we welcome your contributions to the project.
Ways to interact [https://github.com/ansible/ansible/blob/devel/CONTRIBUTING.md]
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Ansible Galaxy
Ansible Galaxy [http://galaxy.ansible.com], is a free site for finding, downloading, rating, and reviewing all kinds of community developed Ansible roles and can be a great way to get a jumpstart on your automation projects.
You can sign up with social auth, and the download client ‘ansible-galaxy’ is included in Ansible 1.4.2 and later.
Read the “About” page on the Galaxy site for more information.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Frequently Asked Questions
Here are some commonly-asked questions and their answers.
How do I handle different machines needing different user accounts or ports to log in with?
Setting inventory variables in the inventory file is the easiest way.
For instance, suppose these hosts have different usernames and ports:
[webservers]
asdf.example.com ansible_ssh_port=5000 ansible_ssh_user=alice
jkl.example.com ansible_ssh_port=5001 ansible_ssh_user=bob
You can also dictate the connection type to be used, if you want:
[testcluster]
localhost ansible_connection=local
/path/to/chroot1 ansible_connection=chroot
foo.example.com
bar.example.com
You may also wish to keep these in group variables instead, or file in them in a group_vars/<groupname> file. See the rest of the documentation for more information about how to organize variables.
How do I get ansible to reuse connections, enable Kerberized SSH, or have Ansible pay attention to my local SSH config file?
Switch your default connection type in the configuration file to ‘ssh’, or use ‘-c ssh’ to use Native OpenSSH for connections instead of the python paramiko library. In Ansible 1.2.1 and later, ‘ssh’ will be used by default if OpenSSH is new enough to support ControlPersist as an option.
Paramiko is great for starting out, but the OpenSSH type offers many advanced options. You will want to run Ansible from a machine new enough to support ControlPersist, if you are using this connection type. You can still manage older clients. If you are using RHEL 6, CentOS 6, SLES 10 or SLES 11 the version of OpenSSH is still a bit old, so consider managing from a Fedora or openSUSE client even though you are managing older nodes, or just use paramiko.
We keep paramiko as the default as if you are first installing Ansible on an EL box, it offers a better experience for new users.
How do I speed up management inside EC2?
Don’t try to manage a fleet of EC2 machines from your laptop. Connect to a management node inside EC2 first and run Ansible from there.
How do I handle python pathing not having a Python 2.X in /usr/bin/python on a remote machine?
While you can write ansible modules in any language, most ansible modules are written in Python, and some of these are important core ones.
By default Ansible assumes it can find a /usr/bin/python on your remote system that is a 2.X version of Python, specifically 2.4 or higher.
Setting of an inventory variable ‘ansible_python_interpreter’ on any host will allow Ansible to auto-replace the interpreter used when executing python modules. Thus, you can point to any python you want on the system if /usr/bin/python on your system does not point to a Python 2.X interpreter.
Some Linux operating systems, such as Arch, may only have Python 3 installed by default. This is not sufficient and you will get syntax errors trying to run modules with Python 3. Python 3 is essentially not the same language as Python 2. Ansible modules currently need to support older Pythons for users that still have Enterprise Linux 5 deployed, so they are not yet ported to run under Python 3.0. This is not a problem though as you can just install Python 2 also on a managed host.
Python 3.0 support will likely be addressed at a later point in time when usage becomes more mainstream.
Do not replace the shebang lines of your python modules. Ansible will do this for you automatically at deploy time.
What is the best way to make content reusable/redistributable?
If you have not done so already, read all about “Roles” in the playbooks documentation. This helps you make playbook content self-contained, and works well with things like git submodules for sharing content with others.
If some of these plugin types look strange to you, see the API documentation for more details about ways Ansible can be extended.
Where does the configuration file live and what can I configure in it?
See The Ansible Configuration File.
How do I disable cowsay?
If cowsay is installed, Ansible takes it upon itself to make your day happier when running playbooks. If you decide that you would like to work in a professional cow-free environment, you can either uninstall cowsay, or set an environment variable:
export ANSIBLE_NOCOWS=1
How do I see a list of all of the ansible_ variables?
Ansible by default gathers “facts” about the machines under management, and these facts can be accessed in Playbooks and in templates. To see a list of all of the facts that are available about a machine, you can run the “setup” module as an ad-hoc action:
ansible -m setup hostname
This will print out a dictionary of all of the facts that are available for that particular host.
How do I loop over a list of hosts in a group, inside of a template?
A pretty common pattern is to iterate over a list of hosts inside of a host group, perhaps to populate a template configuration file with a list of servers. To do this, you can just access the “$groups” dictionary in your template, like this:
{% for host in groups['db_servers'] %}
{{ host }}
{% endfor %}
If you need to access facts about these hosts, for instance, the IP address of each hostname, you need to make sure that the facts have been populated. For example, make sure you have a play that talks to db_servers:
- hosts: db_servers
tasks:
- # doesn't matter what you do, just that they were talked to previously.
Then you can use the facts inside your template, like this:
{% for host in groups['db_servers'] %}
{{ hostvars[host]['ansible_eth0']['ipv4']['address'] }}
{% endfor %}
How do I access a variable name programmatically?
An example may come up where we need to get the ipv4 address of an arbitrary interface, where the interface to be used may be supplied via a role parameter or other input. Variable names can be built by adding strings together, like so:
{{ hostvars[inventory_hostname]['ansible_' + which_interface]['ipv4']['address'] }}
The trick about going through hostvars is necessary because it’s a dictionary of the entire namespace of variables. ‘inventory_hostname’ is a magic variable that indicates the current host you are looping over in the host loop.
How do I access a variable of the first host in a group?
What happens if we want the ip address of the first webserver in the webservers group? Well, we can do that too. Note that if we are using dynamic inventory, which host is the ‘first’ may not be consistent, so you wouldn’t want to do this unless your inventory was static and predictable. (If you are using Ansible Tower, it will use database order, so this isn’t a problem even if you are using cloud based inventory scripts).
Anyway, here’s the trick:
{{ hostvars[groups['webservers'][0]]['ansible_eth0']['ipv4']['address'] }}
Notice how we’re pulling out the hostname of the first machine of the webservers group. If you are doing this in a template, you could use the Jinja2 ‘#set’ directive to simplify this, or in a playbook, you could also use set_fact:
Notice how we interchanged the bracket syntax for dots – that can be done anywhere.
How do I copy files recursively onto a target host?
The “copy” module has a recursive parameter, though if you want to do something more efficient for a large number of files, take a look at the “synchronize” module instead, which wraps rsync. See the module index for info on both of these modules.
How do I access shell environment variables?
If you just need to access existing variables, use the ‘env’ lookup plugin. For example, to access the value of the HOME environment variable on management machine:

...
vars:
local_home: "{{ lookup('env','HOME') }}"
If you need to set environment variables, see the Advanced Playbooks section about environments.
Ansible 1.4 will also make remote environment variables available via facts in the ‘ansible_env’ variable:
{{ ansible_env.SOME_VARIABLE }}
How do I generate crypted passwords for the user module?
The mkpasswd utility that is available on most Linux systems is a great option:
mkpasswd --method=SHA-512
If this utility is not installed on your system (e.g. you are using OS X) then you can still easily generate these passwords using Python. First, ensure that the Passlib [https://code.google.com/p/passlib/] password hashing library is installed.
pip install passlib
Once the library is ready, SHA512 password values can then be generated as follows:
python -c "from passlib.hash import sha512_crypt; print sha512_crypt.encrypt('<password>')"
Can I get training on Ansible or find commercial support?
Yes! See our Guru offering [http://www.ansible.com/ansible-guru] for online support, and support is also included with Ansible Tower. You can also read our service page [http://www.ansible.com/ansible-services] and email info@ansible.com for further details.
Is there a web interface / REST API / etc?
Yes! Ansible, Inc makes a great product that makes Ansible even more powerful and easy to use. See Ansible Tower.
How do I submit a change to the documentation?
Great question! Documentation for Ansible is kept in the main project git repository, and complete instructions for contributing can be found in the docs README viewable on GitHub [https://github.com/ansible/ansible/blob/devel/docsite/README.md]. Thanks!
How do I keep secret data in my playbook?
If you would like to keep secret data in your Ansible content and still share it publicly or keep things in source control, see Vault.
I don’t see my question here
Please see the section below for a link to IRC and the Google Group, where you can ask your question there.
See also
Ansible Documentation
The documentation index
Playbooks
An introduction to playbooks
Best Practices
Best practices advice
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Glossary
The following is a list (and re-explanation) of term definitions used elsewhere in the Ansible documentation.
Consult the documentation home page for the full documentation and to see the terms in context, but this should be a good resource to check your knowledge of Ansible’s components and understand how they fit together. It’s something you might wish to read for review or when a term comes up on the mailing list.
Action
An action is a part of a task that specifies which of the modules to run and the arguments to pass to that module. Each task can have only one action, but it may also have other parameters.
Ad Hoc
Refers to running Ansible to perform some quick command, using /usr/bin/ansible, rather than the orchestration language, which is /usr/bin/ansible-playbook. An example of an ad-hoc command might be rebooting 50 machines in your infrastructure. Anything you can do ad-hoc can be accomplished by writing a playbook, and playbooks can also glue lots of other operations together.
Async
Refers to a task that is configured to run in the background rather than waiting for completion. If you have a long process that would run longer than the SSH timeout, it would make sense to launch that task in async mode. Async modes can poll for completion every so many seconds, or can be configured to “fire and forget” in which case Ansible will not even check on the task again, it will just kick it off and proceed to future steps. Async modes work with both /usr/bin/ansible and /usr/bin/ansible-playbook.
Callback Plugin
Refers to some user-written code that can intercept results from Ansible and do something with them. Some supplied examples in the GitHub project perform custom logging, send email, or even play sound effects.
Check Mode
Refers to running Ansible with the --check option, which does not make any changes on the remote systems, but only outputs the changes that might occur if the command ran without this flag. This is analogous to so-called “dry run” modes in other systems, though the user should be warned that this does not take into account unexpected command failures or cascade effects (which is true of similar modes in other systems). Use this to get an idea of what might happen, but it is not a substitute for a good staging environment.
Connection Type, Connection Plugin
By default, Ansible talks to remote machines through pluggable libraries. Ansible supports native OpenSSH (‘ssh’), or a Python implementation called ‘paramiko’. OpenSSH is preferred if you are using a recent version, and also enables some features like Kerberos and jump hosts. This is covered in the getting started section. There are also other connection types like ‘accelerate’ mode, which must be bootstrapped over one of the SSH-based connection types but is very fast, and local mode, which acts on the local system. Users can also write their own connection plugins.
Conditionals
A conditional is an expression that evaluates to true or false that decides whether a given task will be executed on a given machine or not. Ansible’s conditionals are powered by the ‘when’ statement, and are discussed in the playbook documentation.
Diff Mode
A --diff flag can be passed to Ansible to show how template files change when they are overwritten, or how they might change when used with --check mode. These diffs come out in unified diff format.
Facts
Facts are simply things that are discovered about remote nodes. While they can be used in playbooks and templates just like variables, facts are things that are inferred, rather than set. Facts are automatically discovered by Ansible when running plays by executing the internal ‘setup’ module on the remote nodes. You never have to call the setup module explicitly, it just runs, but it can be disabled to save time if it is not needed. For the convenience of users who are switching from other configuration management systems, the fact module will also pull in facts from the ‘ohai’ and ‘facter’ tools if they are installed, which are fact libraries from Chef and Puppet, respectively.
Filter Plugin
A filter plugin is something that most users will never need to understand. These allow for the creation of new Jinja2 filters, which are more or less only of use to people who know what Jinja2 filters are. If you need them, you can learn how to write them in the API docs section.
Forks
Ansible talks to remote nodes in parallel and the level of parallelism can be set either by passing --forks, or editing the default in a configuration file. The default is a very conservative 5 forks, though if you have a lot of RAM, you can easily set this to a value like 50 for increased parallelism.
Gather Facts (Boolean)
Facts are mentioned above. Sometimes when running a multi-play playbook, it is desirable to have some plays that don’t bother with fact computation if they aren’t going to need to utilize any of these values. Setting gather_facts: False on a playbook allows this implicit fact gathering to be skipped.
Globbing
Globbing is a way to select lots of hosts based on wildcards, rather than the name of the host specifically, or the name of the group they are in. For instance, it is possible to select “www*” to match all hosts starting with “www”. This concept is pulled directly from Func, one of Michael’s earlier projects. In addition to basic globbing, various set operations are also possible, such as ‘hosts in this group and not in another group’, and so on.
Group
A group consists of several hosts assigned to a pool that can be conveniently targeted together, and also given variables that they share in common.
Group Vars
The “group_vars/” files are files that live in a directory alongside an inventory file, with an optional filename named after each group. This is a convenient place to put variables that will be provided to a given group, especially complex data structures, so that these variables do not have to be embedded in the inventory file or playbook.
Handlers
Handlers are just like regular tasks in an Ansible playbook (see Tasks), but are only run if the Task contains a “notify” directive and also indicates that it changed something. For example, if a config file is changed then the task referencing the config file templating operation may notify a service restart handler. This means services can be bounced only if they need to be restarted. Handlers can be used for things other than service restarts, but service restarts are the most common usage.
Host
A host is simply a remote machine that Ansible manages. They can have individual variables assigned to them, and can also be organized in groups. All hosts have a name they can be reached at (which is either an IP address or a domain name) and optionally a port number if they are not to be accessed on the default SSH port.
Host Specifier
Each Play in Ansible maps a series of tasks (which define the role, purpose, or orders of a system) to a set of systems.
This “hosts:” directive in each play is often called the hosts specifier.
It may select one system, many systems, one or more groups, or even some hosts that are in one group and explicitly not in another.
Host Vars
Just like “Group Vars”, a directory alongside the inventory file named “host_vars/” can contain a file named after each hostname in the inventory file, in YAML format. This provides a convenient place to assign variables to the host without having to embed them in the inventory file. The Host Vars file can also be used to define complex data structures that can’t be represented in the inventory file.
Lazy Evaluation
In general, Ansible evaluates any variables in playbook content at the last possible second, which means that if you define a data structure that data structure itself can define variable values within it, and everything “just works” as you would expect. This also means variable strings can include other variables inside of those strings.
Lookup Plugin
A lookup plugin is a way to get data into Ansible from the outside world. These are how such things as “with_items”, a basic looping plugin, are implemented, but there are also lookup plugins like “with_file” which loads data from a file, and even ones for querying environment variables, DNS text records, or key value stores. Lookup plugins can also be accessed in templates, e.g., {{ lookup('file','/path/to/file') }}.
Multi-Tier
The concept that IT systems are not managed one system at a time, but by interactions between multiple systems, and groups of systems, in well defined orders. For instance, a web server may need to be updated before a database server, and pieces on the web server may need to be updated after THAT database server, and various load balancers and monitoring servers may need to be contacted. Ansible models entire IT topologies and workflows rather than looking at configuration from a “one system at a time” perspective.
Idempotency
The concept that change commands should only be applied when they need to be applied, and that it is better to describe the desired state of a system than the process of how to get to that state. As an analogy, the path from North Carolina in the United States to California involves driving a very long way West, but if I were instead in Anchorage, Alaska, driving a long way west is no longer the right way to get to California. Ansible’s Resources like you to say “put me in California” and then decide how to get there. If you were already in California, nothing needs to happen, and it will let you know it didn’t need to change anything.
Includes
The idea that playbook files (which are nothing more than lists of plays) can include other lists of plays, and task lists can externalize lists of tasks in other files, and similarly with handlers. Includes can be parameterized, which means that the loaded file can pass variables. For instance, an included play for setting up a WordPress blog may take a parameter called “user” and that play could be included more than once to create a blog for both “alice” and “bob”.
Inventory
A file (by default, Ansible uses a simple INI format) that describes Hosts and Groups in Ansible. Inventory can also be provided via an “Inventory Script” (sometimes called an “External Inventory Script”).
Inventory Script
A very simple program (or a complicated one) that looks up hosts, group membership for hosts, and variable information from an external resource – whether that be a SQL database, a CMDB solution, or something like LDAP. This concept was adapted from Puppet (where it is called an “External Nodes Classifier”) and works more or less exactly the same way.
Jinja2
Jinja2 is the preferred templating language of Ansible’s template module. It is a very simple Python template language that is generally readable and easy to write.
JSON
Ansible uses JSON for return data from remote modules. This allows modules to be written in any language, not just Python.
Library
A collection of modules made available to /usr/bin/ansible or an Ansible playbook.
Limit Groups
By passing --limit somegroup to ansible or ansible-playbook, the commands can be limited to a subset of hosts. For instance, this can be used to run a playbook that normally targets an entire set of servers to one particular server.
Local Connection
By using “connection: local” in a playbook, or passing “-c local” to /usr/bin/ansible, this indicates that we are managing the local host and not a remote machine.
Local Action
A local_action directive in a playbook targeting remote machines means that the given step will actually occur on the local machine, but that the variable ‘{{ ansible_hostname }}’ can be passed in to reference the remote hostname being referred to in that step. This can be used to trigger, for example, an rsync operation.
Loops
Generally, Ansible is not a programming language. It prefers to be more declarative, though various constructs like “with_items” allow a particular task to be repeated for multiple items in a list. Certain modules, like yum and apt, are actually optimized for this, and can install all packages given in those lists within a single transaction, dramatically speeding up total time to configuration.
Modules
Modules are the units of work that Ansible ships out to remote machines. Modules are kicked off by either /usr/bin/ansible or /usr/bin/ansible-playbook (where multiple tasks use lots of different modules in conjunction). Modules can be implemented in any language, including Perl, Bash, or Ruby – but can leverage some useful communal library code if written in Python. Modules just have to return JSON or simple key=value pairs. Once modules are executed on remote machines, they are removed, so no long running daemons are used. Ansible refers to the collection of available modules as a ‘library’.
Notify
The act of a task registering a change event and informing a handler task that another action needs to be run at the end of the play. If a handler is notified by multiple tasks, it will still be run only once. Handlers are run in the order they are listed, not in the order that they are notified.
Orchestration
Many software automation systems use this word to mean different things. Ansible uses it as a conductor would conduct an orchestra. A datacenter or cloud architecture is full of many systems, playing many parts – web servers, database servers, maybe load balancers, monitoring systems, continuous integration systems, etc. In performing any process, it is necessary to touch systems in particular orders, often to simulate rolling updates or to deploy software correctly. Some system may perform some steps, then others, then previous systems already processed may need to perform more steps. Along the way, emails may need to be sent or web services contacted. Ansible orchestration is all about modeling that kind of process.
paramiko
By default, Ansible manages machines over SSH. The library that Ansible uses by default to do this is a Python-powered library called paramiko. The paramiko library is generally fast and easy to manage, though users desiring Kerberos or Jump Host support may wish to switch to a native SSH binary such as OpenSSH by specifying the connection type in their playbook, or using the “-c ssh” flag.
Playbooks
Playbooks are the language by which Ansible orchestrates, configures, administers, or deploys systems. They are called playbooks partially because it’s a sports analogy, and it’s supposed to be fun using them. They aren’t workbooks :)
Plays
A playbook is a list of plays. A play is minimally a mapping between a set of hosts selected by a host specifier (usually chosen by groups, but sometimes by hostname globs) and the tasks which run on those hosts to define the role that those systems will perform. There can be one or many plays in a playbook.
Pull Mode
By default, Ansible runs in push mode, which allows it very fine-grained control over when it talks to each system. Pull mode is provided for when you would rather have nodes check in every N minutes on a particular schedule. It uses a program called ansible-pull and can also be set up (or reconfigured) using a push-mode playbook. Most Ansible users use push mode, but pull mode is included for variety and the sake of having choices.
ansible-pull works by checking configuration orders out of git on a crontab and then managing the machine locally, using the local connection plugin.
Push Mode
Push mode is the default mode of Ansible. In fact, it’s not really a mode at all – it’s just how Ansible works when you aren’t thinking about it. Push mode allows Ansible to be fine-grained and conduct nodes through complex orchestration processes without waiting for them to check in.
Register Variable
The result of running any task in Ansible can be stored in a variable for use in a template or a conditional statement. The keyword used to define the variable is called ‘register’, taking its name from the idea of registers in assembly programming (though Ansible will never feel like assembly programming). There are an infinite number of variable names you can use for registration.
Resource Model
Ansible modules work in terms of resources. For instance, the file module will select a particular file and ensure that the attributes of that resource match a particular model. As an example, we might wish to change the owner of /etc/motd to ‘root’ if it is not already set to root, or set its mode to ‘0644’ if it is not already set to ‘0644’. The resource models are ‘idempotent’ meaning change commands are not run unless needed, and Ansible will bring the system back to a desired state regardless of the actual state – rather than you having to tell it how to get to the state.
Roles
Roles are units of organization in Ansible. Assigning a role to a group of hosts (or a set of groups, or host patterns, etc.) implies that they should implement a specific behavior. A role may include applying certain variable values, certain tasks, and certain handlers – or just one or more of these things. Because of the file structure associated with a role, roles become redistributable units that allow you to share behavior among playbooks – or even with other users.
Rolling Update
The act of addressing a number of nodes in a group N at a time to avoid updating them all at once and bringing the system offline. For instance, in a web topology of 500 nodes handling very large volume, it may be reasonable to update 10 or 20 machines at a time, moving on to the next 10 or 20 when done. The “serial:” keyword in an Ansible playbook controls the size of the rolling update pool. The default is to address the batch size all at once, so this is something that you must opt-in to. OS configuration (such as making sure config files are correct) does not typically have to use the rolling update model, but can do so if desired.
Runner
A core software component of Ansible that is the power behind /usr/bin/ansible directly – and corresponds to the invocation of each task in a playbook. The Runner is something Ansible developers may talk about, but it’s not really user land vocabulary.
Serial
See “Rolling Update”.
Sudo
Ansible does not require root logins, and since it’s daemonless, definitely does not require root level daemons (which can be a security concern in sensitive environments). Ansible can log in and perform many operations wrapped in a sudo command, and can work with both password-less and password-based sudo. Some operations that don’t normally work with sudo (like scp file transfer) can be achieved with Ansible’s copy, template, and fetch modules while running in sudo mode.
SSH (Native)
Native OpenSSH as an Ansible transport is specified with “-c ssh” (or a config file, or a directive in the playbook) and can be useful if wanting to login via Kerberized SSH or using SSH jump hosts, etc. In 1.2.1, ‘ssh’ will be used by default if the OpenSSH binary on the control machine is sufficiently new. Previously, Ansible selected ‘paramiko’ as a default. Using a client that supports ControlMaster and ControlPersist is recommended for maximum performance – if you don’t have that and don’t need Kerberos, jump hosts, or other features, paramiko is a good choice. Ansible will warn you if it doesn’t detect ControlMaster/ControlPersist capability.
Tags
Ansible allows tagging resources in a playbook with arbitrary keywords, and then running only the parts of the playbook that correspond to those keywords. For instance, it is possible to have an entire OS configuration, and have certain steps labeled “ntp”, and then run just the “ntp” steps to reconfigure the time server information on a remote host.
Tasks
Playbooks exist to run tasks. Tasks combine an action (a module and its arguments) with a name and optionally some other keywords (like looping directives). Handlers are also tasks, but they are a special kind of task that do not run unless they are notified by name when a task reports an underlying change on a remote system.
Templates
Ansible can easily transfer files to remote systems, but often it is desirable to substitute variables in other files. Variables may come from the inventory file, Host Vars, Group Vars, or Facts. Templates use the Jinja2 template engine and can also include logical constructs like loops and if statements.
Transport
Ansible uses “Connection Plugins” to define types of available transports. These are simply how Ansible will reach out to managed systems. Transports included are paramiko, SSH (using OpenSSH), and local.
When
An optional conditional statement attached to a task that is used to determine if the task should run or not. If the expression following the “when:” keyword evaluates to false, the task will be ignored.
Van Halen
For no particular reason, other than the fact that Michael really likes them, all Ansible releases are codenamed after Van Halen songs. There is no preference given to David Lee Roth vs. Sammy Lee Hagar-era songs, and instrumentals are also allowed. It is unlikely that there will ever be a Jump release, but a Van Halen III codename release is possible. You never know.
Vars (Variables)
As opposed to Facts, variables are names of values (they can be simple scalar values – integers, booleans, strings) or complex ones (dictionaries/hashes, lists) that can be used in templates and playbooks. They are declared things, not things that are inferred from the remote system’s current state or nature (which is what Facts are).
YAML
Ansible does not want to force people to write programming language code to automate infrastructure, so Ansible uses YAML to define playbook configuration languages and also variable files. YAML is nice because it has a minimum of syntax and is very clean and easy for people to skim. It is a good data format for configuration files and humans, but also machine readable. Ansible’s usage of YAML stemmed from Michael’s first use of it inside of Cobbler around 2006. YAML is fairly popular in the dynamic language community and the format has libraries available for serialization in many languages (Python, Perl, Ruby, etc.).
See also
Frequently Asked Questions
Frequently asked questions
Playbooks
An introduction to playbooks
Best Practices
Best practices advice
User Mailing List [http://groups.google.com/group/ansible-devel]
Have a question? Stop by the google group!
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
YAML Syntax
This page provides a basic overview of correct YAML syntax, which is how Ansible playbooks (our configuration management language) are expressed.
We use YAML because it is easier for humans to read and write than other common data formats like XML or JSON. Further, there are libraries available in most programming languages for working with YAML.
You may also wish to read Playbooks at the same time to see how this is used in practice.
YAML Basics
For Ansible, nearly every YAML file starts with a list. Each item in the list is a list of key/value pairs, commonly called a “hash” or a “dictionary”. So, we need to know how to write lists and dictionaries in YAML.
There’s another small quirk to YAML. All YAML files (regardless of their association with Ansible or not) should begin with ---. This is part of the YAML format and indicates the start of a document.
All members of a list are lines beginning at the same indentation level starting with a - (dash) character:

A list of tasty fruits
- Apple
- Orange
- Strawberry
- Mango
A dictionary is represented in a simple key: and value form:

An employee record
name: Example Developer
job: Developer
skill: Elite
Dictionaries can also be represented in an abbreviated form if you really want to:

An employee record
{name: Example Developer, job: Developer, skill: Elite}
Ansible doesn’t really use these too much, but you can also specify a boolean value (true/false) in several forms:

create_key: yes
needs_agent: no
knows_oop: True
likes_emacs: TRUE
uses_cvs: false
Let’s combine what we learned so far in an arbitrary YAML example. This really has nothing to do with Ansible, but will give you a feel for the format:

An employee record
name: Example Developer
job: Developer
skill: Elite
employed: True
foods:
- Apple
- Orange
- Strawberry
- Mango
languages:
ruby: Elite
python: Elite
dotnet: Lame
That’s all you really need to know about YAML to start writing Ansible playbooks.
Gotchas
While YAML is generally friendly, the following is going to result in a YAML syntax error:
foo: somebody said I should put a colon here: so I did
You will want to quote any hash values using colons, like so:
foo: “somebody said I should put a colon here: so I did”
And then the colon will be preserved.
Further, Ansible uses “{{ var }}” for variables. If a value after a colon starts with a “{”, YAML will think it is a dictionary, so you must quote it, like so:
foo: "{{ variable }}"
See also
Playbooks
Learn what playbooks can do and how to write/run them.
YAMLLint [http://yamllint.com/]
YAML Lint (online) helps you debug YAML syntax if you are having problems
Github examples directory [https://github.com/ansible/ansible/tree/devel/examples/playbooks]
Complete playbook files from the github project source
Mailing List [http://groups.google.com/group/ansible-project]
Questions? Help? Ideas? Stop by the list on Google Groups
irc.freenode.net [http://irc.freenode.net]
#ansible IRC chat channel
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Ansible Guru
While many users should be able to get on fine with the documentation, mailing list, and IRC, sometimes you want a bit more.
Ansible Guru [http://ansible.com/ansible-guru] is an offering from Ansible, Inc that helps users who would like more dedicated help with Ansible, including building playbooks, best practices, architecture suggestions, and more – all from our awesome support and services team. It also includes some useful discounts and also some free T-shirts, though you shouldn’t get it just for the free shirts! It’s a great way to train up to becoming an Ansible expert.
For those interested, click through the link above. You can sign up in minutes!
For users looking for more hands-on help, we also have some more information on our Services page [http://www.ansible.com/ansible-services], and support is also included with Ansible Tower.
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.
Index
© Copyright 2014, Ansible, Inc. Created using Sphinx 1.2.2.