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Administrivia

●   Fire escapes

●   Who am I?

●   Pink sheets

●   Green sheets

●   Timing.



This course

●   What we will (and won't) be covering

●   The handouts

●   Course website:
http://www-uxsup.csx.cam.ac.uk/~jw35/courses/xml/.



XML itself



In the beginning...

●   SGML
◆   Invented in the 1970's at IBM
◆   Now ISO standard 8879
◆   A "semantic and structural markup language for text documents"

●   HTML is the most famous 'application' of SGML

●   XML is a reformulation of SGML
◆   Missing out the complicated and redundant features
◆   A W3C-endorsed standard
◆   Designed for easy parsing
◆   A "meta-markup language for text documents"

●   XML is simple
◆   it's the rest of the technology that's powerful
◆   and in places complicated

●   XML isn't just a web technology.



XML Documents

●   XML documents contain text, never binary data

●   These can be manipulated by any tool that understand text

●   An XML document could be a disk file
◆   but it could as easily be a field in a database
◆   or delivered over a network connection

●   When delivered by a web server, they will probably have a 
media type of text/xml or application/xml

●   However the approved modern usage is to use something 
more like application/svg+xml.



Elements

●   XML documents mainly consist of elements

●   Have a start-tag and an end-tag
<name>
  Computing Service
</name>

●   Everything between the tags is the element's content

●   Whitespace is part of the content, though applications may       
ignore it

●   Empty elements can be written: <name/>

●   ...but not <name>.



Tag names

●   Have no intrinsic meaning

●   Are case sensitive

●   Can contain any alphanumeric character, underscore(_), 
hyphen(-), and dot (.)

●   Colon (:) should be avoided
◆   it has a special meaning which we'll come to shortly

●   Must start with a letter or underscore

●   Names starting 'xml...' (in any case) are reserved.



Elements within elements

●   Consider
<institution>
  <name>Computing Service</name>
  <address>New Museums Site, Pembroke Street</address>
  <website>
    <url>http://www.cam.ac.uk/cs/</url>
    <url>http://www-uxsup.csx.cam.ac.uk/</url>
  </website>
</institution>    

●   The <institution> element contains 3 'children': a <name> 
element, an <address> element and a <website> element

●   The <website> element itself contains 2 <url> elements.



XML documents as a tree



XML document styles

●   Record orientated
<institution>
  <name>Computing Service</name>
  <address>New Museums Site, Pembroke Street</address>
  <website>
    <url>http://www.cam.ac.uk/cs/</url>
    <url>http://www-uxsup.csx.cam.ac.uk/</url>
  </website>
</institution>    

●   Mixed content
<handbook>
  <para>
  The <inst>Computing Service</inst> provides 
  services, including <service>Hermes</service> 
  and <service>Raven</service>. It is <em>really 
  important</em> that you find out how to access 
  these services.
  </para>
</handbook>



Attributes

●   Elements can have attributes

●   Name/value pairs in the start tag

●   Name and value separated by '=' and optional white space

●   Value enclosed in single or double quotes. Always

●   Pairs separated by white space
<institution type="non"   key = 'ucs'>
    <name>
      Computing Service
    </name>
</institution>    

●   Each attribute can appear only once in any particular tag

●   Attribute names follow the same rules as element names

●   When to use attribute values, when content?.



Character References

●   Some characters can't appear as themselves in character data
◆   e.g. < and & are never allowed
◆   Some characters can't be typed easily, e.g. Â¥

●   They can be represented as
◆   an entity reference, e.g. &lt;
◆   a numeric character reference, e.g. &#60;
◆   a hexadecimal numeric character reference, e.g. &#x3c;

●   XML pre-defines only 5 entity references
◆   &lt; for the less-than symbol: <
◆   &amp; for the ampersand: &
◆   &gt; for the greater-than symbol: >
◆   &quot; for straight, double quotation marks: "
◆   &apos; for the apostrophe, a.k.a the straight quote: '.



Character sets and encodings

●   XML documents are 'text documents' containing 'characters'

●   Internally, XML processors work in Unicode, a.k.a ISO 10646

●   But computers can only process sequences of octets

●   Characters are mapped to octets by two-stage process
◆   A character set maps characters to numbers
◆   An encoding maps those numbers to bytes

●   The name of an encoding refers to a combination of these, for 
example
◆   iso-8859-1, a.k.a ISO Latin-1, defines a sub-set of characters, 

mainly European, mapped to numbers on the range 0-255 which 
are directly encoded as octets

◆   UCS-2 consists of the first 65,536 characters from Unicode 
encoded as a pair of bytes

◆   UTF-8 encodes all the characters from Unicode using a variable 
number of bytes. Unicode characters 0-127 (ASCII) encode to the 
same single byte as ASCII.



The XML declaration

●   XML documents should start with an XML declaration
<?xml version="1.0" encoding="UTF-8"?>

●   If present, it must be the very first thing in the document

●   In the absence of other information it is used to guess the 
character encoding

●   It contains 3 things that look like attributes (though they aren't):
◆   version: 1.0 or perhaps 1.1
◆   encoding: the character encoding used in the document. Optional, 

default from external metadata
◆   standalone. Optional, default no.



Processing instructions

●   Intended for passing information to particular parsers

●   Look like a tag starting <? immediately followed by an XML 
name, and ending ?>

●   The rest is arbitrary, but often looks like a sequence of 
attributes

<?xml-stylesheet href="person.css" type="test/css" ?>

●   They are not entities: no end tag; no nesting

●   XML declarations are not processing instructions.



CDATA

●   Raw characters can appear between '<![CDATA[' and ']]>'

●   To a parser this is identical to the equivalent text expressed 
using entities

●   Very useful for including XML examples in XML!
<![CDATA[
  <tag1>
    <!-- comment here -->
    <tag2>foo</tag2>
  </tag1>
]]>

●   Beware that the sequence ']]>' can not itself appear in an 
XML document - use ']]&gt;'.



Comments

●   XML documents can contain comments

●   They start with <!--

●   and end -->

●   They may not contain --

●   XML parsers are not required to preserve comments
<!-- insert example here -->



Well-formedness

●   XML documents are required to be 'well formed'

●   Every start-tag must have an end-tag

●   Elements must not overlap

●   One and only one root element

●   Attribute values must be quoted

●   No more than one attribute with the same name in any element

●   No comments or processing instructions inside tags

●   No un-escaped '<' or '&' in character data.



XML: Summary

●   A meta-markup language

●   XML documents are text, processed internally in Unicode

●   They contain
◆   elements (surrounded by tags)
◆   an XML declaration
◆   comments
◆   processing instructions

●   Elements can have attributes and can nest

●   Character data can contain references

●   Two general styles: record orientated vs. mixed content

●   XML documents must be well formed.



Document Type Definitions



Defining XML documents

●   XML is used to create languages - XML applications

●   How are these languages defined?

●   Use a set of rules about what elements and attributes are 
required where

●   This set of rules is a schema

●   A document that abides by these rules is said to be valid

●   There are various languages for expressing schemas

●   We'll concentrate on Document Type Definition (DTD)

●   Many XML tools can check a document against a DTD, 
including
◆   xmllint from Gnome libxml (common on Linux systems, even if 

they don't run Gnome)
◆   James Clark's onsgmls
◆   The website at

http://www.stg.brown.edu/service/xmlvalid/



Document Type Definition

●   Old, quirky, and with a limited syntax

●   Inherited from SGML

●   DTDs are not themselves XML documents

●   They let you define:
◆   Elements and their nesting
◆   The attributes of each element
◆   Short cuts (a.k.a. Entities)

●   Even if you never write one of these, the ability to read them is 
invaluable.



Defining Elements

●   Write <!ELEMENT tag content>

●   tag is the name of the element being defined

●   content is
◆   EMPTY if the element must be empty
◆   ANY if the element can contain text or any other element (bad idea)
◆   (content), where content can be...



What can appear as content?

●   '#PCDATA' - character data:
<!ELEMENT name (#PCDATA)>

●   The name of a single other element:
<!ELEMENT founded (date)>

●   A comma-separated sequence of other elements:
<!ELEMENT institution (name,address,website)>

●   A '|'-separated list of alternatives:
<!ELEMENT website (url|hostname)>

●   Anywhere an element name can appear, you can also have 
either sort of list in brackets

<!ELEMENT institution (seeother|(name,address))>



Repeating elements

●   Element names, and bracketed lists, can be followed by:
◆   '?' if the element (or list) can occur zero or one times
◆   '*' if the element (or list) can occur zero or more times
◆   '+' if the element (or list) can occur one or more times

●   '*', applied to a list of choices implies any number of any of the 
choices, in any order

●   '#PCDATA' can only appear in a list of choices if there is a '*' in 
force

<!ELEMENT institution  
            (name,note?,address+,contact*,seeother*)>
<!ELEMENT para (#PCDATA|inst|service|em|address)*>



Defining Attributes

●   Write <!ATTLIST tag attribute type default>

●   tag is the element in which this attribute appears

●   attribute is the name of the attribute

●   type is one of:
◆   CDATA if the attribute's value consists of plain characters
◆   (choice_1|choice_2|...) where each choice_n represents 

one possibility

●   default is one of:
◆   #REQUIRED if the attribute must appear
◆   #IMPLIED if the attribute is optional and has no default

●   There are additional types: ID, IDREF, IDREFS, NMTOKEN 
and NMTOKENS

●   ... and other defaults: "value" and #FIXED "value".



Defining entities

●   Entities are shortcuts to save typing

●   You can define your own entities in a DTD

●   Confusingly, the can stand for text in the DTD itself ...

●   ... or in the document the DTD describes.



Shortcuts for the document being described

●   An 'Internal General Entity'
<!ENTITY uoc "the University of Cambridge">

●   With that in our DTD, our XML document can say
Here at &uoc; we all love our work

●   Entities are oftern used to stand for characters that are hard to 
type

<!ENTITY copy "&#169;">

●   Or we can define an 'External General Entity'
<!ENTITY footer SYSTEM "/boilerplate/footer.xml">

●   Then we can include footer.xml by saying &footer;

●   External General Entities are useful if you want to maintain 
your XML document in multiple files

●   External General Entities dont need to have a single root 
element but otherwise must be well formed.



Shortcuts for the DTD

●   An 'Internal Parameter Entity' acts as a 'macro' inside the DTD
<!ENTITY % contact_details "name,address,website">

●   Now, instead of saying
<!ELEMENT department (name,address,website)>
<!ELEMENT college (name,address,website)>

●   we can say
<!ELEMENT department (%contact_details;)>
<!ELEMENT college (%contact_details;)>

●   An 'External Parameter Entity' lets us include sections of DTD 
just like external general entities do for XML documents

<!ENTITY % website_stuff SYSTEM "website.dtd">

●   This can be useful for 'modulising' DTDs.



Associating DTDs with XML documents

●   To be valid, an XML document must include a reference to its 
DTD in a 'Document Type Declaration'
◆   Note that 'Document Type Definition' and 'Document Type 

Declaration' have the same initials - DTD means 'Document Type 
Definition'

●   The Document Type Declaration comes after the XML 
Declaration and before the start-tag of the root element

●   The Document Type Declaration can either refer to a DTD in a 
seperate document
◆   called an External DTD Subset

●   Or can contain it in-line
◆   called an Internal DTD Subset.



Using External DTD Subsets

●   To refer to a DTD in a local file, you need something like
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE institutions SYSTEM "/dtd/inst.dtd">
<institutions>
  ...
</institutions>

●   The thing after 'SYSTEM' is a URL

●   'Official' DTDs can be named using a 'Formal Public Identifier' 
(FPI). FPIs are just names in a fixed format

●   To refer to a DTD by FPI you need something like
<!DOCTYPE book PUBLIC 
     "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.0/docbookx.dtd">

●   A 'catalogue' then maps the FPI to an appropriate copy of the 
corresponding DTD document

●   The URL is a backup in case the FPI can't be resolved.



Using Internal DTD Subsets

●   The DTD can be included in-line between square brackets
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE institutions [
  <!ELEMENT institution (name,address)>
  <!ELEMENT name (#PCDATA)>
  <!ELEMENT address (#PCDATA)>
]>
<intuitions>
  ...
</institutions>

●   You can have both at once, but note:
◆   element declarations can't be overridden
◆   the internal subset can override entities in the external subset.



DTDs: Summary

●   A schema is a set of rules defining an XML Application

●   An XML document conforming to a schema is said to be valid

●   A Document Type Definition is one language for doing this

●   Lets you define elements and their nesting, attribute, entities

●   A DTD can be associated with an XML document by including 
a Document Type Declaration.



Namespaces



What's the problem?

●   The need to include elements from one XML Application within 
documents belonging to a different one

●   e.g. use a 'People' application to add contact details for people 
in Institutions

●   ... but People uses <name> for the names of people, and 
Institution uses <name> for the names of institutions.



And the solution is...

●   Add a application-specific prefix to elements and attributes
◆   perhaps <people:name> and <institution:name>

●   But we still need a way to create unique names

●   For that we use URIs

●   These URIs are called 'Namespace Names'

●   Since URLs are URIs they are often used
◆   ... but they don't have to point to anything!

http://purl.org/dc/
http://www.w3c.org/TR/REC-rdf-syntax#
http://www.w3.org/1999/XSL/Transform

●   But we can't use URIs directly in tag names, so we either 
declare a default namespace, or we associate the name with a 
prefix and use the prefix.



Associating names with elements - default 
namespace

●   We can declare a default namespace with an xmlns attribute
<title xmlns="http://purl.org/dc/">...</title>

●   This namespace applies to the element it is declared in and to 
all its children

<institution type="acad" 
        xmlns="http://www.example.org/inst">
  <name>Division of Anaesthesia</name>
  <contact method="tel">+44 1223 217889</contact>
  <website>
    <url xmlns="http://www.example.org/url">
      http://www.medschl.cam.ac.uk/anaesthetics/
    </url>
  </website>
</institution>



Associating names with elements - by prefix

●   We can declare a nickname or prefix
<dc:title xmlns:dc="http://purl.org/dc/">
   ...
</dc:title>

●   Prefix and element name are written separated by ':'

●   Each namespaces often has a 'conventional' prefixes, like dc 
for http://purl.org/dc/above, but they can be anything

<snoopy:title xmlns:snoopy="http://purl.org/dc/">
   ...
</snoopy:title>

●   Prefixes are available to the element they are declared in and 
to all its children

<institution type="acad" 
        xmlns:inst="http://www.example.org/inst">
  <inst:name>Division of Anaesthesia</name>
  <contact method="tel">+44 1223 217889</contact>
</institution>



Attributes

●   Attributes can be associated with a namespace
◆   but normally are not
◆   in which case they are in no namespace

●   The default namespace doesn't apply to attributes.



Namespaces: Summary

●   Namespaces allow XML schemas to be combined

●   Namespace names are URIs

●   These URIs are often URLs, but don't have to point to anything

●   You can associate a default namespace with an element and 
its children with xmlns="..."

●   You can define a prefix for use in an element and its children 
with xmlns:prefix="...".



Transforming XML - XSLT



XSLT

●   Specifies rules to transform one XML document into another

●   An XSLT stylesheet contains rules consisting of
◆   a pattern, and
◆   a template

●   An XSLT processor tries to match parts of the input document 
to each patterns

●   If it can, it process the template and saves the results

●   When processing is finished, these results are used to create 
an output document

●   To apply an XML stylesheet you need a processor. Some 
examples include:
◆   xsltproc from Gnome libxml (common on Unix systems, even if 

they don't run Gnome)
◆   The Apache project's Xalan processor, available in Java and C++ 

versions
◆   Michael Kay's SAXON.



An Example Document

●   We'll use inst.xml for the following examples:
<?xml version="1.0"?>
<!DOCTYPE institutions SYSTEM "inst.dtd">
 
<institutions>
 
 ...
 
 <institution type="acad">
  <name>Division of Anaesthesia</name>
  <contact type="tel">+44 1223 217889</contact>
  <website>
   <url>http://www.medschl.cam.ac.uk/anaesthetics/</url>
  </website>
 </institution>

 ...

</institutions>



XSLT Stylesheets are XML documents

●   See example1.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
  
</xsl:stylesheet>

●   The namespace name must be exactly as above

●   the version attribute is required

●   This is a complete, though largely useless, stylesheet

●   For reasons that we'll get to later, applying it to inst.xml returns 
all the text from within elements but nothing else!.



A simple template rule

●   See example2.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
 
<xsl:template match="institution">
  An institution
</xsl:template>
  
</xsl:stylesheet>

●   In effect this says
◆   for every <institution> element
◆   output "An institution"
◆   and ignore the element's content

●   Anything other than XSLT tags is automatically added to the 
result of the transformation.



Adding elements

●   See example3.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
 
  <xsl:template match="institution">
    <heading>An institution</heading>
  </xsl:template>
  
</xsl:stylesheet>

●   Tags not in the XSLT namespace are also added to the results

●   The style sheet must remain well formed.



Including information from the input document

●   See example4.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
 
  <xsl:template match="institution">
    <heading>
      <xsl:value-of select="name"/>
    </heading>
  </xsl:template>
  
</xsl:stylesheet>

●   xsl:value-of add a value to the results

●   What to add is identified by the "select" attribute

●   The value of an element is its text content after all the tags 
have been removed.



Controlling processing order

●   See example5.xslt:
  <xsl:template match="institutions">
    <heading>Here are a list of website URLs</heading>
    <xsl:apply-templates select="institution"/>
    <footing>Information provided by webmaster</footing>
  </xsl:template>

  <xsl:template match="institution">
    <xsl:apply-templates select="website"/>
  </xsl:template>

  <xsl:template match="website">
    <site>
      <xsl:value-of select="url"/>
    </site>
  </xsl:template>

●   xsl:apply-templates lets you choose when particular 
elements will be processed.



The rest of XSLT

●   There is much more to XSLT than we've covered here, 
including
◆   Modes
◆   Named templates
◆   Numbering and sorting output elements
◆   Conditional processing
◆   Iteration
◆   Extension elements.



XSLT: Summary so far

●   XSLT transforms one XML document into another

●   It does so using templates that are triggered by patterns in the 
input document

●   Within templates, text and non-xslt elements are copied to the 
output document

●   <xsl:value-of> can insert the string value of an element 
into the output

●   <xsl:apply-templates> controls the processing order.



XPath



XPath

●   XSLT needs a general way to identify parts of the input 
document

●   Enter XPath, a non-XML language to identify parts of an XML 
document

●   Used in XSLT match= and select= attributes

●   In <xsl:template match="institution">, "institution" 
is an XPath expression, referring to elements of type 
"institution"

●   XPATH is also used in XPointer, XML Schema, XForms, etc.



XPath's view of the world

●   The tree contains root, element, text and attribute nodes

●   .. .also comment, processing-instruction, and namespace 
nodes (but that's not important right now)

●   Root node is not the same as the root element.



Location paths

●   Identify a set of 'nodes' in a document

●   Operate relative to a 'context node' (c.f current directory)

●   Simplest is a single element name
<xsl:apply-templates select="contact">

●   "/" matches the root node
<xsl:apply-templates select="/">

●   Attribute nodes can be selected using a "@" and the attribute 
name

<xsl:value-of select="@type">

●   Text nodes can be selected using text()
<xsl:value-of select="text()">

●   All of these can be chained together
<xsl:value-of select="website/url">



More paths

●   Wildcards:
◆   *  - all element node
◆   @* - all attribute nodes
◆   node()  - all nodes

institution/*/website

●   Paths can specify alternatives with '|'
contact | website

●   '.' represents current node

●   '..' represents the current node's parent
../../name

●   A leading '/' makes a path absolute

●   '//' selects from all descendants
/institutions//url



Predicates

●   An XPath expression commonly selects more than one node

●   Sometimes you don't want all of them

●   Each step in a location path can have a condition attached

●   This is called a predicate

●   The predicate contains a boolean expression
//contact[@method="tel"]
//institution[@type="acad"]/contact[@method="tel"]



Unabbreviated Location Paths

●   So far we've been using abbreviated location paths

●   There is an unabbreviated form that's even more powerful

●   For example child::institution/attribute::type is 
the same as institution/@type

●   Abbreviated paths allow you to navigate along the folowing
◆   child and parent
◆   self
◆   attribute
◆   descendant-or-self

●   The unabbreviated form additionally lets you navigate
◆   ancestor
◆   following and preceding
◆   following-sibling and preceding-sibling
◆   namespace
◆   descendant
◆   ancestor-or-self.



Other sorts of XPath expression

●   So far we've looked only at location paths

●   These return node-sets which identify a set of nodes in a 
document

●   XPath expressions can also represent numbers, strings, and 
booleans

●   Most types convert as you might expect, for example an empty 
node-set is 'false' when used as a boolean

●   XPATH also provides useful built-in functions, for example
◆   position() returns the position of the current node in the 

node-set being processed
◆   round() rounds a number to the nearest integer
◆   concat() joins strings
◆   ..etc.



XSLT reprise - default rules

●   XSLT processors start by trying to process the root node

●   If nothing else matches they apply some default template rules

●   For element and root nodes:
<xsl:template match="*|/">
  <xsl:apply-templates/>
</xsl:template>

●   For text and attribute nodes:
<xsl:template match="text()|@*">
  <xsl:value-of select".">
</xsl:template>

●   Taken together, this means that all element nodes will be 
visited and the text from each added to the results

●   While there is a default rule for attribute nodes, none of the 
default rules cause attributes to be processed.



XPath: Summary

●   A language to identify parts of an XML document

●   Used by XPATH and other XML technologies

●   Needs it's own tree view of the data

●   Location paths select nodes from the tree

●   There are abbreviated and unabbreviated forms of location 
paths

●   Predicates can filter node sets

●   XPath expressions can also return numbers, strings, and 
booleans

●   XPath includes a number of useful functions.



Programing with XML



Programing with XML

●   While XML may be human readable, humans shouldn't have to 
read it

●   So we want programs to do so

●   Two approaches, exemplified by two standardised APIs
◆   DOM (the Document Object Model)
◆   SAX (the Simple API for XML)

●   Implementations of both are available for Java, Perl, Python, 
C, etc., etc.



DOM

●   Originally developed for working on HTML and XML in a 
browser context

●   Involves parsing an entire document into an interlinked set of 
objects and traversing the resulting tree

●   Successive versions defined as 'levels'

●   Most recent is Level 3

●   Defined in OS- and language-independent form, translated to 
concrete implementation in the various languages

●   Upside being the ability to easily traverse the tree, add and 
delete parts, etc.

●   Downside is the need to parse and store the entire document 
in memory

●   See dom.pl.



SAX

●   Originally defined for Java API, but subsequently ported

●   An event-based API for reading XML

●   Normal implementation involves a parser that invokes a 
user-supplied function for each event

●   Upside:
◆   Don't need to hold the entire tree in memory
◆   Incremental processing possible

●   Downside:
◆   Can be harder to program
◆   Need to maintain your own data structures to keep track of tree 

position, result data, etc.

●   Note that many DOM implementations use a SAX parser to 
build the DOM tree

●   See sax.pl.



XML Programming: Summary

●   While  human readable, XML is really for programs

●   There are two main approaches
◆   Tree-based, as exemplified by the DOM
◆   Event based,as exemplified by SAX.



Some other core XML technologies



XSL Formatting Objects (XSL-FO)

●   An XML application for describing the layout of text on a page

●   Normally created as the target of an XSLT transformation

●   See example7.xslt

●   This can be hard, but that's because laying out pages is hard

●   Needs a processor to convert XSL-FO to print

●   Most free ones seem to be poor

●   Examples include
◆   The Apache project's FOP
◆   Sebastian Rahtz's PassiveTeX.



XML Schema

●   DTD's are traditionally used when defining XML schemas

●   But they are limited in what they can do

●   and are not themselves expressed in XML

●   XML Schema, a W3C recommendation, attempts to address 
this

●   Can describe complex restrictions on elements and attributes

●   Understands namespaces

●   Multiple XML Schemas can be combined

●   There are yet more schema languages, such as RELAX NG 
and Schematron.



XLinks

●   An attribute-based syntax for attaching links to XML documents

●   Like HTML's <a> tag on steroids
◆   Unidirectional
◆   Bidirectional
◆   Multidirectional

<book xmlns:xlink="http://www.w3.org/1999/xlink"
   xlink:type="simple"
   xlink:href=
    "http://ftp.archive.org/etext/etext93/wizoz10.txt">



XPointer

●   A non-XML syntax for identifying locations inside XML 
documents

●   Intended to be used as a fragment identifier in a URL

●   Leverages XPath
http://www.example.org/
          inst.dtd#xpointer(//institution[1])



Other stuff

●   XInclude - technology for combining XML documents

●   XForms - reformulation and extension of HTML forms

●   ... and many more.



Example XML applications



Narrative

●   Text Encoding Initiate (TEI)

●   DocBook

●   OpenOffice

●   XHTML
◆   Can be created as the output from an XSLT transformation - for 

example see example6.xslt
◆   Even on-the-fly by modern browsers
◆   Can also be styled using CSS - see example1.css.



Data-oriented

●   SVG - scalable vector graphics

●   RSS and Atom - content summary

●   Jabber - Instant Messaging carried by XML

●   Web services - XML-RPC, SOAP carrying information over 
XML.



Where to go from here?

●   Choose what interests you

●   Remember it's a huge field

●   Explore the available resources
◆   in print
◆   in the standards and recommendations
◆   elsewhere on the web.



That's All Folks

    If you have been, thanks for listening
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