
XML Technology Overview

Jon Warbrick
University of Cambridge Computing Service

mailto:jon.warbrick@ucs.cam.ac.uk
http://www.cam.ac.uk/cs/


Administrivia

●   Fire escapes

●   Who am I?

●   Pink sheets

●   Green sheets

●   Timing.



This course

●   What we will (and won't) be covering

●   The handouts

●   Course website:
http://www-uxsup.csx.cam.ac.uk/~jw35/courses/xml/.



XML itself



In the beginning...

●   SGML
◆   Invented in the 1970's at IBM
◆   Now ISO standard 8879
◆   A "semantic and structural markup language for text documents"

●   HTML is the most famous 'application' of SGML

●   XML is a reformulation of SGML
◆   Missing out the complicated and redundant features
◆   A W3C-endorsed standard
◆   Designed for easy parsing
◆   A "meta-markup language for text documents"

●   XML is simple
◆   it's the rest of the technology that's powerful
◆   and in places complicated

●   XML isn't just a web technology.



XML Documents

●   XML documents contain text, never binary data

●   These can be manipulated by any tool that understand text

●   An XML document could be a disk file
◆   but it could as easily be a field in a database
◆   or delivered over a network connection

●   When delivered by a web server, they will probably have a 
media type of text/xml or application/xml

●   However the approved modern usage is to use something 
more like application/svg+xml.



Elements

●   XML documents mainly consist of elements

●   Have a start-tag and an end-tag
<name>
  Computing Service
</name>

●   Everything between the tags is the element's content

●   Whitespace is part of the content, though applications may       
ignore it

●   Empty elements can be written: <name/>

●   ...but not <name>.



Tag names

●   Have no intrinsic meaning

●   Are case sensitive

●   Can contain any alphanumeric character, underscore(_), 
hyphen(-), and dot (.)

●   Colon (:) should be avoided
◆   it has a special meaning which we'll come to shortly

●   Must start with a letter or underscore

●   Names starting 'xml...' (in any case) are reserved.



Elements within elements

●   Consider
<institution>
  <name>Computing Service</name>
  <address>New Museums Site, Pembroke Street</address>
  <website>
    <url>http://www.cam.ac.uk/cs/</url>
    <url>http://www-uxsup.csx.cam.ac.uk/</url>
  </website>
</institution>    

●   The <institution> element contains 3 'children': a <name> 
element, an <address> element and a <website> element

●   The <website> element itself contains 2 <url> elements.



XML documents as a tree



XML document styles

●   Record orientated
<institution>
  <name>Computing Service</name>
  <address>New Museums Site, Pembroke Street</address>
  <website>
    <url>http://www.cam.ac.uk/cs/</url>
    <url>http://www-uxsup.csx.cam.ac.uk/</url>
  </website>
</institution>    

●   Mixed content
<handbook>
  <para>
  The <inst>Computing Service</inst> provides 
  services, including <service>Hermes</service> 
  and <service>Raven</service>. It is <em>really 
  important</em> that you find out how to access 
  these services.
  </para>
</handbook>



Attributes

●   Elements can have attributes

●   Name/value pairs in the start tag

●   Name and value separated by '=' and optional white space

●   Value enclosed in single or double quotes. Always

●   Pairs separated by white space
<institution type="non"   key = 'ucs'>
    <name>
      Computing Service
    </name>
</institution>    

●   Each attribute can appear only once in any particular tag

●   Attribute names follow the same rules as element names

●   When to use attribute values, when content?.



Character References

●   Some characters can't appear as themselves in character data
◆   e.g. < and & are never allowed
◆   Some characters can't be typed easily, e.g. Â¥

●   They can be represented as
◆   an entity reference, e.g. &lt;
◆   a numeric character reference, e.g. &#60;
◆   a hexadecimal numeric character reference, e.g. &#x3c;

●   XML pre-defines only 5 entity references
◆   &lt; for the less-than symbol: <
◆   &amp; for the ampersand: &
◆   &gt; for the greater-than symbol: >
◆   &quot; for straight, double quotation marks: "
◆   &apos; for the apostrophe, a.k.a the straight quote: '.



Character sets and encodings

●   XML documents are 'text documents' containing 'characters'

●   Internally, XML processors work in Unicode, a.k.a ISO 10646

●   But computers can only process sequences of octets

●   Characters are mapped to octets by two-stage process
◆   A character set maps characters to numbers
◆   An encoding maps those numbers to bytes

●   The name of an encoding refers to a combination of these, for 
example
◆   iso-8859-1, a.k.a ISO Latin-1, defines a sub-set of characters, 

mainly European, mapped to numbers on the range 0-255 which 
are directly encoded as octets

◆   UCS-2 consists of the first 65,536 characters from Unicode 
encoded as a pair of bytes

◆   UTF-8 encodes all the characters from Unicode using a variable 
number of bytes. Unicode characters 0-127 (ASCII) encode to the 
same single byte as ASCII.



The XML declaration

●   XML documents should start with an XML declaration
<?xml version="1.0" encoding="UTF-8"?>

●   If present, it must be the very first thing in the document

●   In the absence of other information it is used to guess the 
character encoding

●   It contains 3 things that look like attributes (though they aren't):
◆   version: 1.0 or perhaps 1.1
◆   encoding: the character encoding used in the document. Optional, 

default from external metadata
◆   standalone. Optional, default no.



Processing instructions

●   Intended for passing information to particular parsers

●   Look like a tag starting <? immediately followed by an XML 
name, and ending ?>

●   The rest is arbitrary, but often looks like a sequence of 
attributes

<?xml-stylesheet href="person.css" type="test/css" ?>

●   They are not entities: no end tag; no nesting

●   XML declarations are not processing instructions.



CDATA

●   Raw characters can appear between '<![CDATA[' and ']]>'

●   To a parser this is identical to the equivalent text expressed 
using entities

●   Very useful for including XML examples in XML!
<![CDATA[
  <tag1>
    <!-- comment here -->
    <tag2>foo</tag2>
  </tag1>
]]>

●   Beware that the sequence ']]>' can not itself appear in an 
XML document - use ']]&gt;'.



Comments

●   XML documents can contain comments

●   They start with <!--

●   and end -->

●   They may not contain --

●   XML parsers are not required to preserve comments
<!-- insert example here -->



Well-formedness

●   XML documents are required to be 'well formed'

●   Every start-tag must have an end-tag

●   Elements must not overlap

●   One and only one root element

●   Attribute values must be quoted

●   No more than one attribute with the same name in any element

●   No comments or processing instructions inside tags

●   No un-escaped '<' or '&' in character data.



XML: Summary

●   A meta-markup language

●   XML documents are text, processed internally in Unicode

●   They contain
◆   elements (surrounded by tags)
◆   an XML declaration
◆   comments
◆   processing instructions

●   Elements can have attributes and can nest

●   Character data can contain references

●   Two general styles: record orientated vs. mixed content

●   XML documents must be well formed.



Document Type Definitions



Defining XML documents

●   XML is used to create languages - XML applications

●   How are these languages defined?

●   Use a set of rules about what elements and attributes are 
required where

●   This set of rules is a schema

●   A document that abides by these rules is said to be valid

●   There are various languages for expressing schemas

●   We'll concentrate on Document Type Definition (DTD)

●   Many XML tools can check a document against a DTD, 
including
◆   xmllint from Gnome libxml (common on Linux systems, even if 

they don't run Gnome)
◆   James Clark's onsgmls
◆   The website at

http://www.stg.brown.edu/service/xmlvalid/



Document Type Definition

●   Old, quirky, and with a limited syntax

●   Inherited from SGML

●   DTDs are not themselves XML documents

●   They let you define:
◆   Elements and their nesting
◆   The attributes of each element
◆   Short cuts (a.k.a. Entities)

●   Even if you never write one of these, the ability to read them is 
invaluable.



Defining Elements

●   Write <!ELEMENT tag content>

●   tag is the name of the element being defined

●   content is
◆   EMPTY if the element must be empty
◆   ANY if the element can contain text or any other element (bad idea)
◆   (content), where content can be...



What can appear as content?

●   '#PCDATA' - character data:
<!ELEMENT name (#PCDATA)>

●   The name of a single other element:
<!ELEMENT founded (date)>

●   A comma-separated sequence of other elements:
<!ELEMENT institution (name,address,website)>

●   A '|'-separated list of alternatives:
<!ELEMENT website (url|hostname)>

●   Anywhere an element name can appear, you can also have 
either sort of list in brackets

<!ELEMENT institution (seeother|(name,address))>



Repeating elements

●   Element names, and bracketed lists, can be followed by:
◆   '?' if the element (or list) can occur zero or one times
◆   '*' if the element (or list) can occur zero or more times
◆   '+' if the element (or list) can occur one or more times

●   '*', applied to a list of choices implies any number of any of the 
choices, in any order

●   '#PCDATA' can only appear in a list of choices if there is a '*' in 
force

<!ELEMENT institution  
            (name,note?,address+,contact*,seeother*)>
<!ELEMENT para (#PCDATA|inst|service|em|address)*>



Defining Attributes

●   Write <!ATTLIST tag attribute type default>

●   tag is the element in which this attribute appears

●   attribute is the name of the attribute

●   type is one of:
◆   CDATA if the attribute's value consists of plain characters
◆   (choice_1|choice_2|...) where each choice_n represents 

one possibility

●   default is one of:
◆   #REQUIRED if the attribute must appear
◆   #IMPLIED if the attribute is optional and has no default

●   There are additional types: ID, IDREF, IDREFS, NMTOKEN 
and NMTOKENS

●   ... and other defaults: "value" and #FIXED "value".



Defining entities

●   Entities are shortcuts to save typing

●   You can define your own entities in a DTD

●   Confusingly, the can stand for text in the DTD itself ...

●   ... or in the document the DTD describes.



Shortcuts for the document being described

●   An 'Internal General Entity'
<!ENTITY uoc "the University of Cambridge">

●   With that in our DTD, our XML document can say
Here at &uoc; we all love our work

●   Entities are oftern used to stand for characters that are hard to 
type

<!ENTITY copy "&#169;">

●   Or we can define an 'External General Entity'
<!ENTITY footer SYSTEM "/boilerplate/footer.xml">

●   Then we can include footer.xml by saying &footer;

●   External General Entities are useful if you want to maintain 
your XML document in multiple files

●   External General Entities dont need to have a single root 
element but otherwise must be well formed.



Shortcuts for the DTD

●   An 'Internal Parameter Entity' acts as a 'macro' inside the DTD
<!ENTITY % contact_details "name,address,website">

●   Now, instead of saying
<!ELEMENT department (name,address,website)>
<!ELEMENT college (name,address,website)>

●   we can say
<!ELEMENT department (%contact_details;)>
<!ELEMENT college (%contact_details;)>

●   An 'External Parameter Entity' lets us include sections of DTD 
just like external general entities do for XML documents

<!ENTITY % website_stuff SYSTEM "website.dtd">

●   This can be useful for 'modulising' DTDs.



Associating DTDs with XML documents

●   To be valid, an XML document must include a reference to its 
DTD in a 'Document Type Declaration'
◆   Note that 'Document Type Definition' and 'Document Type 

Declaration' have the same initials - DTD means 'Document Type 
Definition'

●   The Document Type Declaration comes after the XML 
Declaration and before the start-tag of the root element

●   The Document Type Declaration can either refer to a DTD in a 
seperate document
◆   called an External DTD Subset

●   Or can contain it in-line
◆   called an Internal DTD Subset.



Using External DTD Subsets

●   To refer to a DTD in a local file, you need something like
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE institutions SYSTEM "/dtd/inst.dtd">
<institutions>
  ...
</institutions>

●   The thing after 'SYSTEM' is a URL

●   'Official' DTDs can be named using a 'Formal Public Identifier' 
(FPI). FPIs are just names in a fixed format

●   To refer to a DTD by FPI you need something like
<!DOCTYPE book PUBLIC 
     "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.0/docbookx.dtd">

●   A 'catalogue' then maps the FPI to an appropriate copy of the 
corresponding DTD document

●   The URL is a backup in case the FPI can't be resolved.



Using Internal DTD Subsets

●   The DTD can be included in-line between square brackets
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE institutions [
  <!ELEMENT institution (name,address)>
  <!ELEMENT name (#PCDATA)>
  <!ELEMENT address (#PCDATA)>
]>
<intuitions>
  ...
</institutions>

●   You can have both at once, but note:
◆   element declarations can't be overridden
◆   the internal subset can override entities in the external subset.



DTDs: Summary

●   A schema is a set of rules defining an XML Application

●   An XML document conforming to a schema is said to be valid

●   A Document Type Definition is one language for doing this

●   Lets you define elements and their nesting, attribute, entities

●   A DTD can be associated with an XML document by including 
a Document Type Declaration.



Namespaces



What's the problem?

●   The need to include elements from one XML Application within 
documents belonging to a different one

●   e.g. use a 'People' application to add contact details for people 
in Institutions

●   ... but People uses <name> for the names of people, and 
Institution uses <name> for the names of institutions.



And the solution is...

●   Add a application-specific prefix to elements and attributes
◆   perhaps <people:name> and <institution:name>

●   But we still need a way to create unique names

●   For that we use URIs

●   These URIs are called 'Namespace Names'

●   Since URLs are URIs they are often used
◆   ... but they don't have to point to anything!

http://purl.org/dc/
http://www.w3c.org/TR/REC-rdf-syntax#
http://www.w3.org/1999/XSL/Transform

●   But we can't use URIs directly in tag names, so we either 
declare a default namespace, or we associate the name with a 
prefix and use the prefix.



Associating names with elements - default 
namespace

●   We can declare a default namespace with an xmlns attribute
<title xmlns="http://purl.org/dc/">...</title>

●   This namespace applies to the element it is declared in and to 
all its children

<institution type="acad" 
        xmlns="http://www.example.org/inst">
  <name>Division of Anaesthesia</name>
  <contact method="tel">+44 1223 217889</contact>
  <website>
    <url xmlns="http://www.example.org/url">
      http://www.medschl.cam.ac.uk/anaesthetics/
    </url>
  </website>
</institution>



Associating names with elements - by prefix

●   We can declare a nickname or prefix
<dc:title xmlns:dc="http://purl.org/dc/">
   ...
</dc:title>

●   Prefix and element name are written separated by ':'

●   Each namespaces often has a 'conventional' prefixes, like dc 
for http://purl.org/dc/above, but they can be anything

<snoopy:title xmlns:snoopy="http://purl.org/dc/">
   ...
</snoopy:title>

●   Prefixes are available to the element they are declared in and 
to all its children

<institution type="acad" 
        xmlns:inst="http://www.example.org/inst">
  <inst:name>Division of Anaesthesia</name>
  <contact method="tel">+44 1223 217889</contact>
</institution>



Attributes

●   Attributes can be associated with a namespace
◆   but normally are not
◆   in which case they are in no namespace

●   The default namespace doesn't apply to attributes.



Namespaces: Summary

●   Namespaces allow XML schemas to be combined

●   Namespace names are URIs

●   These URIs are often URLs, but don't have to point to anything

●   You can associate a default namespace with an element and 
its children with xmlns="..."

●   You can define a prefix for use in an element and its children 
with xmlns:prefix="...".



Transforming XML - XSLT



XSLT

●   Specifies rules to transform one XML document into another

●   An XSLT stylesheet contains rules consisting of
◆   a pattern, and
◆   a template

●   An XSLT processor tries to match parts of the input document 
to each patterns

●   If it can, it process the template and saves the results

●   When processing is finished, these results are used to create 
an output document

●   To apply an XML stylesheet you need a processor. Some 
examples include:
◆   xsltproc from Gnome libxml (common on Unix systems, even if 

they don't run Gnome)
◆   The Apache project's Xalan processor, available in Java and C++ 

versions
◆   Michael Kay's SAXON.



An Example Document

●   We'll use inst.xml for the following examples:
<?xml version="1.0"?>
<!DOCTYPE institutions SYSTEM "inst.dtd">
 
<institutions>
 
 ...
 
 <institution type="acad">
  <name>Division of Anaesthesia</name>
  <contact type="tel">+44 1223 217889</contact>
  <website>
   <url>http://www.medschl.cam.ac.uk/anaesthetics/</url>
  </website>
 </institution>

 ...

</institutions>



XSLT Stylesheets are XML documents

●   See example1.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
  
</xsl:stylesheet>

●   The namespace name must be exactly as above

●   the version attribute is required

●   This is a complete, though largely useless, stylesheet

●   For reasons that we'll get to later, applying it to inst.xml returns 
all the text from within elements but nothing else!.



A simple template rule

●   See example2.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
 
<xsl:template match="institution">
  An institution
</xsl:template>
  
</xsl:stylesheet>

●   In effect this says
◆   for every <institution> element
◆   output "An institution"
◆   and ignore the element's content

●   Anything other than XSLT tags is automatically added to the 
result of the transformation.



Adding elements

●   See example3.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
 
  <xsl:template match="institution">
    <heading>An institution</heading>
  </xsl:template>
  
</xsl:stylesheet>

●   Tags not in the XSLT namespace are also added to the results

●   The style sheet must remain well formed.



Including information from the input document

●   See example4.xslt:
<?xml version="1.0"?>
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="1.0">
 
  <xsl:template match="institution">
    <heading>
      <xsl:value-of select="name"/>
    </heading>
  </xsl:template>
  
</xsl:stylesheet>

●   xsl:value-of add a value to the results

●   What to add is identified by the "select" attribute

●   The value of an element is its text content after all the tags 
have been removed.



Controlling processing order

●   See example5.xslt:
  <xsl:template match="institutions">
    <heading>Here are a list of website URLs</heading>
    <xsl:apply-templates select="institution"/>
    <footing>Information provided by webmaster</footing>
  </xsl:template>

  <xsl:template match="institution">
    <xsl:apply-templates select="website"/>
  </xsl:template>

  <xsl:template match="website">
    <site>
      <xsl:value-of select="url"/>
    </site>
  </xsl:template>

●   xsl:apply-templates lets you choose when particular 
elements will be processed.



The rest of XSLT

●   There is much more to XSLT than we've covered here, 
including
◆   Modes
◆   Named templates
◆   Numbering and sorting output elements
◆   Conditional processing
◆   Iteration
◆   Extension elements.



XSLT: Summary so far

●   XSLT transforms one XML document into another

●   It does so using templates that are triggered by patterns in the 
input document

●   Within templates, text and non-xslt elements are copied to the 
output document

●   <xsl:value-of> can insert the string value of an element 
into the output

●   <xsl:apply-templates> controls the processing order.



XPath



XPath

●   XSLT needs a general way to identify parts of the input 
document

●   Enter XPath, a non-XML language to identify parts of an XML 
document

●   Used in XSLT match= and select= attributes

●   In <xsl:template match="institution">, "institution" 
is an XPath expression, referring to elements of type 
"institution"

●   XPATH is also used in XPointer, XML Schema, XForms, etc.



XPath's view of the world

●   The tree contains root, element, text and attribute nodes

●   .. .also comment, processing-instruction, and namespace 
nodes (but that's not important right now)

●   Root node is not the same as the root element.



Location paths

●   Identify a set of 'nodes' in a document

●   Operate relative to a 'context node' (c.f current directory)

●   Simplest is a single element name
<xsl:apply-templates select="contact">

●   "/" matches the root node
<xsl:apply-templates select="/">

●   Attribute nodes can be selected using a "@" and the attribute 
name

<xsl:value-of select="@type">

●   Text nodes can be selected using text()
<xsl:value-of select="text()">

●   All of these can be chained together
<xsl:value-of select="website/url">



More paths

●   Wildcards:
◆   *  - all element node
◆   @* - all attribute nodes
◆   node()  - all nodes

institution/*/website

●   Paths can specify alternatives with '|'
contact | website

●   '.' represents current node

●   '..' represents the current node's parent
../../name

●   A leading '/' makes a path absolute

●   '//' selects from all descendants
/institutions//url



Predicates

●   An XPath expression commonly selects more than one node

●   Sometimes you don't want all of them

●   Each step in a location path can have a condition attached

●   This is called a predicate

●   The predicate contains a boolean expression
//contact[@method="tel"]
//institution[@type="acad"]/contact[@method="tel"]



Unabbreviated Location Paths

●   So far we've been using abbreviated location paths

●   There is an unabbreviated form that's even more powerful

●   For example child::institution/attribute::type is 
the same as institution/@type

●   Abbreviated paths allow you to navigate along the folowing
◆   child and parent
◆   self
◆   attribute
◆   descendant-or-self

●   The unabbreviated form additionally lets you navigate
◆   ancestor
◆   following and preceding
◆   following-sibling and preceding-sibling
◆   namespace
◆   descendant
◆   ancestor-or-self.



Other sorts of XPath expression

●   So far we've looked only at location paths

●   These return node-sets which identify a set of nodes in a 
document

●   XPath expressions can also represent numbers, strings, and 
booleans

●   Most types convert as you might expect, for example an empty 
node-set is 'false' when used as a boolean

●   XPATH also provides useful built-in functions, for example
◆   position() returns the position of the current node in the 

node-set being processed
◆   round() rounds a number to the nearest integer
◆   concat() joins strings
◆   ..etc.



XSLT reprise - default rules

●   XSLT processors start by trying to process the root node

●   If nothing else matches they apply some default template rules

●   For element and root nodes:
<xsl:template match="*|/">
  <xsl:apply-templates/>
</xsl:template>

●   For text and attribute nodes:
<xsl:template match="text()|@*">
  <xsl:value-of select".">
</xsl:template>

●   Taken together, this means that all element nodes will be 
visited and the text from each added to the results

●   While there is a default rule for attribute nodes, none of the 
default rules cause attributes to be processed.



XPath: Summary

●   A language to identify parts of an XML document

●   Used by XPATH and other XML technologies

●   Needs it's own tree view of the data

●   Location paths select nodes from the tree

●   There are abbreviated and unabbreviated forms of location 
paths

●   Predicates can filter node sets

●   XPath expressions can also return numbers, strings, and 
booleans

●   XPath includes a number of useful functions.



Programing with XML



Programing with XML

●   While XML may be human readable, humans shouldn't have to 
read it

●   So we want programs to do so

●   Two approaches, exemplified by two standardised APIs
◆   DOM (the Document Object Model)
◆   SAX (the Simple API for XML)

●   Implementations of both are available for Java, Perl, Python, 
C, etc., etc.



DOM

●   Originally developed for working on HTML and XML in a 
browser context

●   Involves parsing an entire document into an interlinked set of 
objects and traversing the resulting tree

●   Successive versions defined as 'levels'

●   Most recent is Level 3

●   Defined in OS- and language-independent form, translated to 
concrete implementation in the various languages

●   Upside being the ability to easily traverse the tree, add and 
delete parts, etc.

●   Downside is the need to parse and store the entire document 
in memory

●   See dom.pl.



SAX

●   Originally defined for Java API, but subsequently ported

●   An event-based API for reading XML

●   Normal implementation involves a parser that invokes a 
user-supplied function for each event

●   Upside:
◆   Don't need to hold the entire tree in memory
◆   Incremental processing possible

●   Downside:
◆   Can be harder to program
◆   Need to maintain your own data structures to keep track of tree 

position, result data, etc.

●   Note that many DOM implementations use a SAX parser to 
build the DOM tree

●   See sax.pl.



XML Programming: Summary

●   While  human readable, XML is really for programs

●   There are two main approaches
◆   Tree-based, as exemplified by the DOM
◆   Event based,as exemplified by SAX.



Some other core XML technologies



XSL Formatting Objects (XSL-FO)

●   An XML application for describing the layout of text on a page

●   Normally created as the target of an XSLT transformation

●   See example7.xslt

●   This can be hard, but that's because laying out pages is hard

●   Needs a processor to convert XSL-FO to print

●   Most free ones seem to be poor

●   Examples include
◆   The Apache project's FOP
◆   Sebastian Rahtz's PassiveTeX.



XML Schema

●   DTD's are traditionally used when defining XML schemas

●   But they are limited in what they can do

●   and are not themselves expressed in XML

●   XML Schema, a W3C recommendation, attempts to address 
this

●   Can describe complex restrictions on elements and attributes

●   Understands namespaces

●   Multiple XML Schemas can be combined

●   There are yet more schema languages, such as RELAX NG 
and Schematron.



XLinks

●   An attribute-based syntax for attaching links to XML documents

●   Like HTML's <a> tag on steroids
◆   Unidirectional
◆   Bidirectional
◆   Multidirectional

<book xmlns:xlink="http://www.w3.org/1999/xlink"
   xlink:type="simple"
   xlink:href=
    "http://ftp.archive.org/etext/etext93/wizoz10.txt">



XPointer

●   A non-XML syntax for identifying locations inside XML 
documents

●   Intended to be used as a fragment identifier in a URL

●   Leverages XPath
http://www.example.org/
          inst.dtd#xpointer(//institution[1])



Other stuff

●   XInclude - technology for combining XML documents

●   XForms - reformulation and extension of HTML forms

●   ... and many more.



Example XML applications



Narrative

●   Text Encoding Initiate (TEI)

●   DocBook

●   OpenOffice

●   XHTML
◆   Can be created as the output from an XSLT transformation - for 

example see example6.xslt
◆   Even on-the-fly by modern browsers
◆   Can also be styled using CSS - see example1.css.



Data-oriented

●   SVG - scalable vector graphics

●   RSS and Atom - content summary

●   Jabber - Instant Messaging carried by XML

●   Web services - XML-RPC, SOAP carrying information over 
XML.



Where to go from here?

●   Choose what interests you

●   Remember it's a huge field

●   Explore the available resources
◆   in print
◆   in the standards and recommendations
◆   elsewhere on the web.



That's All Folks

    If you have been, thanks for listening


	Title
	Administrivia
	This course
	XML itself
	In the beginning...
	XML Documents
	Elements
	Tag names
	Elements within elements
	XML documents as a tree
	XML document styles
	Attributes
	Character References
	Character sets and encodings
	The XML declaration
	Processing instructions
	CDATA
	Comments
	Well-formedness
	XML: Summary

	Document Type Definitions
	Defining XML documents
	Document Type Definition
	Defining Elements
	What can appear as content?
	Repeating elements
	Defining Attributes
	Defining entities
	Shortcuts for the document being described
	Shortcuts for the DTD
	Associating DTDs with XML documents
	Using External DTD Subsets
	Using Internal DTD Subsets
	DTDs: Summary

	Namespaces
	What's the problem?
	And the solution is...
	Associating names with elements - default namespace
	Associating names with elements - by prefix
	Attributes
	Namespaces: Summary

	Transforming XML - XSLT
	XSLT
	An Example Document
	XSLT Stylesheets are XML documents
	A simple template rule
	Adding elements
	Including information from the input document
	Controlling processing order
	The rest of XSLT
	XSLT: Summary so far

	XPath
	XPath
	XPath's view of the world
	Location paths
	More paths
	Predicates
	Unabbreviated Location Paths
	Other sorts of XPath expression
	XSLT reprise - default rules
	XPath: Summary

	Programing with XML
	Programing with XML
	DOM
	SAX
	XML Programming: Summary

	Some other core XML technologies
	XSL Formatting Objects (XSL-FO)
	XML Schema
	XLinks
	XPointer
	Other stuff

	Example XML applications
	Narrative
	Data-oriented

	Where to go from here?
	That's All Folks


