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Introducing Mason



What's wrong with CGI?

●   Mixing code and HTML is a bad idea

●   Repeated re-execution means
◆   CGI has a large execution overhead
◆   No persistence

●   No access to webserver API



The Mason solution

●   Mason is a 'Perl-based web application environment'

●   Uses 'templates' to generate HTML

●   Uses mod_perl
◆   mod_perl embeds a Perl interpreter into Apache
◆   also provides access to the Apache API

●   Needs some tedious installation/configuration - we'll assume 
this has been done

●   What follows assumes a 'CS standard' Mason installation



A simple Mason document

●   Example 20: mason.html:
<html>

<head>

<title>A first Mason document</title>
</head>

<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>

</html>



A slightly more interesting Mason program

●   Example 21: date.html
% my $now = localtime();

<html>

<head>
<title>A second Mason document</title>
</head>

<body>
<h1>Hello World</h1>
<p>It is <% $now %></p>
</body>

</html>



Mason from 10,000 feet



Components

●   A combination of HTML and Mason markup

●   Default is HTML

●   HTML is output verbatim

●   Mason markup contains Perl and Mason directives

●   A component can represent
◆   a page intended to be served directly - a 'top level component'
◆   or part of a page (hence 'component')

●   We have 'libraries' of components to do things like add the 
University House Style



Component syntax - embedded Perl

●   A line starting % is interpreted as Perl code
% my $now = localtime();

●   Best used to impliment Perl flow control structures
% if ($day eq 'Friday') {
<p>Going home early</p>
% } 

<ul>
% foreach (1..3) {
<li>Here we go!</li>
% }
</ul>



Component syntax - Perl blocks

●   Lines enclosed between <%perl> and </%perl> are 
interpreted a blocks of Perl code for execution

●   Equivalent to, though probably better than, multiple lines 
starting %

<%perl>
my $who = 'Fred Smith';
my $date = localtime();
</%perl>

●   Perl code in a <%init> block is equivalent to a <%perl> 
block at the start of the component
◆   But it can appear anywhere
◆   Convenient for 'hiding' Perl code needed to setup things for the rest 

of the component



Component syntax - substitution

●   Anything between <% and %> tags is evaluated and substituted

●   Typically used to substitute variables defined elsewhere
<p>Welcome, <% $who %>, it's now <% $date %></p>

●   Values can (and generally should) be HTML-escaped by 
adding |h before the closing tag

<p>Welcome, <% $who |h %>, it's now <% $date |h %></p>

●   |u requests URL escaping

●   A default, typically |h, can be set
◆   in which case |n request no escaping



Component syntax - calling other components

●   Something like <& header.mason &> is replaced by the 
result of a call to the component header.mason

●   Component names can be:
◆   relative to the current component
◆   relative to the component root, typically document root
◆   extracted from perl expressions (but beware of some magic)

●   Component libraries - see Example 22: hs-mason.html



Component syntax - other things

●   Comments can appear
◆   on lines starting %#
◆   or within <%doc> and </%doc> blocks

%# This is a comment
<%doc>
As is all of this
...and this
...and this
</%doc>

●   There are some other <%...> and </%...> blocks - we'll 
come across some later

●   If a line ends \ (backslash) then the backslash and the 
following newline are ignored

●   Two special global variables let you interact with Mason and 
Apache
◆   $m - the 'Mason object'
◆   $r - the Apache request object



Passing information to components



Calling components

●   All components can be called with arguments

●   For a component invoked by a HTTP request, argument 
names       and values come from the request:
◆   'query string' for GET requests
◆   the request body for POST requests

●   Otherwise arguments are supplied in the call

●   There are (at least) two ways for a component to access its 
arguments:
◆   via an <%args> block
◆   via the %ARGS variable



Arguments via a <%args> block

●   A component can declare the names and types of the 
arguments it expects in a <%args> block

●   Types are declared by the initial character
◆   $ for a simple 'scalar' variable
◆   @ for a list 'array'
◆   % for a lookup 'hash'

●   The block can optionally include default values

●   Arguments with no default are required

●   Argument values are available from identically-named variables
<%args>
$name              # user's name
@dates             # a list of dates
# the rest are optional
$age => 21
@values = (9, 21, 432)
</%args>



Arguments via %ARGS

●   A Perl 'hash' called %ARGS contains all of the arguments with 
which the component was called

●   Necessary if parameter name can't be Perl variables

●   The hash keys are the argument names

●   The corresponding values contain the arguments

●   Arrays and hashes are passed as references



Argument passing examples

●   Consider a component with a <%args> like this
<%args>
$name
@colour
</%args>

●   It could be called with a query string like this
example.html?name=John%20Smith&colour=red&colour=blue

●   or from another Mason component like this
<& example.mason, name => 'John Smith', 
                  colour => ['red', 'blue'] &>

●   If @colour was $colour it would recieve a reference to the 
list of colours

●   In both cases
◆   %ARGS would be ( name => 'John Smith', colour => 

['red', 'blue'] )



Autohandlers and Dhandlers



Automatic content wrapping

●   It's common to want standard headers and footers, navigation 
bars, etc

●   Doing this by hand is tedious and hard to maintain

●   When processing a component, Mason looks for a component 
called autohandler.mason in the same directory

●   If it can't find one it looks in the next directory up, and so on

●   At the point where it wants to insert the original component, 
the autohandler should call $m->call_next

●   Example 23: autohandler.mason, wrap1.html, wrap2.html



Providing default content

●   If asked for a component that doesn't exist
◆   Mason first looks for a component called dhandler.mason in the 

same directory as the missing component
◆   If it doesn't find it it looks in all parent directories

●   If it finds a dhandler it processes that instead of the requested 
component

●   ...and makes the rest of the component path available by 
calling $m->dhandler_arg

●   The dhandler can then generate what content it likes

●   Example 24: dhandler.mason



Doing 'CGI' things in Mason



Forms

●   Forms are fairly straight forward - see Example 25: 
viewer2.html

●   The only problem is arranging for 'sticky' fields

●   One approach is to use cgi.mason - see Example 26: 
viewer3.html



Getting information about the request

●   For CGI environment variable information, use the Apache 
request object. For example
◆   Request method: $r->method()
◆   Remote user: $r->connection->user()
◆   ... or $r->user() (Apache 2)
◆   User-agent header: $r->headers_in()->{'User-agent'}

●   Most (all?) CGI environment variables also available

●   Example 27: info1.html



Sending response meta-information

●   No need (or support) for the 'special' CGI headers

●   Content type normally defaults correctly based on filename
◆   $r->content_type('text/html; charset=utf-8')
◆   Example 28: text.html

●   Redirect
◆   $m->redirect($new_url)
◆   Example 29: random3.html

●   Return with a non-200 status (e.g. 'Not found')
◆   $m->clear_buffer;
◆   $m->abort(404);
◆   Example 30: forbidden.html

●   Setting other response headers
◆   $r->headers_out->{'X-panic'} = 'Now!'
◆   Example 31: panic.html



Debugging Mason

●   Syntax and run-time errors reported
◆   to the browser (in development)
◆   to the Apache error log (in production)
◆   messages can be confusing, line numbers can be wrong
◆   Example 32: syntax.html, runtime.html, confusion.html

●   Write your own log messages with
$r->log->emerg('A emergency!');
$r->log->alert('Something needs attension');
$r->log->crit('A critical error');
$r->log->error('Something went wrong');
$r->log->warn('You might want to know...');
$r->log->notice('Take note');
$r->log->info('For your information...');
$r->log->debug('In foobar loop, no widgits');

●   Beware Apache LogLevel configuration

●   Example 33: logging.html



Useful techniques



Sending email

●   Email is hard

●   It's dangerous allow a user-supplied e-mail address on a 
command line

●   Many of the 'special' characters that can cause damage are 
legal in (some) mail addresses

●   Beware 'From:' address vs, envelope return path issues

●   Best bet: Use ppsw.cam.ac.uk as a smart host, and then 
use the Net::SMTP module
◆   See Example 34: mailer.html, send_mail.mason



Database interface

●   The standard Perl databases interface is DBI

●   There are some interesting modules built on this, like 
Class::DBI, DBIx::Class, DBIx::SearchBuilder, ...

●   Load Apache::DBI for persistent database connections



The character table
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The race table
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Relationship
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The program

●   See Example 35: lotr.html



Raven and lookup

●   If a page is Raven-protected, Remote User contains CRSid
◆   $ENV{REMOTE_USER}
◆   $r->connection->user() (Apache 1)
◆   $r->user() (Apache 2)

●   CRSid can be looked up in the directory
◆   with Net::LDAP
◆   or with Ucam::Directory

●   See Example 36: lookup.html



Dynamic pages and caching

●   Expect caching
◆   local browser caching
◆   shared caches, configured and transparent

●   An issue for authors of dynamic pages when
◆   things are not cached when they should be
◆   things are cached when they shouldn't

●   9 out of 10 dynamic programs don't express a preference

●   This often means that browsers will cache pages (a bit) and 
shared caches will not, but YMMV

●   Different caches and browsers do different things, sometimes 
for different types of file or types of access

●   Avoid making essentially-static contact uncachable
◆   for your users
◆   for your server
◆   for search engines



Controlling caching

●   It's all in the headers

●   META tags are normally only seen by browsers

●   Distinguish between Request and Response headers in 
standards

●   Pragma: no-cache probably doesn't work



If you positively don't want a document cached

●   Try Cache-control: no-cache

●   and/or Expires in the past
Expires: Fri, 30 Oct 1998 14:19:41 GMT



If you do want a document cached

●   Send Expires if possible

●   or something like Cache-control: max-age=86400

●   Consider sending Last-modified and/or ETag

●   ... but what's 'Last modified'?

●   Beware of allowing something to be cached if the same URL 
could produce different output

●   Beware of setting Expires or max-age if not appropriate



Closing remarks



Designing web applications

●   Small: one or more top-level components

●   Medium: multiple top-level components plus supporting 
component library

●   Large: consider View-Model-Controller (VMC) architecture:
◆   View displays/formats data
◆   Model manages data access, not web-related
◆   Controller holds it all together

●   Suggested implementation:
◆   View: Mason components
◆   Model: one or more Perl libraries (modules)
◆   Controller: either a Perl module or one or more top-level 

components and/or dhandlers



Problems, possible solutions

●   HTTP interaction model

●   Limitations of HTML form controls

●   75% of all web applications is the same

●   Possible solutions
◆   Browser-side scripting: Java(ECMA)script, Java
◆   Plugins: Flash
◆   Ajax?
◆   Application frameworks



That's All Folks

    If you have been, thanks for listening
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