
Creating Dynamic Websites with CGI and Mason -
Day Two

Jon Warbrick
University of Cambridge Computing Service

mailto:jon.warbrick@ucs.cam.ac.uk
http://www.cam.ac.uk/cs/

Introducing Mason

What's wrong with CGI?

● Mixing code and HTML is a bad idea

● Repeated re-execution means
◆ CGI has a large execution overhead
◆ No persistence

● No access to webserver API

The Mason solution

● Mason is a 'Perl-based web application environment'

● Uses 'templates' to generate HTML

● Uses mod_perl
◆ mod_perl embeds a Perl interpreter into Apache
◆ also provides access to the Apache API

● Needs some tedious installation/configuration - we'll assume
this has been done

● What follows assumes a 'CS standard' Mason installation

A simple Mason document

● Example 20: mason.html:
<html>

<head>

<title>A first Mason document</title>
</head>

<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>

</html>

A slightly more interesting Mason program

● Example 21: date.html
% my $now = localtime();

<html>

<head>
<title>A second Mason document</title>
</head>

<body>
<h1>Hello World</h1>
<p>It is <% $now %></p>
</body>

</html>

Mason from 10,000 feet

Components

● A combination of HTML and Mason markup

● Default is HTML

● HTML is output verbatim

● Mason markup contains Perl and Mason directives

● A component can represent
◆ a page intended to be served directly - a 'top level component'
◆ or part of a page (hence 'component')

● We have 'libraries' of components to do things like add the
University House Style

Component syntax - embedded Perl

● A line starting % is interpreted as Perl code
% my $now = localtime();

● Best used to impliment Perl flow control structures
% if ($day eq 'Friday') {
<p>Going home early</p>
% }

% foreach (1..3) {
Here we go!
% }

Component syntax - Perl blocks

● Lines enclosed between <%perl> and </%perl> are
interpreted a blocks of Perl code for execution

● Equivalent to, though probably better than, multiple lines
starting %

<%perl>
my $who = 'Fred Smith';
my $date = localtime();
</%perl>

● Perl code in a <%init> block is equivalent to a <%perl>
block at the start of the component
◆ But it can appear anywhere
◆ Convenient for 'hiding' Perl code needed to setup things for the rest

of the component

Component syntax - substitution

● Anything between <% and %> tags is evaluated and substituted

● Typically used to substitute variables defined elsewhere
<p>Welcome, <% $who %>, it's now <% $date %></p>

● Values can (and generally should) be HTML-escaped by
adding |h before the closing tag

<p>Welcome, <% $who |h %>, it's now <% $date |h %></p>

● |u requests URL escaping

● A default, typically |h, can be set
◆ in which case |n request no escaping

Component syntax - calling other components

● Something like <& header.mason &> is replaced by the
result of a call to the component header.mason

● Component names can be:
◆ relative to the current component
◆ relative to the component root, typically document root
◆ extracted from perl expressions (but beware of some magic)

● Component libraries - see Example 22: hs-mason.html

Component syntax - other things

● Comments can appear
◆ on lines starting %#
◆ or within <%doc> and </%doc> blocks

%# This is a comment
<%doc>
As is all of this
...and this
...and this
</%doc>

● There are some other <%...> and </%...> blocks - we'll
come across some later

● If a line ends \ (backslash) then the backslash and the
following newline are ignored

● Two special global variables let you interact with Mason and
Apache
◆ $m - the 'Mason object'
◆ $r - the Apache request object

Passing information to components

Calling components

● All components can be called with arguments

● For a component invoked by a HTTP request, argument
names and values come from the request:
◆ 'query string' for GET requests
◆ the request body for POST requests

● Otherwise arguments are supplied in the call

● There are (at least) two ways for a component to access its
arguments:
◆ via an <%args> block
◆ via the %ARGS variable

Arguments via a <%args> block

● A component can declare the names and types of the
arguments it expects in a <%args> block

● Types are declared by the initial character
◆ $ for a simple 'scalar' variable
◆ @ for a list 'array'
◆ % for a lookup 'hash'

● The block can optionally include default values

● Arguments with no default are required

● Argument values are available from identically-named variables
<%args>
$name # user's name
@dates # a list of dates
the rest are optional
$age => 21
@values = (9, 21, 432)
</%args>

Arguments via %ARGS

● A Perl 'hash' called %ARGS contains all of the arguments with
which the component was called

● Necessary if parameter name can't be Perl variables

● The hash keys are the argument names

● The corresponding values contain the arguments

● Arrays and hashes are passed as references

Argument passing examples

● Consider a component with a <%args> like this
<%args>
$name
@colour
</%args>

● It could be called with a query string like this
example.html?name=John%20Smith&colour=red&colour=blue

● or from another Mason component like this
<& example.mason, name => 'John Smith',
 colour => ['red', 'blue'] &>

● If @colour was $colour it would recieve a reference to the
list of colours

● In both cases
◆ %ARGS would be (name => 'John Smith', colour =>

['red', 'blue'])

Autohandlers and Dhandlers

Automatic content wrapping

● It's common to want standard headers and footers, navigation
bars, etc

● Doing this by hand is tedious and hard to maintain

● When processing a component, Mason looks for a component
called autohandler.mason in the same directory

● If it can't find one it looks in the next directory up, and so on

● At the point where it wants to insert the original component,
the autohandler should call $m->call_next

● Example 23: autohandler.mason, wrap1.html, wrap2.html

Providing default content

● If asked for a component that doesn't exist
◆ Mason first looks for a component called dhandler.mason in the

same directory as the missing component
◆ If it doesn't find it it looks in all parent directories

● If it finds a dhandler it processes that instead of the requested
component

● ...and makes the rest of the component path available by
calling $m->dhandler_arg

● The dhandler can then generate what content it likes

● Example 24: dhandler.mason

Doing 'CGI' things in Mason

Forms

● Forms are fairly straight forward - see Example 25:
viewer2.html

● The only problem is arranging for 'sticky' fields

● One approach is to use cgi.mason - see Example 26:
viewer3.html

Getting information about the request

● For CGI environment variable information, use the Apache
request object. For example
◆ Request method: $r->method()
◆ Remote user: $r->connection->user()
◆ ... or $r->user() (Apache 2)
◆ User-agent header: $r->headers_in()->{'User-agent'}

● Most (all?) CGI environment variables also available

● Example 27: info1.html

Sending response meta-information

● No need (or support) for the 'special' CGI headers

● Content type normally defaults correctly based on filename
◆ $r->content_type('text/html; charset=utf-8')
◆ Example 28: text.html

● Redirect
◆ $m->redirect($new_url)
◆ Example 29: random3.html

● Return with a non-200 status (e.g. 'Not found')
◆ $m->clear_buffer;
◆ $m->abort(404);
◆ Example 30: forbidden.html

● Setting other response headers
◆ $r->headers_out->{'X-panic'} = 'Now!'
◆ Example 31: panic.html

Debugging Mason

● Syntax and run-time errors reported
◆ to the browser (in development)
◆ to the Apache error log (in production)
◆ messages can be confusing, line numbers can be wrong
◆ Example 32: syntax.html, runtime.html, confusion.html

● Write your own log messages with
$r->log->emerg('A emergency!');
$r->log->alert('Something needs attension');
$r->log->crit('A critical error');
$r->log->error('Something went wrong');
$r->log->warn('You might want to know...');
$r->log->notice('Take note');
$r->log->info('For your information...');
$r->log->debug('In foobar loop, no widgits');

● Beware Apache LogLevel configuration

● Example 33: logging.html

Useful techniques

Sending email

● Email is hard

● It's dangerous allow a user-supplied e-mail address on a
command line

● Many of the 'special' characters that can cause damage are
legal in (some) mail addresses

● Beware 'From:' address vs, envelope return path issues

● Best bet: Use ppsw.cam.ac.uk as a smart host, and then
use the Net::SMTP module
◆ See Example 34: mailer.html, send_mail.mason

Database interface

● The standard Perl databases interface is DBI

● There are some interesting modules built on this, like
Class::DBI, DBIx::Class, DBIx::SearchBuilder, ...

● Load Apache::DBI for persistent database connections

The character table

characters

id

name

race

pwd

The race table

characters

id

name

race

pwd

race

id

name

Relationship

characters

id

name

race

pwd

race

id

name

The program

● See Example 35: lotr.html

Raven and lookup

● If a page is Raven-protected, Remote User contains CRSid
◆ $ENV{REMOTE_USER}
◆ $r->connection->user() (Apache 1)
◆ $r->user() (Apache 2)

● CRSid can be looked up in the directory
◆ with Net::LDAP
◆ or with Ucam::Directory

● See Example 36: lookup.html

Dynamic pages and caching

● Expect caching
◆ local browser caching
◆ shared caches, configured and transparent

● An issue for authors of dynamic pages when
◆ things are not cached when they should be
◆ things are cached when they shouldn't

● 9 out of 10 dynamic programs don't express a preference

● This often means that browsers will cache pages (a bit) and
shared caches will not, but YMMV

● Different caches and browsers do different things, sometimes
for different types of file or types of access

● Avoid making essentially-static contact uncachable
◆ for your users
◆ for your server
◆ for search engines

Controlling caching

● It's all in the headers

● META tags are normally only seen by browsers

● Distinguish between Request and Response headers in
standards

● Pragma: no-cache probably doesn't work

If you positively don't want a document cached

● Try Cache-control: no-cache

● and/or Expires in the past
Expires: Fri, 30 Oct 1998 14:19:41 GMT

If you do want a document cached

● Send Expires if possible

● or something like Cache-control: max-age=86400

● Consider sending Last-modified and/or ETag

● ... but what's 'Last modified'?

● Beware of allowing something to be cached if the same URL
could produce different output

● Beware of setting Expires or max-age if not appropriate

Closing remarks

Designing web applications

● Small: one or more top-level components

● Medium: multiple top-level components plus supporting
component library

● Large: consider View-Model-Controller (VMC) architecture:
◆ View displays/formats data
◆ Model manages data access, not web-related
◆ Controller holds it all together

● Suggested implementation:
◆ View: Mason components
◆ Model: one or more Perl libraries (modules)
◆ Controller: either a Perl module or one or more top-level

components and/or dhandlers

Problems, possible solutions

● HTTP interaction model

● Limitations of HTML form controls

● 75% of all web applications is the same

● Possible solutions
◆ Browser-side scripting: Java(ECMA)script, Java
◆ Plugins: Flash
◆ Ajax?
◆ Application frameworks

That's All Folks

 If you have been, thanks for listening

	Title
	Introducing Mason
	What's wrong with CGI?
	The Mason solution
	A simple Mason document
	A slightly more interesting Mason program

	Mason from 10,000 feet
	Components
	Component syntax - embedded Perl
	Component syntax - Perl blocks
	Component syntax - substitution
	Component syntax - calling other components
	Component syntax - other things

	Passing information to components
	Calling components
	Arguments via a <%args> block
	Arguments via %ARGS
	Argument passing examples

	Autohandlers and Dhandlers
	Automatic content wrapping
	Providing default content

	Doing 'CGI' things in Mason
	Forms
	Getting information about the request
	Sending response meta-information
	Debugging Mason

	Useful techniques
	Sending email
	Database interface
	The character table
	The race table
	Relationship
	The program
	Raven and lookup
	Dynamic pages and caching
	Controlling caching
	If you positively don't want a document cached
	If you do want a document cached

	Closing remarks
	Designing web applications
	Problems, possible solutions

	That's All Folks

